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The relativistic coupled-cluster theory has been employed to calculate the magnetic dipole and
electric quadrupole hyperfine structure constants for the stable isotopes 45Sc and 89Y. The role of
electron correlation is found to be very important. The trend exhibited by these effects is rather
different from previously studied single valence atomic systems.

I. INTRODUCTION

Electron correlation effects play a crucial role in the ac-
curate determination of hyperfine struture constants [1].
We have calculated these constants for several atomic sys-
tems with single s valence electrons [2, 3] using the rela-
tivistic coupled-cluster (RCC) theory which takes into ac-
count the interplay of relativistic and correlation effects.
Our recent work on Pb+ which has a single p valence
electron [4] reveals the peculiar behaviour of the elec-
tron correlation effects in the hyperfine constant of the
6p2P3/2 state. It would indeed be instructive to study
how electron correlation effects influence systems with
single d valence electrons. In this paper we have carried
out ab initio calculation of the magnetic dipole (A) and
electric quadrupole (B) hyperfine structure constants for
stable Scandium (Sc) and Yttrium (Y) which have 3d
and 4d valence electrons respectively. Hyperfine struc-
ture constants for ground and first excited states for these
two atoms have been measured using different methods
[6, 7, 8, 9, 10, 11].

II. THEORY

The hyperfine interaction Hamiltonian with magnetic
dipole and electric quadrupole terms can be written as
[12]

Hhf = AI.J + B

{
3(I.J)2 + 3

2I.J− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)

}
,(2.1)

where A and B are the hyperfine structure constants and
I and J are the nuclear and electronic angular momenta
respectively. In perturbation theory, the first order en-
ergy shift in the atomic state |JMJ〉 with MJ as az-
imuthal quantum number corresponding to J due to the
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above interaction Hamiltonian yields

WF =
AK

2
+

B

4

[ 3
2K(K + 1) − 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)

]
,(2.2)

where

K = F (F + 1) − J(J + 1) − I(I + 1) (2.3)

with

F = I + J (2.4)

is the total angular momentum of the system.

The magnetic dipole hyperfine constant A is given by
[13]

A = µNgI
〈J ||T(1)||J〉√

J(J + 1)(2J + 1)
, (2.5)

where T(1) =
∑

t
(1)
q =

∑
−ie

√
8π/3r−2α.Y

(0)
1q (r̂) with

Y
(λ)
kq represents the vector spherical harmonic, gI = µI

I
is the nuclear Landé g-factor with µI is nuclear dipole
moment and µN = eh̄/2mpc.

The electric quadrupole hyperfine constant (B) is given
by [13]

B = 2eQ

{
2J(2J − 1)

(2J + 1)(2J + 2)(2J + 3)

}1/2

〈J ||T(2)||J〉,(2.6)

where Q is the nuclear quadrupole moment and

T
(2) =

∑
t
(2)
q =

∑
−er−3C

(k)
q (r̂).

The reduced matrix elements of the above operators in
terms of single particle orbitals given by

〈κf ||t
(1)
q ||κi〉 = −(κf + κi)〈−κf ||C

(1)||κi〉∫ ∞

0

dr
1

r2
(PfQi + QfPi) (2.7)
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and

〈κf ||t
(2)
q ||κi〉 = −〈κf ||C

(2)||κi〉

∫ ∞

0

dr
1

r3
(PfPi + QfQi),

(2.8)

where i and f represent initial and final orbitals respec-
tively and

〈κf ||C
(k)||κi〉 = (−1)jf+1/2

√
(2jf + 1)(2ji + 1)

(
jf k ji

1/2 0 −1/2

)
π(lf , k, li) (2.9)

with the condition π(l1, l2, l3) = 1 if l1 + l2 + l3 = even,
otherwise zero.

III. METHOD OF CALCULATION :

RELATIVISTIC COUPLED CLUSTER THEORY

We have performed our calculations in the Dirac-
Coulomb (DC) approximation which embodies the
dominant relativistic and correlation effects. The Breit
interaction which is about two orders of magnitude
smaller than the Coulomb interaction has therefore
been omitted in the present case as the systems are
comparatively smaller in size.

