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Relativistic effective valence shell Hamiltonian method: Excitation
and ionization energies of heavy metal atoms
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The relativistic effective valence shell Hamiltonibfi method(through second ordgis applied to

the computation of the low lying excited and ion states of closed shell heavy metal atoms/ions. The

resulting excitation and ionization energies are in favorable agreement with experimental data and
with other theoretical calculations. The nuclear magnetic hyperfine congtaansd lifetimesr of

excited states are evaluated and they are also in accord with experiment. Some of the calculated
guantities have not previously been computed2@5 American Institute of Physics

[DOI: 10.1063/1.1906206

I. INTRODUCTION tireference MBPT methods, on the other hand, are cost ef-
fective and can yield highly accurate estimates of ground and

The accurate estimation of transition energies andexcited state properties for systems in which nondynamical
nuclear magnetic hyperfine constants for singly ionizedcorrelation is important.
metal ions, such as §rBa', P, etc., is important because Among the various MR-MBPT approaches, th¢
these ions can be used in cold traps as possible frequeneyethod has emerged as one of the most powerful and effec-
standards and in probes of physical phenomena that depdite tools for high precision calculations of the excitation
from the prediction of the standard model of physics. Forspectrum. Over the years, th# method has been applied
instance, an optical frequency standard based 6rm&s re- successfully to a wide variety of problems involving a host
cently been developed at the National Physical Labordtbry. of atomic and molecular systeris:* This paper describes
In addition, calculations of the hyperfine coupling constantthe extension of this4* scheme for the first time to four-
are relevant to studies of parity nonconservation in atomgomponent relativistic calculations in order to assess its per-
because the electroweak interaction is also a short rang‘@rmance in a situation where both relativistic and electron
force such as those determining the hyperfine coupling corcorrelation effects are important. The present work demon-
stant. However, the theoretical determination of the hyperfinstrates that the relativistid” method is also capable of pro-
coupling constant is, probably, one of the most nontrivialducing accurate transition energies and hyperfine splittings
problems in atomic physics because an accurate predictio@r well known challenging systems. The calculations also
requires precise incorporation of the strongly entangled relabighlight the significant contributions from electron correla-
tivistic and higher order correlation and relaxation effects. tion to ionization and transition energies.

A Variety of many_body methods are available for incor- The fO”OWing section prOVideS a brief description of the
porating relativistic and dynamical electron correlation con-€xtension of thé{” method to treat relativistic systems. Sec-
tributions into descriptions of many-electron systems. Ondion Il provides the results with comparison to experiments
such many-body method, the effective valence shell Hamiland prior calculations. No previous relativistic computations
tonianH? method® has been demonstrated in extensive non2re available for the excitation energies of the Sr atom or for
relativistic studies to be capable of providing accurate prethe hyperfine matrix elements of the Pion.
dictions of transition energies and related properties for
complex atomic and molecular systems. This paper describ@s THEORETICAL BACKGROUND
computations for a series of excitation and ionization ener-
gies, magnetic hyperfine constants, and other related prope@‘-‘ H” method
ties of the Sr, Ba, and Pb atoms using a relativistic extension  As in conventional many-body perturbation theory, the
of the H” method and a kinetically balanced basis. While theH* method begins with the decomposition of the exact
properties of the Srand Bd ions have been studied using HamiltonianH into the zeroth-order Hamiltoniad, and the
relativistic single reference second-order many-body perturperturbationv,
bation theor§ (SR-MBPT) and coupled cluster methods, H=HO 4\

