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Relativistic effective valence shell Hamiltonian method: Excitation
and ionization energies of heavy metal atoms
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The relativistic effective valence shell HamiltonianHv methodsthrough second orderd is applied to
the computation of the low lying excited and ion states of closed shell heavy metal atoms/ions. The
resulting excitation and ionization energies are in favorable agreement with experimental data and
with other theoretical calculations. The nuclear magnetic hyperfine constantsA and lifetimest of
excited states are evaluated and they are also in accord with experiment. Some of the calculated
quantities have not previously been computed. ©2005 American Institute of Physics.
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I. INTRODUCTION

The accurate estimation of transition energies
nuclear magnetic hyperfine constants for singly ion
metal ions, such as Sr+, Ba+, Pb+, etc., is important becau
these ions can be used in cold traps as possible frequ
standards and in probes of physical phenomena that d
from the prediction of the standard model of physics.
instance, an optical frequency standard based on Sr+ has re
cently been developed at the National Physical Laborato1,2

In addition, calculations of the hyperfine coupling cons
are relevant to studies of parity nonconservation in at
because the electroweak interaction is also a short r
force such as those determining the hyperfine coupling
stant. However, the theoretical determination of the hype
coupling constant is, probably, one of the most nontr
problems in atomic physics because an accurate pred
requires precise incorporation of the strongly entangled
tivistic and higher order correlation and relaxation effec

A variety of many-body methods are available for inc
porating relativistic and dynamical electron correlation c
tributions into descriptions of many-electron systems.
such many-body method, the effective valence shell Ha
tonianHv method,3 has been demonstrated in extensive n
relativistic studies to be capable of providing accurate
dictions of transition energies and related properties
complex atomic and molecular systems. This paper desc
computations for a series of excitation and ionization e
gies, magnetic hyperfine constants, and other related pr
ties of the Sr, Ba, and Pb atoms using a relativistic exten
of theHv method and a kinetically balanced basis. While
properties of the Sr+ and Ba+ ions have been studied usi
relativistic single reference second-order many-body pe
bation theory4 sSR-MBPTd and coupled cluster method5

only a few relativistic calculations are available for the c
responding neutral states, in part, because of the greater
plexity si.e., increased nondynamical correlationd involved in

the calculation of excited states for the neutral systems. Mul
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tireference MBPT methods, on the other hand, are cos
fective and can yield highly accurate estimates of ground
excited state properties for systems in which nondynam
correlation is important.

Among the various MR-MBPT approaches, theHv

method has emerged as one of the most powerful and
tive tools for high precision calculations of the excitat
spectrum. Over the years, theHv method has been appli
successfully to a wide variety of problems involving a h
of atomic and molecular systems.6–14 This paper describe
the extension of thisHv scheme for the first time to fou
component relativistic calculations in order to assess its
formance in a situation where both relativistic and elec
correlation effects are important. The present work dem
strates that the relativisticHv method is also capable of pr
ducing accurate transition energies and hyperfine split
for well known challenging systems. The calculations
highlight the significant contributions from electron corre
tion to ionization and transition energies.

The following section provides a brief description of
extension of theHv method to treat relativistic systems. S
tion III provides the results with comparison to experime
and prior calculations. No previous relativistic computat
are available for the excitation energies of the Sr atom o
the hyperfine matrix elements of the Pb+ ion.

II. THEORETICAL BACKGROUND

A. Hv method

As in conventional many-body perturbation theory,
Hv method3 begins with the decomposition of the ex
HamiltonianH into the zeroth-order HamiltonianH0 and the
perturbationV,

H = Hs0d + V, s1d

where Hs0d is often constructed as a sum of one-elec
Fock operators. The full many-electron Hilbert space o

-mensionN is then partitioned into a reference spaceM0

© 2005 American Institute of Physics11-1
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salso called the active or model spaced of dimensionM !N,
defined by the projectorP, and its orthogonal compleme
M0

