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A model-independent irreducible tensor formalism which has been developed earlier to analyze
measurements of ~p~p → pp π◦, is extended to present a theoretical discussion of ~p~p → pp ω and of
ω polarization in pp → pp ~ω and in p~p → pp ~ω. The recent measurement of unpolarized differential
cross section for pp → pp ω is analyzed using this theoretical formalism.
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Experimental study of meson production in NN colli-
sions has attracted considerable interest during the last
decade and a half. The early measurements of total cross-
section [1] for pion production were found surprisingly to
be more than a factor of 5 than the theoretical predic-
tions [2]. At c.m. energies close to threshold, the rel-
ative kinetic energies between the particles in the final
state are small and an analysis involves, therefore, only
a few partial waves. On the other hand, a large mo-
mentum transfer is involved when an additional particle
is produced in the final state, thus making the reaction
sensitive to the features of the NN interaction at short
distances where the nucleons start to overlap. When a
heavier meson like ω is produced, the overlapping region
corresponds [3] to a distance of about 0.2fm. It is also
known that the short range part of the NN interaction is
dominated by the ω exchange [4]. Consequently, a vari-
ety of theoretical models have been proposed [5] not only
to bridge the gap between theory and experiment, but
also to test results of QCD based discussions of the NN
interaction. According to the OZI rule [6], φ production
relative to ω production is suppressed in the absence of
strange quarks in the initial state. This ratio R has been
measured [7], in view of the dramatic violations [8] ob-
served in p̄p collisions, and compared to the theoretical
estimate [9] of 4.2×10−3 after correcting for the available
phase space. We may refer [10] for modifications of the
rule. Apart from looking for the strange quark content
of the nucleon in the initial state, attention has also been
focused on resonance contributions [11, 12, 13] to vec-
tor meson production in NN collisions. The constituent
quark models [14] predict highly excited N∗ states which
have not been seen in πN scattering. This “ missing
resonance problem ” [15] has also catalyzed the experi-

mental study of ω meson production in the hope that the
missing resonances may couple more strongly or even ex-
clusively to the ωN channel in comparison to the πN
channel, although ωN decay modes of resonances have
not been observed [16]. Also the cross-sections of vector
meson production enter as inputs into transport models
for dilepton emission in heavy ion collisions which may
in turn be used to study the off-shell ω production and
medium modifications of the widths and masses of the
resonances [13].

Meson production in NN collisions involves also spin
state transitions of the NN system, which do not occur
in elastic NN scattering. In pp → ppπ0, for example, the
transition of the pp system at threshold is from an initial
spin triplet to a final spin singlet state (3P0 → 1S0).
Rapid advances in experimental technology have led to-
day to high precision measurements of spin observables
[17] at several energies up to 400 MeV, employing beams
of polarized protons on polarized proton targets. Conclu-
sive theoretical interpretation of all these data have re-
mained elusive, although the model calculations appear
to do better in the case of charged pion production as
compared to the neutral pion production and the agree-
ment even there seemed to deteriorate increasingly at
higher energies. It has been pointed out both by Moskal
et al. [5] and Hanhart [5], that the extensive experimental
information available comes with a drawback that “apart
from rare cases, it is difficult to extract a particular piece
of information from the data”.

A model-independent irreducible tensor formalism [18]
which has been developed to analyze measurements on
~p~p → ppπ0 at the complete kinematical double differen-
tial level, was recently [19] made use of to estimate em-
pirically the initial singlet and triplet state contributions
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to the differential cross-section using the experimental re-
sults of Meyer et al. [17]. The above theoretical formal-
ism leads, on integration, to the relation derived earlier
by Bilenky and Ryndin [20] for the total cross-sections. It
was also shown [21] how the irreducible tensor formalism
could be utilized to effect spin filtering, in general, for any
scattering or reaction process employing polarized beams
of particles with arbitrary spin sb on polarized targets
with arbitrary spin st. The production of a heavy meson
like ω, at and near threshold in ~p~p collisions allows us to
study additional spin dependent features of NN interac-
tions at much shorter distances. Unlike the pion which
is spinless, the ω has spin 1 which permits us to make
observations with regard to its spin state also apart from
measuring the angular distributions in polarized beam
and polarized target experiments. Experimental data on
total [22] and differential [23] cross-sections for pp → ppω
have already been published and proposals are underway
[5, 24] to study heavy meson production in NN collisions
using polarized beams and targets at COSY.