The Dirac-Coulomb atomic Hamiltonian is given by

H =
∑

j

cα.pj + (β − 1)c2 + Vnuc(rj) +
∑

j<l

1

rjl
, (3.1)

where α and β are the usual Dirac matrices and Vnuc(rj)
is the potential at the site of the jth electron due to
the atomic nucleus. The rest mass energy of the elec-
tron is subtracted from the energy eigen values. We
first solve the relativistic Hartree-Fock (Dirac-Fock (DF))
equations to obtain the single particle orbitals and their
energies,

HDF =
∑

j

cα.pj + (β − 1)c2 + Vnuc(rj) + Uj

. The residual Coulomb interaction is given by

Ves =
∑

j<l

1

rjl
−

∑

j

Uj . (3.2)

The single particle orbitals are obtained by solving the
following equation self-consistently

(tj + Uj)|φj〉 = ǫj |φj〉, (3.3)

where

tj = cα · pj + (β − 1)c2 + Vnuc(rj)

and

Uj|φj(~r1)〉 =

occ∑

a=1

〈φa(~r2)|
1

r12
|φa(~r2)〉|φj(~r1)〉

− 〈φa(~r2)|
1

r12
|φj(~r2)〉|φa(~r1)〉

occ represents total number of occupied orbitals.

The single particle relativistic orbitals can be expressed
as

|φj(r)〉 =
1

r

(
Pj(r)|χκjmj

〉
Qj(r)|χ−κjmj

〉

)
,

where Pj(r) and Qj(r) are the radial part of the large
and small components respectively and |χκjmj

〉 and
|χ−κjmj

〉 are their respective spin angular momentum
components. ǫj ’s are the single particle energies.

We have employed the RCC to incorporate correlation
effects among electrons due to the residual Coulomb in-
teraction. In this approach the exact atomic wavefunc-
tion for the closed-shell system can be expressed as [1]

|ΨCC〉 = eT |Φ〉, (3.4)

where T is the core electron excitation operator and
we call it as closed-shell RCC operator. |Φ〉 is the
above closed-shell determinantal state built out of the
Dirac-Fock single particle orbitals.

In the closed-shell coupled-cluster theory one starts
with the equation

HeT |Φ〉 = EeT |Φ〉. (3.5)

The energy and amplitude determining equations are

〈ΦK |H |Φ〉 = Eδ0,K , (3.6)

where H = e−T HeT , |ΦK〉 is a determinantal state
with K = 0,1,2.... representing the reference state and
excited determinantal states. We have considered all
possible non-linear terms in T- operator for its amplitude
determining equations.

Goldstone [1, 14, 15] and angular momentum diagram-
matic [1, 16] techniques are used for evaluating different
radial integrals and angular factors. The normal ordered
Hamiltonian is defined as

HN ≡ H − 〈Φ|H |Φ〉 = H − EDF , (3.7)

where EDF = 〈Φ|H |Φ〉.

We have truncated our wavefunction expansion at the
level of singles and doubles (CCSD) and all possible
non-linear terms have been included in the above
equation. First we evaluate wavefunction for the closed
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shell system using the above RCC approach and then
append the corresponding valence electron using the
open shell RCC (OSCC) method [1, 17].

The new reference state of the open-shell system with
one valence electron v can be expressed as [17]

|Φv〉 ≡ a†
v|Φ〉, (3.8)

where a†
v is the particle creation operator. The ex-

act atomic states are defined now, using the Fock-space
OSCC method, as

|Ψv〉 = eT {eSv}|Φv〉, (3.9)

where Sv is the valence excitation operator and we call
it as open-shell RCC operator. Since systems under con-
sideration can be treated as with one valence electron,
the Sv- operator exponential series naturally truncates
at the linear term, i.e. the open-shell wavefunction has
the form

|Ψv〉 = eT {1 + Sv}|Φv〉, (3.10)

where

Sv = S1v + S2v =
∑

p6=v

a+
p avsp

v +
1

2

∑

bpq

a+
p a+

q abavs
pq
vb

and

S1v =
∑

p6=v

a+
p avsp

v

S2v =
1

2

∑

bpq

a+
p a+

q abavs
pq
vb (3.11)

with sp
v and spq

vb are the cluster amplitudes corresponding
to single and double excitations involving the valence
electron.

In the next step, we include approximate triple exci-
tations by contracting the two-body operator (Ves) and
the double excitation operators (T2, S2v) in the following
way [18]

Spqr
vbc =

V̂esT2 + ̂VesS2v

ǫv + ǫb + ǫc − ǫp − ǫq − ǫr
, (3.12)

where ǫi is the orbital energy of the i’th orbital. Note
that we use notations a,b,c..., p,q,... and i,j,... for
the core (occupied), particle (unoccupied) and general
orbitals respectively.