' associated with the projectorQ=1−P. Once the activ
spaceM0 is defined, a wave operatorV is introduced tha
satisfies

uCil = VuCi
s0dl, i = 1, . . . ,M , s2d

whereuCi
s0dl anduCil are theunperturbedandthe exactsfull

configuration interactiond wave functionssin the given basisd
for the ith eigenstate of the Hamiltonian, respectively.
wave operatorV formally represents the mapping of the r
erence spaceM0 onto the target spaceM spanned by theM
eigenstatesuCil and has the properties

VP = V, PV = P, V2 = V. s3d

With the aid of the wave operatorV, the Schrödinger equ
tion for the M eigenstates of the Hamiltonian correlat
with the M-dimensional reference spaceM0 soften called
the P spaced of M unperturbed statesuCi

s0dl, i.e.,

HuCil = EiuCil, i = 1, . . . ,M , s4d

is transformed into the generalized Bloch equation

HVP = VHVP = VPHeffP. s5d

The Hermitianized effective Hamiltonian through sec
order can be expressed as

Heff = PHP+ 1
2fPVQsEP − H0d−1QVP+ h.c.g, s6d

where h.c. denotes the Hermitian conjugate of the prece
term,Heff operates only on a complete active space spa
by a set of valence orbitalshvj as defined below, and whe
EP is the zeroth-order energy for theP space.

In order to compute the diagonal and off-diagonal ma
elements of an operatorA between the normalized full spa
wave functionsCi within Hv theory, an effective operatorAv

is defined as

Av = PAP+ 1
2fsPVQsEP − H0d−1QAPd + h.c.g. s7d

Once Av is evaluated, it furnishes all diagonal and o
diagonal matrix elements within theP-space states. Man
body theory techniques are applied to express the m
elements ofAv directly in the valence orbital basis as

Av = Ac
v + o

i

Ai
v +

1

2o
i,j

Aij
v + ¯ , s8d

whereAc
v is the constant core contribution andAi

v sAij
v d is a

onestwod-electron effective operator in the valence orb
basishvj.

Apart from the referencesPd space, the only variabilit
in all MR-MBPT methods lies in the choice of orbitals,
bital energies, and the definition of the zeroth-order Ha
tonianH0 since the perturbation approximation is comple
determined by these choices. Generally, the zeroth-

Hamiltonian is prescribed as a sum of one-electron operators
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H08sid = o
c

ufcleckfcu + o
v

ufvlevkfvu + o
e

ufeleekfeu,

s9d

in terms of the corec, valencev, and excitede orbitals and
their corresponding orbital energiesec, ev, and ee, respec
tively. At this point, we emphasize that unlike traditio
MR-MBPT treatments, theHv method and its first-order a
proximation based on retention of only thePHP term, called
the “improved virtual orbital complete active space confi
ration interaction”sIVO-CASCId method, usemultiple Fock
operators to define the valence orbitals.10,15,16In this scheme
all the valence orbitals and orbital energies are obtained
VsN−1d potentials and, therefore, are on an equal foo
energetically, as opposed to the unbalanced use of a m
of Hartree–Fock or Dirac–FocksDFd occupied and virtua
orbitals to construct the valence space in many m
reference methods. TheHv method defines the zeroth-ord
HamiltonianH0 in terms of the one-electron operator,

H0sid = o
c

ufcleckfcu + o
v

ufvlēvkfvu + o
e

ufeleekfeu,

s10d

where in order to improve the perturbative convergence17–19

the average valence orbital energyēv in Eq. s10d is obtained
from the original set of valence orbital energies by the de
cratic averaging,

ēv =
oi

Nv ei

Nv
, s11d

with Nv being the number of valence orbitals spanning
complete activeP space. Prior applications of the IV
CASCI method demonstrate that it produces comparabl
curacy to complete active space self-contained
sCASSCFd treatments with the same choice of valence s
sof course, using different valence orbitalsd but with consid
erably reduced computer time since no iterations are n
sary beyond an initial ordinary self-consistent fi
calculation.20,21

Because the IVOs play a central role in this perturba
scheme, we briefly outline their generation. More deta
discussion is presented elsewhere.20,21The IVO-CASCI pro
cedure first determines the occupied and unoccupied DF
lecular orbitalssMOsd by diagonalizing the four-compone
DF matrix 1Flm for the reference state,