The purpose of the present paper is to extend the ear-
lier work [18, 19] on the model independent approach
based on irreducible tensor techniques, to study the spin
state of the meson in pp → pp~ω and p~p → pp~ω as well
as the double differential cross section in the proposed
polarized beam and polarized target experiments.

Let pi denote the initial c.m. momentum, q the mo-
mentum of the meson produced with spin parity sπ and
pf the relative momentum, (1/2)(p1 − p2) between the
two nucleons with c.m. momenta p1 and p2 in the fi-
nal state. The double differential cross section for meson
production in c.m. may be written as

d2σ =
2πD

v
Tr(T ρiT †), (1)

where D denotes the final three particle density of states,
T denotes the on-energy-shell transition matrix and T †

its hermitian conjugate, v = 4|pi|/E at c.m energy E
and ρi denotes the initial spin density matrix,

ρi = 1
4 (1 + σ1 · P )(1 + σ2 · Q), (2)

if P and Q denote respectively the beam and target po-
larizations. Notation σ(ξ, P , Q) is used in [17] to denote
(1). If si and sf denote the initial and final spin states
of the NN system, the initial and final channel spins for
the reaction are si and S respectively, where S can as-
sume values S = |sf − s|, . . . (sf + s). Making use of the
irreducible tensor operator techniques introduced in [25],
we may express T in the operator form

T =
∑

α

(sf +si)
∑

λ=|sf−si|

(S+si)
∑

Λ=|S−si|

×((Ss(s, 0) ⊗ Sλ(sf , si))
Λ · T Λ(α, λ)), (3)

where α = (S, sf , si) denotes collectively the spin vari-
ables. The irreducible tensor amplitudes T Λ

ν (α, λ) of

TABLE I: The irreducible tensor amplitudes and the partial
wave contributions to pp → ppω close to threshold

T
Λ

ν (α, λ) lf l L sf S j li si T
j

α,β Initial Final

pp state ppω state

T
1

ν (101; 1) 0 0 0 0 1 1 1 1 T 1
101;0001

3P1 (1Ss)3S1

T
1

ν (100; 0) 0 1 1 0 1 0 0 0 T 0
100;1010

1S0 (1Sp)3P0

0 1 1 0 1 2 2 0 T 2
100;1012

1D2 (1Sp)3P2

T
1

ν (110; 1) 1 0 1 1 1 0 0 0 T 0
110;0110

1S0 (3Ps)3P0

1 0 1 1 1 2 2 0 T 2
110;0112

1D2 (3Ps)3P2

T
2

ν (210; 1) 1 0 1 1 2 2 2 0 T 2
210;0112

1D2 (3Ps)5P2

rank Λ, which characterize the reaction, are given by

T Λ
ν (α, λ) = W (ssfΛsi; Sλ)[λ]

∑

β

∑

j

T j
α,β W (siliSL; jΛ)

×((Yl(q̂) ⊗ Ylf (p̂f ))L ⊗ Yli(p̂i))
Λ
ν , (4)

in terms of the partial wave amplitudes

T j
α,β = (4π)3(−1)L+li+si−j [j]2[S][s]−1[sf ]−1

×〈((llf)L(ssf )S)j||T ||(lisi)j〉, (5)

which depend on E and invariant mass W of the final NN
system. Total angular momentum j is conserved and
β = (l, lf , L, li) denotes collectively the orbital angular
momentum l of the emitted meson, the initial and final
relative orbital angular momenta li and lf of the NN
system and the total orbital angular momentum L in the
final state, which takes values L = |lf − l|, . . . , (lf + l). It
may be noted that our coupling of angular momenta in
the final state differs from that used by Meyer et al., [17]
in the case of the production of a meson with spin s = 0.
The notation [λ] =

√
2λ + 1 is used apart from standard

notations [26]. The above formalism is readily extendable
to arbitrary charge states of hadrons in NN → NNx
where x represents a meson with isospin Is, if we identify

T j
α,β =

∑

Ii,If

C(1
2

1
2Ii; ν

i
1ν

i
2νi)C(1

2
1
2If ; νf

1 νf
2 νf )

