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Abstract. In the context of scattering of light, we determine the extent of randomness
within which a hidden periodic part can still be detected. The detection is carried out
using a technique called the extended matched filtering, first introduced by us in this
context. The earlier prediction, before our technique was introduced, had placed the limit
of detection, by intensity measurements alone, at (r0/Λ) ∼ 0.33, where r0 is the coherence
length of light for scattering by the rough part of the surface and Λ is the wavelength
of the periodic part of the surface. In our earlier works we have shown that by intensity
measurements alone, the limit of detection can be taken to a much lower value of (r0/Λ),
when the extended matched filtering method is employed. In this paper we follow the
extended matched filtering method, and try to reach the lowest possible value of detection
in (r0/Λ) by fitting the data to a polynomial. It is concluded by our numerical work that
the lowest possible limit for detection from intensity measurements alone is (r0/Λ) = 0.11.
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1. Introduction

Light scattering and light intensity measurements have been one of the most useful
and hence popular sources of getting information about a surface profile of material
objects. As opposed to the more complicated techniques like interferometry, this
technique allows ease of measurement and analysis. The accuracy of the results
may not always match the more complicated methods but the results are obtained
quickly and easily and hence this method serves as a very useful tool. As regards
applications, among other things, light scattering has been used advantageously
in various display devices and diffusers. It has also been used in certain medical
imaging applications, for both of which it is important to know the nature of the
surface profile.
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Detection of the periodic structure (called ‘signal’) in a surface, hidden behind
roughness, becomes difficult and sometimes impossible if the randomness (called
‘noise’) is ‘large’. This depends, in most cases, on the nature of the ‘signal’, de-
scribed by the amplitude and the wavelength of the periodic part and also on the
extent of ‘noise’, described by the coherence length of the radiation, obtained by
the scattering of light by the rough part of the surface. Extracting the signal from
noise uses various techniques and is an essentially interdisciplinary field making it
a separate branch of study altogether.

In this paper we deal with a signal consisting of a single periodic structure. The
random structure in this case is considered to be of Gaussian type, though the
correlation function of the randomness can be any power law, as described below.
This is obviously a special case for the randomness may have a more complex
correlation function but will still be a useful practical description of the rough part.
We intend to extend the results for more generalized and composite randomness.
In this particular case of scattering of light from a periodic surface in the presence
of randomness, earlier predictions had put the limit of detectability to be (r0/Λ) ∼
0.33 where r0 is the coherence length of the rough part and Λ is the wavelength of
the periodic part. That is, if (r0/Λ) value is less than 0.33, it becomes impossible
to detect the signal [1,2].

In our previous studies [3–8] we have shown that we can go far beyond the above
limit of detectability if we use a different method of analyzing the data called the
extended matched filtering method. The necessary details of this technique are ex-
plained in later sections. This method essentially involves the identification, first,
of the zeroth-order peak, in the light scattering data and then eliminating it to
determine the first-order peak, the underlying hypothesis being that the first-order
peak, if it is submerged by the zeroth order one, must have the same shape as
the far more intense zeroth order one. The purpose of this paper is to extend
the established limit of detectability further, by fitting the data to a polynomial.
In [8], we had stopped the detection exercise, when the scatter in the data be-
came significant. Fitting the data to a polynomial and extending the range of
data collection can in certain situations become a way of overcoming the limitation
due to scattering of data, in the sense that it can help in defining the shape of
the curve, guided by the earlier trend in the data. As will be seen in later sec-
tions, identification of minimum in ∆2 forms a very important part of our method
of data analysis. We use the polynomial fit for the purpose, to ascertain more
clearly the shape of the ∆2 vs. c curve. We notice that for large values of the
randomness this becomes an impossible exercise, and that determines the limit of
detectability.

For the sake of completeness, we repeat the theory behind this analysis, briefly,
in the next section ([3] gives more details). We also summarize our findings till
now for two reasons. Firstly, we would like to give a complete picture of our work
and secondly, this paper deals with the ultimate limit of detection achievable (using
the present method of data analysis) when a periodic surface consisting of single
periodicity is overlapped by randomness, for which, it is essential to know the
previous results. The results of our data analysis and the conclusions drawn are
presented in the sections following the theory.
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Figure 1. Geometry of scattering from the rough grating surface.

2. Theory

We consider a reflection grating, lying in the xy plane, where elevations in the
z-direction are given by,

ξ(x, y) = a cos(Qx) + δξ(x, y). . ., (1)

where Q = 2π/Λ.
The random part is assumed to be a zero mean Gaussian stationary random

process and has the correlation function

〈δξ(x, y)δξ(x′, y′)〉 = σ2Φ(r), (2)

where

r = [(x− x′)2 + (y − y′)2] (3)

and Φ(r) is a monotonically decreasing function, with Φ(0) = 1. It is clear that
the quantity σ designates a measure of the height of the irregularities δξ(x, y). It is
usual to find that beyond a distance r > l the irregularity δξ(x, y) has no knowledge
of that of δξ(x′, y′). Thus the correlation function Φ(r) falls rapidly for r À l. The
quantity l is referred to as the ‘correlation length’. The coherence length r0 of the
reflected wave can be calculated from σ and l, when the nature of the correlation
function Φ(r) is known.