1Flm = kfluh + o
k=1

occ

s2Jk − Kkdufml = dlmel , s12d

where l and m designate anysoccupied or unoccupiedd DF
MO andel is the corresponding DF orbital energy. The IV
are determined variationally by minimizing the energie
the low lying singly excited statesCa→m with respect to
new set of MOshxj swherea is usually taken as the highe
occupied MOd. However, to ensure orbital orthogonality a
applicability of Brillouin’s theorem,hxj are expressed

,terms of the DF orbitalshfj as
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xa = o
i=1

occ

aaifi, xm = o
u=1

unocc

cmufu, s13d

involving separate sums over occupied and unoccupie
bitals in the DF approximation for the reference state.
problem is further simplified by settinghxaj to be occupie
orbitals of the reference DF configuration. With this cho
the coefficientscmu in Eq. s13d can be determined direct
from the matrix eigenvalue equationF8C=CG, where

Fvw8 = 1Fvw − dFvw
a , s14d

dFvw
a = kxvuJauxwl. s15d

Second-orderHv calculations are very rapidly impl
mented. The most time consuming step generally invo
the computation of the effective three-body interactio
symmetry inequivalent six-index quantities whose num
scales as the product of the sixth power of the numbersNvd
of valence orbitals and the sum of the number of core
excited orbitalssof course, not including the frozen “po
tron” core orbitalsd. The maximum size of the referen
space used heresNv=6d and the high atomic symmetry he
keep even this step very rapid with large basis sets. M
over, because of the Fock space formulation, onceHv has
been evaluated, energies are readily computed for bot
neutral and positive ion valence states.

B. Relativistic theory

The relativistic effective valence shell HamiltonianHv

method is applied to compute excitation energies for th
and Ba atoms and ionization energies for the Sr, Ba, an
atoms. The Jucys–Levinson–Vanagas theorem22 is employed
to decompose each Goldstone diagram contributing to
s9d into the product of an angular momentum diagram a
reduced matrix element. This procedure simplifies the c
putational complexity of the DF and relativisticHv equa-
tions. In the calculations, the problem of “continuum dis
lution” is formally avoided by introducing projectio
operators to select the positive energy states or, in
words, by excluding all summations over negative en
states.23

The Dirac–Coulomb Hamiltonian for the many-elect
system is written as

H = o
i=1

N

fcaW i . pW i + sbi − 1dmc2 + Vnucsr idg +
1

2o
iÞ j

e2

urWi − rW ju

s16d

in terms of the customary Dirac operatorsaW and b that are
represented by the matrices

aW = S0 sW

sW 0
D, b = S I 0

0 − I
D , s17d

where s̄ denotes the Pauli matrices andI is the 232 unit
matrix. The simplest choice forVnucsrd is a point source o

electric field with a Coulomb potential of the form,
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Vnucsrd = −
Z

r
, s18d

whereZ is the atomic number. However, this nuclear mo
introduces a nonphysical singularity which is known to
fluence the convergence properties of the finite basis se
pansion, particularly if a Gaussian-type basis se
employed.24 Further, the nuclear volume isotope shift,
served in heavy atoms, reflects the finite size of the nu
with the nuclear charge distribution depending upon
atomic numberA. Among the various nuclear models,
“Fermi nucleus” is a popular choice of nuclear model w
out a sharp cutoff. Experimental studies suggest tha
nuclear charge distribution posses a “skin” of finite thickn
across which the nuclear charge density falls to zero as
Fermi nucleus model. The present work uses the F
nucleus model in which the charge density inside the nu
varies as

rsrd = r0h1 + expfsr − bd/agj−1, s19d

wherer0 is a constantsdepending onZd sRef. 25d and b is
the cutoff radiussalso called “half-density radius”d at which
rsbd=r0/2. The parametera is related to the nuclear sk
thicknesst by

a = t/s4 ln 3d, s20d

wheret=2.30 fm for the Fermi nucleus model.26

The relativistic orbitals are expressed in the form

S r−1Pnksrdxkmsu,fd
ir −1Qnksrdx−kmsu,fd

D , s21d

wherer−1Pnksrd and r−1Qnksrd are the large and small co
ponents of the radial wave functions, respectively, that
isfy the orthogonality condition