o ) . = , (1)
only a few relativistic calculations are available for the cor-
responding neutral states, in part, because of the greater convhere H? is often constructed as a sum of one-electron
plexity (i.e., increased nondynamical correlaiomvolved in ~ Fock operators. The full many-electron Hilbert space of di-
the calculation of excited states for the neutral systems. MulmensionN is then partitioned into a reference spaté,
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(also called the active or model spacé dimensionM <N, HY() = D | doeldd + 2 [do)e(d] + > | dedec(del,
defined by the projectoP, and its orthogonal complement c N e
My associated with the project@=1-P. Once the active 9)
spaceM, is defined, a wave operat®l is introduced that
satisfies in terms of the core, valencev, and excitece orbitals and
B On i their corresponding orbital energies, €,, and ¢, respec-
W) =Q¥"), i=1,... M, 2 tively. At this point, we emphasize that unlike traditional

where|W(?) and|W,) are theunperturbedandthe exactfull ~MR-MBPT treatments, thé” method and its first-order ap-

configuration interactionwave functiongin the given basis pro>f‘i.mation based on retention of only tR&iP term, called
for the ith eigenstate of the Hamiltonian, respectively. Theth® “improved virtual orbital complete active space configu-

wave operatof) formally represents the mapping of the ref- "ation interaction”(IVO-CASCI) method%llJésenuI_tiple Fock
erence spacé, onto the target spacé! spanned by thé/ operators to define the valence orbit21$> 81N this scheme,

eigenstate$?;) and has the properties all the valence orbitals and orbital energies are obtained from
V-1 potentials and, therefore, are on an equal footing
OP=Q, PQ=P, 0?=0Q. (3) energetically, as opposed to the unbalanced use of a mixture

of Hartree—Fock or Dirac—FockDF) occupied and virtual
With the aid of the wave operatd?, the Schrodinger equa- orbitals to construct the valence space in many multi-
tion for the M eigenstates of the Hamiltonian correlating reference methods. Thé” method defines the zeroth-order
with the M-dimensional reference spacde(, (often called HamiltonianH, in terms of the one-electron operator,
the P space of M unperturbed statdﬂff‘”), ie., .
Ho(i) = E |¢c>6c<¢c| + E |¢v>6u<¢v| + 2 |¢e>5e<¢e|!
H|\Ifi>:Ei|\Pi>, i :1, ,M, (4) c v e
. . . . (10
is transformed into the generalized Bloch equation
where in order to improve the perturbative convergeric¥,
HQP = QHOP = QPHP. (5 the average valence orbital energyin Eq. (10) is obtained
from the original set of valence orbital energies by the demo-
cratic averaging,

E-NU €

N l

1

The Hermitianized effective Hamiltonian through second
order can be expressed as

Henr= PHP + 5[PVQ(Ep - Ho) 'QVP+h.cl, (6)

(11

€, =

where h.c. denotes the Hermitian conjugate of the preceding

term, He Operates only on a complete active space spannedith N, being the number of valence orbitals spanning the

by a set of valence orbitale} as defined below, and where complete activeP space. Prior applications of the IVO-

Ep is the zeroth-order energy for tHespace. CASCI method demonstrate that it produces comparable ac-
In order to compute the diagonal and off-diagonal matrixcuracy to complete active space self-contained field

elements of an operatéy between the normalized full space (CASSCH treatments with the same choice of valence space

wave functions¥; within H* theory, an effective operaté¢  (0f course, using different valence orbitataut with consid-

is defined as erably reduced computer time since no iterations are neces-
sary beyond an initial ordinary self-consistent field
A’ = PAP+ 3[ PVQEp - Ho) 'QAP) + h.c]. (7)  calculation®®*

Because the IVOs play a central role in this perturbative
Once AV is evaluated, it furnishes all diagonal and off- scheme, we briefly outline their generation. More detailed
diagonal matrix elements within the-space states. Many- discussion is presented elsewh&té! The IVO-CASCI pro-
body theory techniques are applied to express the matrigedure first determines the occupied and unoccupied DF mo-

elements ofA’ directly in the valence orbital basis as lecular orbitals(MOs) by diagonalizing the four-component
DF matrix 'F,, for the reference state,
1
AU:AZ+2AF+EEA;)]+---, (8) occ
! g Fim= (il + 2 (23~ Kl b = dimei, (12
k=1