×C(IfIsIi; νfνsνi)T
If Ii j
α,β , (6)

where Ii and If denote respectively the initial and final
isospin quantum numbers of the NN system. We have
Ii = If = νi = νf = 1, here with Is = 0. Pauli exclusion
principle and parity conservation restrict the summations
in (3) and (4) to terms satisfying (−1)li+si+Ii = −1 =
(−1)lf+sf +If ; (−1)li = π (−1)lf +l. Thus, the contribut-
ing partial waves in pp → ppω at and near threshold may
be taken as shown in Table I, where we use the same
notations as in [17] viz, S, P, D . . . for li, lf = 0, 1, 2, . . .
and s, p, d . . . for l = 0, 1, 2, . . .. We use S,P ,D, . . . for
L = 0, 1, 2, . . . in the final state. We now express

ρi =

1
∑

si,s′

i
=0

(si+s′

i)
∑

k=|si−s′

i
|
(Sk(si, s

′
i) · Ik(si, s

′
i)), (7)
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in terms of irreducible tensor operators Sk
ν (si, s

′
i) and the

initial polarization tensors

Ik
ν (si, s

′
i) =

1
∑

k1,k2=0

F (P k1 ⊗ Qk2)k
ν , (8)

of rank k, using the notations P 0
0 = Q0

0 = 1 and P 1
ν , Q1

ν

to denote the spherical components of P , Q respectively
and the factor

F = 1
2 (−1)k1+k2−k[k1][k2][s

′
i]















1
2

1
2 si

1
2

1
2 s′i

k1 k2 k















. (9)

Using known properties [25] of the irreducible tensor
operators and standard Racah techniques, we have

d2σ =
∑

α,α′,∆,k

G (Ik(si, s
′
i) · Bk(si, s

′
i)), (10)

in terms of the bilinear irreducible tensors

Bk
ν (si, s

′
i) =

2πD

v
(T Λ(α, λ) ⊗ T †Λ′

(α′, λ′))k
ν , (11)

of rank k and the geometrical factors

G = δsf s′

f
[sf ]2[si][s]

2(−1)λ+λ′+Λ′

[λ][Λ][λ′][Λ′]

×W (sλΛ′k; Λλ′)W (s′iksfλ; siλ
′), (12)

where T †Λ
ν (α, λ) and the complex conjugates T Λ

ν (α, λ)∗

of (4) are related through T †Λ
ν (α, λ) = (−1)νT Λ

−ν(α, λ)∗

and ∆ = (λ, λ′, Λ, Λ′).
Defining the partial contributions to d2σ through

d2σ =
∑

si,s′

i
d2σ(si, s

′
i) and using (8), we have

d2σ(0, 0) = d2σ0
1
4 (1 − P · Q)[1 +

√
3A0

0(11)], (13)

d2σ(1, 1) = d2σ0[
1
4 (3 + P · Q)(1 − 1√

3
A0

0(11))

+ 1
2 ((P + Q) · (A(10) + A(01)))

+((P 1 ⊗ Q1)2 · A2(11))], (14)

d2σ(1, 0) + d2 σ(0, 1) = d2σ0

×[12 ((P − Q) · (A(10) − A(01)))

+((P 1 ⊗ Q1)1 · A1(11))], (15)

which add up to give (10) in the form

d2σ = d2σ0[1 + P · A(10) + Q · A(01)

+

2
∑

k=0

((P 1 ⊗ Q1)k · Ak(11))], (16)

where the unpolarized double differential cross section

d2σ0 =
1

4

∑

α,λ,Λ

(−1)Λ[sf ]2[s]2[Λ]B0
0(si, si), (17)

is denoted as σ0(ξ) in [17]. The beam, target analyzing
powers A(01), A(10) are represented by the irreducible
tensors A1

ν(10), A1
ν(01) respectively and the spin corre-

lations by Ak
ν(11) of rank k = 0, 1, 2. We have

d2σ0A
k
ν(k1k2) =

∑

α,α′,∆

F G Bk
ν (si, s

′
i). (18)