E
0

`

drfPnksrd*Pmksrd + Qnksrd*Qmksrdg = dmn. s22d

The quantum numberk classifies the orbital according
symmetry and is given by

k = 7 s j ± 1
2d , s23d

wherel is the orbital quantum number andj = l ± 1
2 is the tota

angular quantum number. The spinorsxkmsu ,fd are written
as

xkmsu,fd = Ss=±1/2Csl 1
2,m− s,sdYl,m−ssu,fdhs, s24d

whereCsl 1
2 ,m−s ,sd andYl,m−ssu ,fd represent the Clebsc

Gordon coefficients and the normalized spherical harmo
respectively, andhs is a two-component spinor.

The large and small component radial wave funct
are expressed as linear combinations of basis functions

Pnksrd = o
p=1

N

Ckp
L gkp

L srd, Qnksrd = o
p=1

N

Ckp
S gkp

S srd, s25d

where the summation indexp runs over the number of ba
functionsN andgkp

L sgkp
S d andCkp

L sCkp
S d are the basis fun
tions and expansion coefficients for the largessmalld compo-
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nents, respectively. The basis functions employed in t
calculations are Gaussian-type orbitalssGTOsd of the form

gkp
L srd = Np

Lrnke−apr2
s26d

with

ap = a0bp−1, s27d

wherea0 and b are user defined constants,nk specifies th
orbital symmetriess1 for s, 2 for p, etc.d, and Np

L is the
normalization factor for the large component. The sm
component normalization factor is obtained by imposing
kinetic balancecondition

gkp
S srd = Np

SS d

dr
+

k

r
Dgkp

L srd, s28d

where

Np
S=Î ap

2nk − 1
f4sk2 + k − nkd − 1g. s29d

The ground and excited state properties of Sr, Ba,
their positive ions are computed using 37s33p28d12f5g
GTOs with a0=0.005 25 andb=2.25. For the Pb+ ion, we
employ 38s35p30d25f20g GTOs with a0=0.008 25 andb
=2.73.27

III. RESULTS AND DISCUSSION

The choice of reference space plays a central role i
multireference perturbative methods. This choice is also
most difficult portion of all MR-MBPT calculations as it c
affect the accuracy of the computed spectroscopic cons
and state energies. However, the choice of reference sp
fairly straightforward for Sr, Ba, and Pb. The ground st
of the Sr and Ba neutral atoms contain only two electron
the outermost occupiedns orbital sn=5 for Sr andn=6 for
Bad whose orbital energy is well separated from the rem
ing occupied orbital energies. Since the improved virtua
bitals 6sse6s=−0.1219 a.u.d, 5p1/2se5p1/2

=−0.1439 a.u.d,
5p3/2se5p3/2

=−0.1414 a.u.d, 4d3/2se4d3/2
=−0.1107 a.u.d, and

4d5/2se4d3/2
=−0.1104 a.u.d of Sr are quasidegenerate, th

orbitals are also included in reference space. Using sim
arguments, the 7s, 6p1/2, 6p3/2, 5d3/2, and 5d5/2 orbitals of Ba
are included in theHv reference space for Ba. Finally, theHv

reference space for Pb is constructed by allocating two
trons to the 6p1/2 and 6p3/2 orbitals in all possible ways b
cause of the largers-p energetic separation in this heav
atom. Calculations for Pb are limited to the positive ion
cause the treatment of the neutral atom would requi
larger reference spacesNv=10 or 12d that is no longe
quasidegenerate and that therefore should be studied
third orderHv relativistic calculations, which are not yet po
sible.