whereA{ is the constant core contribution ad (Aj) is a
ongtwo)-electron effective operator in the valence orbitalwherel and m designate anyoccupied or unoccupiedDF
basis{v}. MO andg is the corresponding DF orbital energy. The IVOs
Apart from the referencéP) space, the only variability are determined variationally by minimizing the energies of
in all MR-MBPT methods lies in the choice of orbitals, or- the low lying singly excited state¥,_,, with respect to a
bital energies, and the definition of the zeroth-order Hamil-new set of MOSx} (wherea is usually taken as the highest
tonianH, since the perturbation approximation is completelyoccupied MQ. However, to ensure orbital orthogonality and
determined by these choices. Generally, the zeroth-ordeapplicability of Brillouin's theorem,{y} are expressed in
Hamiltonian is prescribed as a sum of one-electron operatorserms of the DF orbital$¢} as
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occ unocc Z
Xa™= 2 Qi ¢i! Xu = E C,uud)w (13) Vnu"(r) =" ?’ (18)
i=1 u=1

e/_vhereZ is the atomic number. However, this nuclear model
introduces a nonphysical singularity which is known to in-
%Iuence the convergence properties of the finite basis set ex-
pansion, particularly if a Gaussian-type basis set is
employedz.4 Further, the nuclear volume isotope shift, ob-
served in heavy atoms, reflects the finite size of the nucleus
with the nuclear charge distribution depending upon the
(14)  atomic numberA. Among the various nuclear models, the
“Fermi nucleus” is a popular choice of nuclear model with-
SF2 = Xl alxw? - (15)  out a sharp cutoff. Experimental studies suggest that the
nuclear charge distribution posses a “skin” of finite thickness
Second-orderH” calculations are very rapidly imple- across which the nuclear charge density falls to zero as in the
mented. The most time consuming step generally involvegermi nucleus model. The present work uses the Fermi

the computation of the effective three-body interactionsnycleus model in which the charge density inside the nucleus
symmetry inequivalent six-index quantities whose numbeg gries as

scales as the product of the sixth power of the nuntbey i
of valence orbitals and the sum of the number of core and  P(F) = po{l +exd(r —b)/al}™, (19

excited orbitals(of course, not including the frozen “posi- wherep, is a constantdepending orZ) (Ref. 29 andb is

tron” core orbital$._ The maximum size of the reference he cytoff radiugalso called “half-density radius’at which
space used hei@l,=6) and the high atomic symmetry helps )=, /2. The parametea is related to the nuclear skin
keep even this step very rapid with large basis sets. Moregicknesst by

over, because of the Fock space formulation, oHEehas
been evaluated, energies are readily computed for both the a=t/(41In3), (20)
neutral and positive ion valence states.

involving separate sums over occupied and unoccupied o
bitals in the DF approximation for the reference state. Th
problem is further simplified by settinfy,} to be occupied
orbitals of the reference DF configuration. With this choice,
the coefficientsc,, in Eq. (13) can be determined directly
from the matrix eigenvalue equatié¢tiC=CI", where

Fz,zw: 1Fvw_ O

vw?

wheret=2.30 fm for the Fermi nucleus modl.
The relativistic orbitals are expressed in the form

-1
B. Relativistic theory ( " Pl Xl 6, 6) ) (21)

ir—1

The relativistic effective valence shell Hamiltoni&t? Q0 Xoknl6.0)
method is applied to compute excitation energies for the Swherer P, (r) andr™'Q,,(r) are the large and small com-
and Ba atoms and ionization energies for the Sr, Ba, and Pponents of the radial wave functions, respectively, that sat-
atoms. The Jucys—Levinson—Vanagas theéfésnemployed  isfy the orthogonality condition
to decompose each Goldstone diagram contributing to Eq. o
(9) into the product of an angular momentum diagram and a f
reduced matrix element. This procedure simplifies the com-
putational complexity of the DF and relativistid’ equa-
tions. In the calculations, the problem of “continuum disso-
lution” is formally avoided by introducing projection
operators to select the positive energy states or, in other «k= =+ (j * %) (23

words, by excluding all summations over negative energy i _ ) 1.
state<® wherel is the orbital quantum number afpdl+3 is the total