The equations for the open-shell cluster amplitudes are
determined from

〈Φv|HN{1 + Sv}|Φv〉 = ∆E(v) (3.13)

and

〈Φ∗
v|HN{1 + Sv}|Φv〉 = −∆E(v)〈Φ∗

v|{Sv}|Φv〉, (3.14)

where ∆E(v) is the electron attachment energy which is
equal to the negative of the ionisation potential for the
valence electron v.

The expectation value for a general one particle opera-
tor in a given valence electron (v) state can be expressed
in coupled-cluster theory as

〈O〉v =
〈Ψv|O|Ψv〉

〈Ψv|Ψv〉

=
〈Ψv|O|Ψv〉

1 + Nv

=
〈Φv|{1 + S†

v}e
T †

OeT {1 + Sv}|Φv〉

1 + Nv
(3.15)

=
〈Φv|{1 + S†

v}O{1 + Sv}|Φv〉

1 + Nv
, (3.16)

where the normalization term for the vth orbital is ob-
tained from

Nv = 〈Φv|S
†
v[eT †

eT ] + S†
v[e

T †

eT ]Sv + [eT †

eT ]Sv|Φv〉

= 〈Φv|S
†
vnv + S†

vnvSv + nvS
†
v|Φv〉 (3.17)

with

O = (eT †

OeT )f.c. + (eT †

OeT )o.b. + (eT †

OeT )t.b. + ....
(3.18)

and

nv = (eT †

eT )f.c. + (eT †

eT )o.b. + (eT †

eT )t.b. + ... (3.19)

The f.c., o.b., t.b.,..etc abbreviations are used for the
fully contracted, effective one-body, effective two-body
...etc terms respectively [2]. Terms containing only up to
effective three-body diagrams will contribute to both the
numerator and the denominator. The fully contracted
terms are excluded on the basis of the linked-diagram
theorem [1] in the evaluation of the O and N . All the
one-body terms have been taken into account as their
contribution to the correlation effects is the largest. The
dominant parts of the two-body terms have also been
computed [2]. Finally, these terms are contracted with
S†

v and Sv operators.

Contributions from the normalization factor have been
determined in the following way

Norm = 〈Ψv|O|Ψv〉{
1

1 + Nv
− 1}. (3.20)

IV. RESULTS AND DISCUSSION

We have used Gaussian type orbitals (GTOs) for the
construction of single particle orbitals of the Dirac-Fock
wavefunction(|Φ〉), whose expression is given by [19]

F
(L/S)
i,k (r) =

∑

i

c
(L/S)
i rke−αir

2

(4.1)
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TABLE I: Magnetic dipole (A) and electric quadrupole (B) hyperfine structure constants in MHz of ground state and first
excited state for Sc and Y

Scandium Yttrium
States Theory (Ours) Experiment [5, 6] States Theory (Ours) Experiment [7, 8, 9, 10, 11]

A B A B A B A B

3d
2
D3/2 268.67 27.45 269.556(1) 26.346(4) 4d

2
D3/2 57.34 23.37 57.217(15) -

3d
2
D5/2 110.75 38.56 109.032(1) 37.31(10) 4d

2
D5/2 29.22 31.75 28.749(30) -

TABLE II: Contributions from different coupled-cluster terms
to the magnetic dipole hyperfine structure constant (A) in
MHz, where cc stands for the complex conjugate part of the
corresponding terms

Scandium Yttrium
CCSD(T)
terms 3d

2
D3/2 3d

2
D5/2 4d

2
D3/2 4d

2
D5/2

O (DF) 235.93 100.37 56.06 23.24
O − O 4.82 2.41 2.37 1.04

OS1v + cc 40.02 15.64 7.62 3.11

OS2v + cc -20.09 -22.93 -8.27 -5.08

S
†
1vOS1v 1.85 0.67 0.26 0.11

S
†
1vOS2v + cc 1.21 -2.30 0.32 -0.54

S
†
2vOS2v + cc 25.79 25.59 3.62 9.45

Important effective two-body terms of O

S
†
2vOT1 + cc -9.07 -3.77 -2.05 -0.85

S
†
2vOT2 + cc 0.00 0.00 -0.32 -0.02

Norm. -10.94 -4.61 -2.38 -1.19

Total 268.67 110.75 57.34 29.22

with k=0,1,2,... for s, p, d,· · · respectively. The function

F
(L/S)
i,k (r) stands for the large (L) and small (S) compo-

nents of the Dirac wavefunction. c
(L/S)
i is the expansion

coefficient of the corresponding large and small compo-
nents respectively. The kinetic balance condition [20] has
been imposed between the large and small components
of the GTOs. For the exponents, the even tempering
condition [21]