A. Excitation energies

Table I compares experimental28–31 and calculated low
lying excitation energies of Sr and Ba. Included also
coupled clustersCCd calculations for Ba. TheHv transition

energies for the Sr and Ba atoms are in excellent agreeme
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with experiment. The maximum error in the estimated e
tation energy for Sr is only 159 cm−1 sor 0.7%d for the 1P1
state. TheHv method also provides a fairly accurate estim
of the 3P0→ 3P1 and 3P1→ 3P2 transition energies, whic
deviate by only 37 cm−1 and 14 cm−1, respectively, from ex
periment. The Ba transition energies from theHv calculations
are also quite accurate, except for the3P0→ 3P1 and 3P1
→ 3P2 transitions, which are off by,100 cm−1.

Table I indicates, on the other hand, that the error in
estimated CCsHvd energies for the Ba atom3P0,

2P1, and
3P2 states are 237s31d cm−1, 245s114d cm−1, and
278s225d cm−1, respectively. Since the difference betw
the maximum deviation and the minimum deviation fr
experiment for the CC calculations of the3P state energies
lesss41 cm−1d than that for theHv treatments194 cm−1d, the
CC offers a more accurate description of the fine struc
splittings for the3P states of Ba, even though the CC tr
sition energies for these states are less accurate than th
respondingHv estimates.fThe average error in the CC ex
tation energies for the Ba atom is 2.0%, while that for theHv

case is only 0.7%.g However, it should be emphasized t
the CC calculations include contributions from the Breit
teractions that are omitted in our calculations. Moreo
both computationssCC andHvd employ different basis se
We believe that the inaccuracy in our computed fine stru
splittings for the3P states of Ba mainly arises due to
absence of higher order correlation contributions and
Breit interaction in our calculations, and efforts are un
way to enable including these effects.

B. Valence electron ionization energies

Table II compares theHv calculations for low lying va
lence electron ionization energies of Sr+, Ba+, and Pb+ with
those computed using single reference MBPT and CC m
ods and with experiments.28 The Hv method estimates th
2P1/2→ 2P3/2 energy gapsthe fine structure splitting which
labeled as FS in Table IId of Sr more accurately than t
SR-MBPT. Table II further shows that the average erro
the computedHv energiess0.13%d is less than those from th
SR-MBPT s0.48%d and comparable to CCs0.12%d treat-

v

TABLE I. Low lying transition energiessin cm−1d for the Sr and Ba atom

Atom State
Dominant

configurationssd Hn CCa Experimentb

Sr
3P0 5s5p 14 428 14 327
3P1 5s5p 14 582 14 514
3P2 5s5p 14 980 14 898
1P1 5s5p 21 539 21 698

Ba
3P0 6s6p 12 235 12 503 12 266
3P1 6s6p 12 523 12 882 12 637
3P2 6s6p 12 289 13 792 13 514
1P1 6s6p 18 014 18 455 18 060

aReference 5.
bReferences 26–30.
ntments. A careful analysis indicates that only thefKrg5s H
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valence electron removal energy is slightly poorersoff by
284 cm−1d compared to the CC estimatesoff by 162 cm−1d.
This error also affects theHv calculation of the fine structu
splitting.

The Hv valence electron ionization energies of Ba+ are
reasonably close to experiment, except for the2S1/2 state
which is dominated by thefXeg6s configuration state func
tion. On the other hand, the Ba+ fine structure splitting fo
the 2P1/2→ 2P3/2 states is quite close to experimentsoff by
only 32 cm−1d and to the CC estimate. The overall erro
the computedHv energies for Ba+ is 0.48% which is bette
than the SR-MBPTs0.98%d but not as good as the C
s0.12%d computations. However, the very inexpensive na
sroughly an order of magnitude fasterd of second-orderHv

calculations compared to the computational cost involve
the CC calculations renders this minuscule error quite
ceptable.

For the Pb+ ion, the computed CC and SR-MBPT v
lence electron ionization energies are more accurate tha
correspondingHv values. On the other hand, theHv fine
structure splitting for the2P1/2s6p1/2d→ 2P3/2s6p3/2d states o
Pb+ is more accurate than the CC and SR-MBPT treatm
At this juncture, we note that a precise determination of
2P1/2→ 2P3/2 transition energy is necessary for an accu
prediction of the lifetime of the2P3/2 state because th
E6p1/2−E6p3/2 energy difference appears raised to the t
sfifthd power for theM1sE2d allowed 6p1/2→6p3/2 transition
in Pb+.