The Dirac—Coulomb Hamiltonian for the many-electron @ngular quantum number. The spingig.(6, ¢) are written
system is written as as

N 1 eZ XKm( 01 ¢) = 2(rZil/ZC(I %1 m-o, O-)Yl,m—(r( 01 d)) Mo (24)
H= gl [cdi . B + (B = IMC + Voudri)] + 5% IFi = 1 whereC(13,m-o,0) andY, , (6, ¢) represent the Clebsch—
Gordon coefficients and the normalized spherical harmonics,

dr[PnK(r)* Pri(r) + an(r)*QmK(r)] = Smn- (22
0

The quantum numbek classifies the orbital according to
symmetry and is given by

(16) respectively, andy, is a two-component spinor.
in terms of the customary Dirac operatatsand 3 that are The large and small component radial wave functions
represented by the matrices are expressed as linear combinations of basis functions
N N
. (0 o I 0 L L S
a=\. |, B= : (17) Pou(1) = 2 Co0ip(r), Qnoln) =2 CLan,(n), (25
c O 0 -1 p=1 p=1

where o denotes the Pauli matrices ahds the 2<2 unit  where the summation indgxruns over the number of basis
matrix. The simplest choice fov,,{r) is a point source of ~functionsN andgy, (g5,) andCy, (C,) are the basis func-
electric field with a Coulomb potential of the form, tions and expansion coefficients for the latgmal) compo-
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nents, respectively. The basis functions employed in thes8ABLE I. Low lying transition energiesin cm™) for the Sr and Ba atoms.
calculations are Gaussian-type orbitedBTO9 of the form

Dominant
gkp(r) = |\|r|-Jrn,<e—ozpr2 (26) Atom State  configuratiorts) H” CC*  Experiment
with Sr
) °p, 5s5p 14 428 14 327
ap= a7, (27) P, 5s5p 14582 14514
) o °p 55 14 980 14 898
where ay and 8 are user defined constants, specifies the 12 P
; ) L P, 5s5p 21539 21698
orbital symmetries(1 for s, 2 for p, etc), and N; is the
normalization factor for the large component. The smallBa
component normalization factor is obtained by imposing the *Po 6s6p 12235 12503 12 266
. . - 3
kinetic balancecondition Py 6s6p 12523 12882 12637
°p, 6s6p 12289 13792 13514
d « 1
S NS L P 66 18014 18455 18 060
() = Np<d— + —)gkp(r), (28) : P
rr :Reference 5.
where References 26-30.
a . . : . . :
Nﬁz \/ P[4k +Kk-ny) - 1]. (29) Wlt'h experiment. Thg maximum error in the estlmateld excl-
2n.-1 tation energy for Sr is only 159 crh(or 0.7% for the ‘P,

5 . : .
The ground and excited state properties of Sr, Ba, an8ta’[e. TheH” method also provides a fairly accurate estimate

3 3 3 3 e H H
their positive ions are computed using s33p28d12f5g gf t_het EOH Flgindﬁplz 1'12 trialnsmon etr_1er|g|efs, which
GTOs with ap=0.005 25 and3=2.25. For the Pbion, we ~ CcViate by only 57 CIt and 1% i, reSpectively, from ex-

emplov 3835030025200 GTOS with an=0.008 25 an periment. Th_e Ba transition energies from thfecalculations
:2g3¥7 P % Wi a0 B e also quite accurate, except for the,— 3P, and °P;

—3p, transitions, which are off by~100 cm™.
Table | indicates, on the other hand, that the error in the
lll. RESULTS AND DISCUSSION estimated CQHY) energies for the Ba atorP,, 2P;, and