The scattering geometry is schematically described in figure 1. The directions of
the incident and scattered rays are expressed in the polar coordinates as (θ1, 0) and
(θ2, θ3) as shown in figure 1. Further, the wave vectors of scattering are defined as

kx = k(sin θ1 − sin θ2 cos θ3), ky = −k sin θ2 sin θ3,

kz = −k(cos θ1 + cos θ2), k2
xy = k2

x + k2
y, (4)

where k = 2π/λ, λ being the wavelength of light. In the ‘optics literature’ the
quantities kx, ky and kz are often denoted by vx, vy, vz respectively, a convention
that was followed in our earlier papers.

Pramana – J. Phys., Vol. 65, No. 3, September 2005 415



S Chatterjee and V C Vani

In what follows, we shall calculate the scattered intensity under the Kirchoff
approximation [9,10]. We consider the quantity 〈ρρ∗〉0 as the intensity of light
scattered by the rough surface in the direction (θ2, θ3) divided by the intensity of
light scattered by a smooth surface in the specular direction. On defining

√
g =

kxσ/
√

2,
√

g1 = akz/
√

2, it is seen that

〈ρρ∗〉0 = {J2
0 (
√

(2g1))f(kx, ky; g) +
∞∑

n=1

J2
n(
√

(2g1))[f(kx + nQ, ky; g)

+f(kx − nQ, ky; g)]}B(θ1, θ2), (5)

where

f(kx, ky; g) = (2π/A)
∫

exp(−g[1− Φ(r)])J0(kxyr)rdr, (6)

B(θ1, θ2) = [F3(θ1, θ2, θ3)]2S(θ1, θ2), (7)

F3(θ1; θ2, θ3) =
(1 + cos θ1 cos θ2 − sin θ1 sin θ2 sin θ3)

(cos θ1(cos θ1 + cos θ2))
, (8)

S(θ1, θ2) = S(θ1)S(θ2) (9)

with

S(θ) = exp[(−1/4) tan θ erfc(K cot θ)], (10)

K2 = (aQ)2 + 4(σ/l)2. (11)

The extended matched filter method described below, gives a method by which
the best fit is made in order to extract the terms J2

n(
√

(2g1)). The expressions given
in (6) and (7) show that as the width (1/r0) of f(kx, ky; g) increases, the zeroth-
order peak is broad enough to encompass other peaks too and the detection of the
periodic part becomes impossible. It was noted by Baltes and others, that for a
Gaussian correlation function, for the randomness, the periodic part is undetectable
if (r0/Λ) ≤ 0.33 where Q = 2π/Λ, Λ being the wavelength of the grating structure.
With the help of the extended matched filter method we extract the amplitude a and
the wavelength Λ (or the wave vector Q) of the periodic part, even in cases where
(r0/Λ) ¿ 0.33, i.e. even in cases which do not permit identification of the periodic
part by normal intensity measurements but only by intensity interferometry. We
have found in earlier communications [3–8] that the values of a and Λ found with
measurements at different wavelengths λ come out to be consistently same, in the
n = 1 case. This shows the existence of the first lobe. The second lobe is far more
difficult to find, since its intensity is of the order of (a/λ)4 and is extremely low in
the case under study.

Since the periodicity of the surface is confined only to the x-direction, we consider
only the scattering along ky = 0 and from now on designate f(kx, 0; g) as f(kx).

The paper gives us a new method for resolution enhancement. It is based
on the a priori hypothesis that a hidden periodicity, if it exists, is completely
hidden by randomness. The nature of the profile f(kx) is however taken to be
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f(kx) = [1 + (c/2x)k2
x]x as can be the case for widely different types of random-

ness, i.e., for widely different forms for the correlation function f(r). The nature
of the randomness is not known and hence the parameters c and x in the profile
are unknown but are to be determined to match the case, which gives the best fit.
Presence of side lobes of shapes similar to f(kx ± Q) is the central theme in the
extended matched filtering method described in the present paper.

We begin by considering that for
√

g1 ¿ 1, the amplitudes of the successive
nth peaks fall as (

√
g1)2n while the width of the peaks vary as ∆kx ≈ r−1

0 . The
separation of the peaks being δkx = Q, the central n = 0 peak can submerge all
the higher order peaks for ∆kx À δkx = Q. This method envisages the shape
f(kx, 0; g) of the central peak and separates it out from the total intensity profile.
This way it tries to identify the n = ±1 peaks, whose shape must match with that
of the n = 0 peak that has been eliminated out.