C. Nuclear magnetic hyperfine constant A and
lifetime t

The nuclear magnetic hyperfine constant and trans
dipole/quadrupole matrix elements are computed using
second-ordersin the Coulomb perturbationd Hv wave func-
tions and thus contain contributions such as those depic

TABLE II. Theoretical and experimental valenc
splittings sFSd of Sr+, Ba+, and Pb+ ions.

Ion State Hv

Sr+ 2S1/2 s5sd 89 248
2P1/2 s5p1/2d 65 219
2P3/2 s5p3/2d 64 403

FS 816
Average error 0.13%

Ba+ 2S1/2 s6sd 81 734
2P1/2 s6p1/2d 60 481
2P3/2 s6p3/2d 58 759

FS 1 722
Average error 0.48%

Pb+ 2P1/2 s6p1/2d 122 382
2P3/2 s6p3/2d 108 353

FS 14 029
Average error 1.06%

aReference 28.
bReferene 34.
cReference 5.
dReference 27.
Fig. 1. Tables III–VI present the theoretically determined
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nuclear magnetic hyperfine constants and life times fo
excited states of Sr+, Ba+, and Pb+. Also included are othe
computations and experimental data for comparison. Th
duced matrix elements for the magnetic hyperfineA, electric
dipole E1, electric quadrupoleE2, and magnetic dipoleM1
matrix elements are presented in Appendixes A and B.

Table III indicates that our predicted nuclear magn
hyperfine constants are in general agreement with ex
ments, except for the 6s s2S1/2d and 6p s2P3/2d states of Ba+

and Pb+, for which the CC treatments are also not very

ctron ionization energiessin cm−1d and fine structure

BPTf4g CC Experimenta

89 631 89 126b 88 964
65 487 65 309b 65 249
64 663 64 499b 64 448

824 810 801
0.48% 0.12%

81 882 80 871c 80 687
60 887 60 475c 60 425
59 139 58 768c 58 735

1 748 1 707 1 690
0.98% 0.12%

121 898 120077d 121 208
108 041 106377d 107 123

13 857 13700 14 085
0.71% 0.82%

FIG. 1. Some representative Goldstone diagrams that contribute
nuclear magnetic hyperfine coupling constantA. The particle orbitals ar
labeled byp,q, . . ., etc. Occupied orbitals are represented bya ,b , . . ., etc
The active svalenced and inactive orbitals are denoted byv and i,
e ele

M

respectively.
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curate. It is evident from Tables III and IV that the ove
correlation contribution to magnetic hyperfine matrix e
ments for the 6p s2P3/2d state of Pb+ should be negative a
the zeroth-order DF approximation overestimates the m
netic hyperfineA value. Thus, the overall correlation con
bution to the magnetic hyperfine coupling constant for
2P3/2 states of Sr+ and Ba+ must be positive. The prese
calculations clearly exhibit this anticipated trend. The la
negative contribution from core polarizationfFig. 1scdg may
appear to be quite unusual, but this same trend is foun
the 6p3/2 s2P3/2d state of Tl sRef. 32d and the 3d5/2 s2D5/2d
state of Ca+.33 The CC calculation33 shows that higher ord
contributions are necessary for accurately describing
magnetic hyperfine matrix elements for the 3d5/2 s2D5/2d state
of Ca+.33 The accuracy of the 6p3/2 s2P3/2d stateA value for
Pb+ strongly suggests that the inclusion of higher order
relation corrections is likewise necessary for an accurat
termination ofA when the core-polarization contribution
large and negative with respect to the DF value.

The lifetime for the excited states of Sr+ and Ba+ are
computed from theE1 transition probabilities, while the life
time of the 6p s2P3/2d state of Pb+ is estimated from theM1
andE2 transition probabilities. The MBPT lifetimes for t
excited states of Sr+ and Ba+ reported by Guetet al.are quite
accurate but are determined using experimental transitio
ergiessld and semiempirically adjusted electric dipole tr
sition matrix elementssDd. On the other hand, the accura

TABLE III. Nuclear magnetic hyperfine constantsin megahertzd of the
ground and low lying excited states Sr+, Ba+, and Pb+.