The choice of reference space plays a central role in aliP, States are 2381) cm™, 245114 cm™, and
multireference perturbative methods. This choice is also th€78225 cm™, respectively. Since the difference between
most difficult portion of all MR-MBPT calculations as it can the maximum deviation and the minimum deviation from
affect the accuracy of the computed spectroscopic constan@XPeriment for the CC calculations of tfi@ state energies is
and state energies. However, the choice of reference spacel@$s(41 cnT?) than that for thed” treatmen{(194 cm™), the
fairly straightforward for Sr, Ba, and Pb. The ground state<CC offers a more accurate description of the fine structure
of the Sr and Ba neutral atoms contain only two electrons irsPlittings for theP states of Ba, even though the CC tran-
the outermost occupiens orbital (n=5 for Sr andn=6 for sition energies for these states are less accurate than the cor-
Ba) whose orbital energy is well separated from the remainfespondingH” estimates[The average error in the CC exci-
ing occupied orbital energies. Since the improved virtual oriation energies for the Ba atom is 2.0%, while that fortte
bitals  6s(egs=-0.1219 a.),  5pyp(esp ,==0.1439 a.v), case is only O.?%.H_owever, it shpulq be emphasized 'th_at
5p3/2(e5p3/2=—0.l414 a.u, 4d3/2(64d3,2:—0-1107 a.y, and the CC calculations include contributions from the Breit in-

4dso(€4s. =—0.1104 a.1). of Sr are quasidegenerate theseteractions that are omitted in our calculations. Moreover,
3/2 ’ e ! ; ; ;

orbitals are also included in reference space. Using similaP©th computationsCC andH") employ different basis sets.
arguments, thes 6., 6Ps/z 50/, and s, orbitals of Ba We believe that the inaccuracy in our computed fine structure

are included in théd” reference space for Ba. Finally, thi splittings for the3P states of Ba mainly arises due to the

reference space for Pb is constructed by allocating two ebd‘gbsence of higher order correlation contributions and the

trons to the @y, and 6, orbitals in all possible ways be- Breit interaction in our calculations, and efforts are under-
cause of the larges-p energetic separation in this heavier W& (0 enable including these effects.

atom. Calculations for Pb are limited to the positive ion be-

cause the treatment of the neutral atom yvould require g v/alence electron ionization energies

larger reference spac&N,=10 or 12 that is no longer . .
quasidegenerate and that therefore should be studied using Table Il compares théi” calculations for low lying va-

third orderH? relativistic calculations, which are not yet pos- l€nce electron ionization energies of" SBa’, and PB with
sible. those computed using single reference MBPT and CC meth-

ods and with experimen?g.The HY method estimates the
%P, ,,— 2Py, energy gapthe fine structure splitting which is
labeled as FS in Table)llof Sr more accurately than the
Table | compares experimer?t%\‘l31 and calculated low SR-MBPT. Table Il further shows that the average error in
lying excitation energies of Sr and Ba. Included also arehe computedH’ energieg0.13%) is less than those from the
coupled clustefCC) calculations for Ba. Théd¥ transition ~ SR-MBPT (0.48% and comparable to C@0.12% treat-
energies for the Sr and Ba atoms are in excellent agreementents. A careful analysis indicates that only fi&]5s H

A. Excitation energies
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TABLE Il. Theoretical and experimental valence electron ionization energiesm™) and fine structure

splittings (FS of Sr*, Ba', and Pb ions.

lon State HY MBPT[4] cc Experimerit
Sr 25, (59) 89 248 89 631 89 176 88 964
2P, ,, (5py) 65 219 65 487 65 309 65 249
2P, (5ps)) 64 403 64 663 64 499 64 448
FS 816 824 810 801
Average error 0.13% 0.48% 0.12%
Ba* 25, (69) 81 734 81882 80871 80 687
2Py, (6p1s) 60 481 60 887 60 475 60 425
2P,,, (6p3)) 58 759 59 139 58 768 58 735
FS 1722 1748 1707 1690
Average error 0.48% 0.98% 0.12%
Pb* 2Py, (6pys) 122382 121 898 1200%7 121 208
2P, (6pgy) 108 353 108 041 106377 107 123
FS 14 029 13857 13700 14 085
Average error 1.06% 0.71% 0.82%