Our Ak
ν(k1k2) are given, in terms of the notations of

Meyer et al., [17], by

A1
0(10) = Az0(ξ), A1

0(01) = A0z(ξ),

A1
±1(10) = ∓ 1√

2
[Ax0(ξ) ± iAy0(ξ)],

A1
±1(01) = ∓ 1√

2
[A0x(ξ) ± iA0y(ξ)],

A0
0(11) = − 1√

3
[AΣ(ξ) + Azz(ξ)],

A1
0(11) = − i√

2
AΞ(ξ), (19)

A1
±1(11) = 1

2 [(Axz(ξ) − Azx(ξ)) ± i(Ayz(ξ) − Azy(ξ))],

A2
0(11) = 1√

6
[2Azz(ξ) − AΣ(ξ)],

A2
±1(11) = ∓ 1

2 [(Axz(ξ) + Azx(ξ)) ± i(Ayz(ξ) + Azy(ξ))],

A2
±2(11) = 1

2 [A∆(ξ) ± i(Axy(ξ) + Ayx(ξ))],

where Aij(ξ), i, j = 0, x, y, z are the same as in Eq.(4) of
[17] and AΣ, A∆, AΞ are defined by Eq.(5) of [17].

At a ~p~p facility similar to PINTEX at IUCF, but with
sufficiently high energies E, it should, therefore, be pos-
sible to determine (13) to (15) individually apart from
(16) and (17). It is interesting to note from Table I that
only the T 1

ν (101; 1) from the initial state 3P1 contribute
to (14) and hence |T 1

101;0001|2 can be determined empir-
ically, while (15) gets contributions to the interference
of T 1

101;0001 with all the other five singlet amplitudes,
which by themselves determine (13). Moreover we note
that d2σ0 given by (17) may itself be decomposed into
∑

si,mi

2si+1(d2σ0)mi
, where

1(d2σ0)0 = d2σ0

4 [1 +
√

3A0
0(11)], (20)

3(d2σ0)0 = d2σ0

4 [1 − 1√
3
A0

0(11) − 2
√

2√
3

A2
0(11)], (21)

3(d2σ0)±1 = d2σ0

4 [1 − 1√
3
A0

0(11) +
√

2
3A2

0(11)], (22)

which represent physically the double differential cross-
section for pp → ppω from the initial spin states |00〉, and
|1m〉, m = 0,±1. Clearly, measurements of σ0(ξ), Azz

and AΣ are sufficient to determine (20) to (22) individu-
ally.

Finally, we may characterize the state of polarization
of the ω meson in pp → pp~ω by the density matrix ρs,
whose elements are given by

ρs
µµ′ =

2πD

v

1

4

∑

sf

∑

mf

〈sµ; sfmf |TT †|sµ′; sfmf 〉. (23)

Expressing ρs in the standard [27] form

ρs =
1

2s + 1

2s
∑

k=0

(τk · tk), (24)
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in terms of τk
ν ≡ Sk

ν (s, s),the Fano statistical tensors tkν
are given by

tkν =
1

4

∑

α,λ,Λ,Λ′

(−1)λ−s[sf ]2[s]3[Λ][Λ′]

×W (sΛsΛ′; λk)Bk
ν (si, si), (25)

at the double differential level. It may be noted that ρs

is unnormalized so that (25) with k = 0 leads to (17).
The vector and tensor polarizations of ω (with s = 1) are
readily obtained by setting k = 1, 2 respectively in (25).

It is worth noting that the Fano statistical tensors tkν
may be measured by looking at the decay ω → π0γ [16],
with a branching ratio of 8.92%. The angular distribution
of circularly polarized radiation emitted by polarized ω
is proportional to

Ip(θγ , ϕγ) =

2
∑

k=0

1

[k]
C(11k; p,−p)Fk(θγ , ϕγ), (26)

where p = ±1 correspond respectively to left and right
circular polarizations as defined by Rose [26] and

Fk(θγ , ϕγ) =

k
∑

q=−k

(−1)qtkqYk−q(θγ , ϕγ), (27)

where (θγ , ϕγ) denote the polar angles of the direction of
γ emission in the same frame of reference in which tkq are
given. If no observation is made on the polarization of
the radiation, the intensity is proportional to

∑

p

Ip(θγ , ϕγ) =
∑

k=0,2

2

[k]
C(11k; 1,−1)Fk(θγ , ϕγ), (28)

from which it is clear that the tensor polarization can be
measured from the anisotropy of the angular distribution.
On the other hand, the circular polarization asymmetry