Ion State
Present
work CC Experiment

Sr+
2S1/2 s5sd 1 005.74 1 000a 1 000.47b

2P1/2 s5p1/2sd 167.96 177a

2P3/2 s5p3/2d 34.82 35.3a 36.8c

Ba+

2S1/2 s6sd 4 165.20 4 072.83d 4 018e

2P1/2 s6p1/2d 736.28 736.98d 742.04e

2P3/2 s6p3/2d 131.18 130.94d 126.9e

Pb+ 2P1/2 s6p1/2d 12 972.42 12 903.7f 13 000g

2P3/2 s6p3/2d 512.52 623.2f 583g

aReference 34.
bReference 35.
cReference 36.
dReference 37.
eReference 38.
fReference 39.
gReference 40.

TABLE IV. Contributions of relatively large matrix elementssin megahertzd
to the total magnetic hyperfine constant for2P3/2 snp3/2d states of Sr+, Ba+,
and Pb+ sn=5 for Sr and 6 for Ba and Pbd.

Terms Sr+ Ba+ Pb+

Dirac–FockfFig. 1sadg 21.33 71.88 918.37
Pair correlationfFig. 1sbdg 4.80 22.12 91.72
Core polarizationfFig. 1scdg 8.02 30.32 −787.19
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of the computed lifetimes degrade when their theore
transition energies and dipole matrix are used.

TheHv lifetimes for the excited states of Sr+ and Ba+ in
Table V are evaluated from theHv transition energies an
dipole matrix elements. The 5p s2P1/2d state lifetime of Sr+ is
well reproduced by theHv method. The accuracy of o
computed lifetime for the 5p s2P3/2d state of Sr+ is not as
good as that for the 5p s2P1/2d state mainly due to the erro
in the 5p3/2→4d3/2 and 5p3/2→4d5/2 computed transition e
ergies and the corresponding dipole matrix elements. Thp
s2P3/2d state lifetime of Pb+ is computed using theHv transi-
tion energy and transition matrix elementssM1 andE2d and
is quite accurate compared to the CC value27 ssee Table VId.
Since theHv energy for the 6p1/2→6p3/2 transition is also
quite accurate, we believe that bothM1 and E2 transition
matrix elements are likewise very accurate.

IV. CONCLUDING REMARKS

The relativistic effective valence shell HamiltonianHv

method is described and applied in second order to the
lying states of the Sr and Ba atoms and to the positive io
Sr, Ba, and Pb. Highly satisfactory results are obtained
the transition energies, valence electron ionization poten
magnetic hyperfine constant, and the lifetime of low ly
excited states of the Sr+, Ba+, and Pb+ ions. To our knowl
edge, no prior theoretical data are available for the trans
energies of Sr and the magnetic hyperfine constant of+.
The accuracy achieved with the computationally inexpen
second-orderHv scheme is comparableseven better in som
casesd to the much more computer intensive CC sche
Note, however, that it remains to be determined whethe
inclusion of Breit interaction in our calculations improv
accuracy of these computed quantities, especially for
Work in this direction is in progress.

TABLE V. Lifetimes t sin nanosecondsd of low lying excited states of S+

and Ba+ sE1d. Entries in parentheses are calculated from experimental
sition energies and semiempirically adjusted transition dipolesE1d matrix
elements.

Ion State Hv Other calculation Experiment

Sr+

5p1/2 7.47 7.08s7.48da 7.47±0.07b

5p3/2 6.888 6.39s6.74da 6.69±0.07c

Ba+

6p1/2 7.89 7.25s7.99da 7.92±0.08b

5p3/2 5.98 5.84s6.39da 6.31±0.02b

aReference 4.
bReference 41.
cReference 42.

TABLE VI. Lifetime t sin secondsd of 6p3/2 s2P3/2d excited state of Pb+.