“Reference 28.
PReferene 34.
‘Reference 5.
9Reference 27.

valence electron removal energy is slightly pooteff by
284 cm?) compared to the CC estimateff by 162 cn1?).
This error also affects thid” calculation of the fine structure
splitting.

The HY valence electron ionization energies of ‘Bare
reasonably close to experiment, except for 8%, state
which is dominated by thgXe]6s configuration state func-
tion. On the other hand, the Bdine structure splitting for
the 2P, ,,— 2P, States is quite close to experimeoff by

nuclear magnetic hyperfine constants and life times for the
excited states of 3y Ba', and PB. Also included are other

computations and experimental data for comparison. The re-
duced matrix elements for the magnetic hyperfipelectric
dipole E1, electric quadrupol&2, and magnetic dipol&1
matrix elements are presented in Appendixes A and B.

Table IIl indicates that our predicted nuclear magnetic

hyperfine constants are in general agreement with experi-
ments, except for thess(%S,,,) and & (°P;,) states of Ba

only 32 cm!) and to the CC estimate. The overall error in and PB, for which the CC treatments are also not very ac-

the computeddv energies for Bais 0.48% which is better
than the SR-MBPT(0.98% but not as good as the CC
(0.12% computations. However, the very inexpensive nature
(roughly an order of magnitude fastesf second-ordeiH”
calculations compared to the computational cost involved in
the CC calculations renders this minuscule error quite ac-
ceptable.

For the P ion, the computed CC and SR-MBPT va-
lence electron ionization energies are more accurate than the
correspondingH? values. On the other hand, thé’ fine
structure splitting for théP, ,(6py,,) — *P4;»(6ps/») States of
Pb* is more accurate than the CC and SR-MBPT treatments.
At this juncture, we note that a precise determination of the
%p,,,— 2Py, transition energy is necessary for an accurate
prediction of the lifetime of the?P,, state because the
Eep1/2—Eepaiz €nergy difference appears raised to the third
(fifth) power for theM1(E2) allowed &,,,— 6p3/, transition
in Pb".

C. Nuclear magnetic hyperfine constant A and

lifetime =

The nuclear magnetic hyperfine constant and transition

(b)

v

A
P{ 1(1

v

(©)

dipole/quadrupole matrix elements are computed using thEIG. 1. Some representative Goldstone diagrams that contribute to the

second-ordefin the Coulomb perturbatigrH® wave func-
tions and thus contain contributions such as those depicted

Jabeled byp,q,..

Fig. 1. Tables llI-VI present the theoretically determinedrespectively.

nuclear magnetic hyperfine coupling const@ntThe particle orbitals are
., etc. Occupied orbitals are representedah), ..., etc.
fhe active (valencg and inactive orbitals are denoted hy and i,
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TABLE Ill. Nuclear magnetic hyperfine constafin megahertg of the TABLE V. Lifetimes 7 (in nanosecondsof low lying excited states of Sr

ground and low lying excited states*SBa’, and Pb. and B4 (E1). Entries in parentheses are calculated from experimental tran-
sition energies and semiempirically adjusted transition digBl® matrix
Present elements.
lon State work CcC Experiment
N lon State HY Other calculation Experiment
Sr
s, (59) 1005.74 100D 1.000.47 srt
2Pyjz (5P129) 167.96 177 5p1r2 7.47 7.087.48° 7.47+0.07
2p,,, (5ps) 34.82 35.3 36.8 5ps/ 6.888 6.396.74° 6.69+0.07
Ba" Ba’
23, (69) 4165.20 4072.83 4018 6py/2 7.89 7.2%7.99? 7.92+0.08
2P, (6pys) 736.28 736.98 742.04 SPar2 5.98 5.846.39" 6.31+0.02
2
Pas (631 131.18 130.9% 126.9 :R feronce 4.
Pbt %P, (6pyy) 1297242 1290377 13000 CSSI::SQES j;'
2p,, (6ps) 512.52 623.2 583 '