αi = αi−1β, i = 1, · · · , N (4.2)

has been applied. Here, N stands for the total number of
basis functions for a specific symmetry. All orbitals are
generated on a grid using a two-parameter Fermi nuclear
distribution approximation given by

ρ =
ρ0

1 + e(r−c)/a
, (4.3)

where ρ0 is the average nuclear density, the parameter
’c’ is the half-charge radius, and ’a’ is related to the skin

thickness which is defined as the interval of the nuclear
thickness which the nuclear charge density falls from

TABLE III: Contributions from different coupled-cluster
terms to the magnetic dipole hyperfine structure constant (B)
in MHz, where cc stands for the complex conjugate part of
the corresponding terms

Scandium Yttrium
CCSD(T)
terms 3d

2
D3/2 3d

2
D5/2 4d

2
D3/2 4d

2
D5/2

O (DF) 23.34 32.76 16.01 21.78
O − O 0.78 0.84 0.69 0.76

OS1v + cc 4.05 5.53 2.18 2.94

OS2v + cc -0.97 -1.18 3.90 5.78

S
†
1vOS1v 0.18 0.24 0.07 0.11

S
†
1vOS2v + cc -0.24 -0.33 0.06 0.99

S
†
2vOS2v + cc 2.74 3.99 2.03 2.44

Important effective two-body terms of O

S
†
2vOT1 + cc -0.91 -1.16 -0.59 -0.79

S
†
2vOT2 + cc 0.00 0.00 -0.01 -0.10

Norm. -1.14 -6.7 -0.97 -1.30

Total 27.45 38.56 23.37 31.75

near one to near zero.

In the present calculation, we have used α◦ = 0.00525
and β = 2.73 for all symmetries in both the systems. We
have considered 35s1/2, 30p1/2, 30p3/2, 30d3/2, 30d5/2,
20f5/2 and 20f7/2 and 38s1/2, 35p1/2, 35p3/2, 35d3/2,
35d5/2, 20f5/2 and 20f7/2 GTOs to obtain Dirac-Fock
wavefunction in Sc and Y respectively. All core electrons
have been excited in the present calculations.

We have calculated both A and B constants for
3d2D3/2 and 3d2D5/2 states for Sc and 4d2D3/2 and

4d2D5/2 states for Y. We have used gI = 1.359 and
Q = 0.22 for Sc and gI = 0.3268 and Q = 0.125 for Y
respectively. All calculated results with corresponding
experimental results are presented in table I.

In table II and table III, we present contributions from
different RCC terms for A and B values respectively. The
first term O represents the DF value and is given in FIG.
1 (i). The second term O − O is the contribution from
the correlation between the core electros. OS1v (FIG.
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FIG. 1: Goldstone diagrams representing hyperfine structure
calculations

1 (ii)+(iii)) and OS2v (FIG. 1 ((iv)+(v)+(vi)+(vii)))
which represent pair-correlation and core-polarization ef-
fects respectively make important contributions for both
the atoms. It is interesting to note that the contributions

of S†
2vOS2v (FIG. 1 ((viii)+(ix)+(x)+(xi)+(xii)+(xiii)))

is far more significant for Sc and Y than atomic sys-

tems with single s and p valence electrons. One of the
strengths of coupled-cluster theory is to account for such
intricate correlation effects to all orders in the residual
Coulomb interaction. The two-body O and normaliza-
tion terms make non-negligible contributions.

V. CONCLUSION

We have performed calculations of the hyperfine con-
stants A and B for Sc and Y using RCC theory and
high lighted the importance of electron correlation. Our
results are in good agreement with experiments. This
indeed demonstrates the power of RCC theory to cap-
ture the interplay of relativistic and correlation effects
for atomic systems with single d valence electrons.
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