Ion State Hn CCSDa Expt.b

Pb+

6p3/2 0.0409 0.0440 0.0412±0.0007

aReference 27.
b
Reference 31.
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APPENDIX A: NUCLEAR MAGNETIC HYPERFINE
MATRIX ELEMENTS

The relativistic nuclear hyperfine interaction is giv
by43

Hhfs = o
k

Mskd ·Tskd, sA1d

whereMskd andTskd are spherical tensor operators of rank,
representing the nuclear and electronic parts, respective
the interaction. In first-order perturbation theory, the hy
fine energiesWsJd of the fine structure statesuJMJl are the
expectation values ofHnfs,

WsJd = kIJFMFuo
k

Mskd ·TskduIJFMFl

= o
k

s− 1dI+J+FS I J F

J I K
DkI uuMskduuIl kJuuTskduuJl.

sA2d

For the magnetic dipole casek=1, the nuclear dipole mo
mentmI sin units of the nuclear magnetronmNd is defined a

mImN = kII uuM0
s1duuII l = S I 1 I

− I 0 I
D kI uuMs1duuIl, sA3d

while the operatorTq
s1d is given by44

Tq
s1d = o tq

s1d = o
j

− ies8p/3d1/2r j
−3a jY1q

s0dsr̂ jd, sA4d

in which a is the Dirac matrix andYkq
l represents a spheric

harmonic. Defining the magnetic dipole hyperfine constaA
by

A = mNsmI/Id
kJuuTs1duuJl

ÎJsJ + 1ds2J + 1d
, sA5d

the magnetic dipole hyperfine energyW is then obtained a

W= AkIJl. sA6d

The single-particle reduced matrix element of the e
tronic part is given by

kkuutq
s1duuk8l = − kkuuCq

s1duuk8lsk + k8d

3E dr
fPksrdQk8srd + QksrdPk8srdg

r2 , sA7d

where

kkuuCq
skduuk8l = s− 1d j+1/2S j k j8

1/2 0 − 1/2
D

3Îs2j + 1ds2j8 + 1dpsl,k,l8d sA8d

and

psi, j ,kd = H1 if i + j + k = evenJ sA9d

0 otherwise.
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APPENDIX B: ELECTRIC DIPOLE „E1…, QUADRUPOLE
„E2…, AND MAGNETIC DIPOLE „M1… ALLOWED
TRANSITION PROBABILITIES

The transition probabilitiesAf←i for the electric dipol
E1, electric quadrupoleE2, and magnetic dipoleM1 allowed
transitionssin s−1d are given by45

Af←i
E1 =

2.02613 1018

gkl
3 Sf←i

E1 , sB1d

Af←i
E2 =

1.11993 1018

gkl
5 Sf←i

E2 , sB2d

Af←i
M1 =

2.69733 1013

gil
3 Sf←i

M1 , sB3d

respectively. Here,l is the transition energy in angstro
andgk;s2J+1d is degeneracy of the upper level. The qu
tities Sf←i

E1 , Sf←i
E2 , and Sf←i

M1 are the E1, E2, and M1 line
strengthssin atomic unitsd, respectively. The line strengt
Sf←i

sEL/M1d are defined by

Sf←i
EL/M1 = Dif

EL/M1 3 Dfi
EL/M1, sB4d

where the electric dipolesand quadrupoled Dfi
EL and magneti

dipole matrix elementsDfi
M1 are given by

Dfi
EL = CLsf,id E drfPfsrdPisrd + QfsrdQisrdgrL + Osa2d

sB5d

and

Dfi
M1 = CM1sf,id

sk f + kid
a

E drfPfsrdQisrd + QfsrdPisrdgr

+ Osa2d, sB6d

with

CLsf,id = s− 1d j f+1/2S j f L j i
1/2 0 − 1/2

DÎs2j f + 1ds2j i + 1d sB7d

and

CM1sf,id = s− 1d j f+1/2S j f 1 j i
1/2 0 − 1/2

DÎs2j f + 1ds2j i + 1d.

sB8d

Here, j , k, anda are the total angular momentum, relativis
angular momentumfk= ± s j +1/2dg, and fine structure co
stant, respectively.

Once the transition probability is known, the lifetime c
be evaluated through the relation

t =
1

A
. sB9d
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