*Reference 34.

bReference 35 of the computed lifetimes degrade when their theoretical

°Reference 36. transition energies and dipole matrix are used.
dReference 37. The HY lifetimes for the excited states of ‘Sand B4 in
Reference 36. Table V are evaluated from thid® transition energies and

Reference 39.

IReference 40. dipole matrix elements. Thepd“P,,) state lifetime of Stis

well reproduced by théH’ method. The accuracy of our
) . computed lifetime for the p (2P3,2) state of St is not as
curate. It is evident from Tables Il and IV that the overall good as that for thes(?P,,,) state mainly due to the errors
correlation contrilgution to magnetic hyperfine mat_rix ele-in the 5g/o— 4dgy, and Fa,— 4ds, computed transition en-
ments for the 6 (*Py,) state of Pb should be negative as ggies and the corresponding dipole matrix elements. Fhe 6
the zeroth-order DF approximation overestimates the mag(zpm) state lifetime of Pbis computed using thel” transi-
netic hyperfineA value. Thus, the overall correlation contri- 4 energy and transition matrix elemeiid1 andE2) and
E)ution to the magnetic hyperfine coupli_n_g constant for theg quite accurate compared to the CC vélusee Table V).
P, states of St and Bd must be positive. The present gince theH® energy for the B,,,— 6ps, transition is also

calculations clearly exhibit this anticipated trend. The Iargequite accurate. we believe that bol and E2 transition
negative contribution from core polarizatihig. (c)] may  5trix elements are likewise very accurate.
appear to be quite unusual, but this same trend is found for

the @y, (°P,,,) state of TI(Ref. 32 and the 8, (°Ds),)

state of Ca** The CC calculatioft shows that higher order V- CONCLUDING REMARKS

contributions are necessary for accurately describing the The relativistic effective valence shell Hamiltoniit

magnetic hyperfine matrix elementzs for this3 ("D state  method is described and applied in second order to the low

of Ca".” The accuracy of theffy, (*Py,) stateA value for  ing states of the Sr and Ba atoms and to the positive ions of

Pb" strongly suggests that the inclusion of higher order corsy Ba, and Pb. Highly satisfactory results are obtained for

relation corrections is likewise necessary for an accurate dene transition energies, valence electron ionization potentials,

termination of A when the core-polarization contribution is magnetic hyperfine constant, and the lifetime of low lying

large and negative with respect to the DF value. excited states of the SrBa’, and PB ions. To our knowl-
The lifetime for the excited states of 'Sand B& are  eqge, no prior theoretical data are available for the transition

computed from th&1 transition probabilities, while the life- energies of Sr and the magnetic hyperfine constant 6f Pb

. 2 . .

time of the @ (“P;,) state of Phis estimated from thé11  The accuracy achieved with the computationally inexpensive

andE2 transition probabilities. The MBPT lifetimes for the gecond-ordeH® scheme is comparableven better in some

excited states of Srand B4 reported by Guett al. are quite cases to the much more computer intensive CC scheme.

accurate but are determined using experimental transition efjote, however, that it remains to be determined whether the

ergies(\) and semiempirically adjusted electric dipole tran-incjysion of Breit interaction in our calculations improves

sition matrix element$D). On the other hand, the accuracy accuracy of these computed quantities, especially for Pb.