Σ(θγ , ϕγ) = I−p(θγ , ϕγ) − Ip(θγ , ϕγ) =
√

2F1(θγ , ϕγ)
(29)

enables measurement of vector polarization.
If the polarization of the ω meson is measured with a

nucleon polarized initially, we may express

tkν =
∑

ν′

D(k, ν; 1, ν′)P 1
ν′ ; k = 1, 2 (30)

in terms of the spin transfers

D(k, ν; 1, ν′) =
∑

ζ

H C(1Λ′′k; ν′ν′′ν)BΛ′′

ν′′ (si, s
′
i), (31)

where ζ ≡ (α, α′, λ, λ′, Λ, Λ′, Λ′′, k′) and

H = −1

8

√

3

2
(−1)λ+λ′+k′−k[s]3[sf ]2[si][s

′
i][λ]

× [λ′][Λ][Λ′][Λ′′][k′]2W (sλk′1; Λλ′)

× W (s′i1sfλ; siλ
′)W (1ΛkΛ′; k′Λ′′)

× W (sλ′kΛ′; k′s)W (s′i
1
21 1

2 ; 1
2si), (32)

if the beam is polarized. If the target is polarized, we may
replace P 1

ν by Q1
ν in (30) and attach a factor (−1)s′

i−si

to H .
Denoting the six T j

αβ in Table I serially as T1 to T6, the

irreducible tensor amplitudes T Λ
ν (α, λ) which describe

pp → ppω close to threshold are explicitly given by

T 1
ν (101; 1) =

1

24π3/2
T1δν0, (33)

T 1
ν (100; 0) =

1

12π
[T2 +

3ν2 − 2√
10

T3]Y1ν(q̂), (34)

T 1
ν (110; 1) =

1

12π
[T4 +

3ν2 − 2√
10

T5]Y1ν(p̂f ), (35)

T 2
ν (210; 1) =

1

20
√

6π
ν(4 − ν2)1/2T6Y1ν(p̂f ), (36)

since Ylimi
(p̂i) = ([li]/

√
4π)δmi0, if we choose the beam

direction as the z-axis. All the observables considered
in the above discussion are readily evaluated using (33)
to (36) in terms of the six partial wave amplitudes and
the angles characterizing q and pf . The unpolarized dif-
ferential cross section measured in [23] is readily evalu-
ated after integrating (17) with respect to dΩpf

dǫ, where
ǫ = W − 2M , and we have

dσ0 = a0 + a2 cos2 θ, (37)

where a0 derives contributions from all the irreducible
tensor amplitudes, while T 1

ν (100; 0) alone, which pro-
duces the meson in p−wave, contributes to a2. The
existing data [23] is in good agreement with the form
(37), which hence provides clear evidence for the presence
of the initial spin singlet amplitude T 1

ν (100; 0) given by
(34) in addition to the initial spin triplet threshold am-
plitude T 1

ν (101; 1) given by (33). If we can assume the
contribution of T 1

ν (110; 1) and T 2
ν (210; 1) to be small or

negligible, a0 and a2 involve the bilinear combinations
[|T1|2 +3|T2 + 1√

10
T3|2] and [ |T3|2−2

√
10ℜ(T2T

∗
3 )] of the

partial wave amplitudes duly integrated with respect to
ǫ. If one measures not only the angular distribution of ω
but also its energy, the integration with respect to ǫ can
be dispensed with.

Integrating the right hand side of (18) with respect to
dΩpf

and equating it to dσ0A
k
ν(k1k2) defines the ana-

lyzing powers at the d3q level. It is interesting to note
that the Wigner 9j symbol in (9) ensures that the initial
spin triplet amplitude (33) alone contributes to A2

0(11),
a measurement of which determines |T1|2. Knowledge of
|T1|2 leads to a determination of |T2 + 1√

10
T3|2 using the

above expression for a0. Moreover it is interesting to note
that A(10)−A(01) or A(11) are proportional to the in-
terference of the initial spin triplet amplitude T 1

ν (101; 1)
with the initial spin singlet amplitude T 1

ν (100; 0). This
leads to a bilinear involving T1 with T2 + 1√

10
T3. Like-

wise, tkν at d3q level are also obtained on integration of
(25) or (30) with respect to dΩpf

. There is as yet no data
available on any of the spin observables.
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