Work in this direction is in progress.
TABLE IV. Contributions of relatively large matrix elementis megaherty

to the total magnetic hyperfine constant fé,, (np;,) states of St, Ba',

TABLE VI. Lifetime 7 (in secondsof 6ps, (°Ps,) excited state of Ph
and PB (n=5 for Sr and 6 for Ba and Bb

lon State H” ccso Expt®
Terms St Ba* Pb
i k[Fi 21.33 88 918.3 PLr
Dirac-Fock[Fig. 3] L = 18.37 6p32 0.0409 0.0440 0.0412+0.0007
Pair correlatior{Fig. 1(b)] 4.80 22.12 91.72
Core polarizatiofFig. 1(c)] 8.02 30.32 -787.19 *Reference 27.

PReference 31.
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APPENDIX A: NUCLEAR MAGNETIC HYPERFINE
MATRIX ELEMENTS

The relativistic nuclear hyperfine interaction is given

by?3

Hps= 2 M® . T0, (A1)
k

whereM® and T are spherical tensor operators of rdgk

J. Chem. Phys. 122, 204111 (2005)

APPENDIX B: ELECTRIC DIPOLE (E1), QUADRUPOLE
(E2), AND MAGNETIC DIPOLE (M1) ALLOWED
TRANSITION PROBABILITIES

The transition probabilitieg\,_; for the electric dipole
E1, electric quadrupol&2, and magnetic dipol®1 allowed
transitions(in s™) are given by’

representing the nuclear and electronic parts, respectively, of

the interaction. In first-order perturbation theory, the hyper-

fine energiesM(J) of the fine structure statddM;) are the
expectation values dfl

W) = (1IIFME[ D, MK TRIIFEME)
k

I J

F
(k) (k)
L sy e,

- E (_ 1)I+J+F(
k

(A2)

For the magnetic dipole cade=1, the nuclear dipole mo-
menty, (in units of the nuclear magnetrqgy,) is defined as

| |
M.MN:<HIIME})IIH>:<_I 0 I)<I||M”>III>, (A3)
while the operatoiT” is given by
TP =2t =2 —ie@/3)"2 YO (), (A)

J

in which « is the Dirac matrix and(ﬁq represents a spherical
harmonic. Defining the magnetic dipole hyperfine consfant

by
QT

NI (A5)
WA+ 1)(23+ 1)

= pun(m/)

the magnetic dipole hyperfine ener@yis then obtained as

W= A(J). (A6)

The single-particle reduced matrix element of the elec TML(,i) =

tronic part is given by

(kltll "y = = (klICPll (ke + &)

XJdr[PK(r)QK’(r):-ZQK(r)PK’(r)], (A7)
where
’ +1/2 j,
wcey=c-oml K
X\(2j +1)(2)" + D)ar(l k") (A8)
and
ik = 1 ifi+j+k=even "
.10 = 0 otherwise. (A9)

2.0261x 10'8
El
fi — O )\3 §<7I’ (Bl)
g 1.1199x 108
feei ™ 5 —i (BZ)
S/
2.6973x 103
R To ! (83

respectively. Here) is the transition energy in angstroms
andg,=(2J+1) is degeneracy of the upper level. The quan-
tites S, 2, and §'%. are theEl, E2, and M1 line
strengths(in atomic unit3, respectively. The line strengths
ﬁi‘{'\“) are defined by
where the electric dlpoleand quadrupo)eDE- and magnetic
dipole matrix element®}'* are given by

=CH(f,i) f dr[Py(r)Pi(r) + Q(NQi(N]r- + O(?)

(B5)
and
Dift = CM(f, ) K)fdr[Pf(r)Q.(r)+Qf(r)P(r)]r
+0(a?), (B6)
with
_ i L s _—
CH(f.i)=(- 1>'f+1’2(‘1f,2 . 1/2)\<21f+1>(21.+1> (87)
and
e S K
(-1 (1/2 o -1y V@ D@+ D).

(B8)

Here,j, x, anda are the total angular momentum, relativistic
angular momentunixk=+(j+1/2)], and fine structure con-
stant, respectively.

Once the transition probability is known, the lifetime can
be evaluated through the relation

(B9)
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