We begin by assuming (this is the shape of the central peak, which must be the
same for all other peaks too)

f(kx) = fa(kx) ≡ [1 + (b/2y)k2
x]y. (12)

We note that on defining

Z(kx) = [〈ρ∗(kx)ρ(kx)〉/〈ρ∗(0)ρ(0)〉]− fa(kx), (13)

χ(kx) = Z(kx)/Zmax (14)

we find,

χ(kx) = (N0 + N1 + N2)/(D0 + D1 + D2), (15)

where

N0 = J2
0 [f(kx)− fa(kx)],

N1 = J2
1 [f(kx + Q) + f(kx −Q)− 2fa(kx)f(Q)],

N2 = J2
2 [f(kx + 2Q) + f(kx − 2Q)− 2fa(kx)f(2Q)],

D0 = J2
0 [f(Q)− fa(Q∗)],

D1 = J2
1 [f(Q∗ + Q) + f(Q−Q∗)− 2fa(Q∗)f(Q)],

D2 = J2
2 [f(Q∗ + 2Q) + f(Q∗ − 2Q)− 2fa(Q∗)f(2Q)], (16)

and Q∗ is the wave vector at which Z(kx) is a maximum.
The existence of a hidden periodicity demands that the shape of the side lobe

must exactly match that of the central peak. This ‘matching’ is sought through a
best-fit condition, in which the estimator ∆2 estimates, in a ‘standard deviation’
sense, how far the hypothesis χa(kx) really differs from the correct situation as
given by χ(kx). It is indeed correct that at kx = Q∗, χaD(Q∗) = χaN (Q∗) making
χa(Q∗) = 1, identically, which is an important condition for the matched filtering
that follows.

We find that close to the peak we can expand
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f(kx) ≈ 1− (c/2)k2
x + (1/2)[(c/2x)(k2

x)]2x(x− 1)
+1/6[(c/2x)(k2

x)]3x(x− 1)(x− 2). (17)

This means that the radius of curvature of f(kx), close to the peak equals c−1/2,
while the exponent x describes essentially the tail of the function. This means that
close to the peak the shape of f(kx) is quadratic in kx, while the dependence on
x starts for higher values of x. The coherence length r0 beyond which f(kx) falls
rapidly is given by r0 ∼ c/2x.

It is clear that when our assumed fa(kx) is very close to the actual f(kx), the
terms N0 and D0 become negligible and the N1 terms show prominent peaks at kx =
±Q ≈ ±Q∗, and these lobes should match, in shape, with the chosen fa(kx ±Q∗).
To quantitatively select the best match, we note that if the terms N0 and D0 be
negligible (because of the match f(kx) ≈ fa(kx)) we must have χ(kx) − χa(kx) to
be extremely small, where χa(kx) is defined as

χa(kx) = χaN (kx)/χaD(kx) (18)

with

χaN (kx) = [fa(kx + Q∗) + fa(kx −Q∗)− 2fa(kx)fa(Q∗)], (19)

χaD(kx) = [fa(Q∗ + Q∗) + fa(Q∗ −Q∗)− 2fa(Q∗)fa(Q∗)]. (20)

The matched filtering is effected by defining an estimator

∆2 =
∫ K

0

|χa(kx)− χ(kx)|2dkx. (21)

Both χaN (kx) and χaD(kx) and hence χa(kx) can be calculated from the above
definitions while χ(kx) is found from the data through (15). We select the filter
by choosing b and y to be the one which gives the minimum ∆2(b, y). This is
our criterion of the best fit for the matched filter in the least square sense. In all
the results reported below, we have used K = Q∗. Also note must be taken of
the fact that while χ(kx) is a quantity which is found from the experimental data,
χa(kx) is a quantity that is given by our hypothesis, so that ∆2 gives a least square
estimate of the deviation of the data from the hypothesis, under consideration. The
main aim in the extended matched filtering method is to anticipate f(kx) first such
that the shape of fa(kx) describing the f(kx) must also match the shapes of the
side lobes at n = ±1, where these side lobes are to be found by searching for the
minimum of ∆2(b, y).

Identification of the matched filter enables us to ‘detect’, through a least square
fit, the parameters for the rough part of the surface. To find those for the periodic
part, we use expression (10) to give (on defining f ′(kx) = ∂f/∂kx)

f ′a(Q∗ + Q) + f ′a(Q∗ −Q)− 2fa(Q)f ′a(Q)

= −(J2/J1)2[f ′(Q∗ + 2Q) + f ′(Q∗ − 2Q)− 2f ′a(Q∗)f(2Q)], (22)

ZmaxJ
2
0 − [fa(0) + fa(2Q∗)− 2f2

a (Q∗) + 2fa(Q∗)Zmax]J2
1

− [fa(3Q∗) + fa(Q∗)− 2fa(2Q∗)fa(Q∗)− 2fa(Q∗)Zmax]J2
2 = 0, (23)

where we have used the approximation, f(kx) = fa(kx).
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Figure 2. 〈ρρ∗〉0 and its derivatives. In all three figures kx is on the x-axis.
(a) 〈ρρ∗〉0 (arbitrary units) vs. kx, (b) first derivative vs. kx and (c) second
derivative vs. kx, for parameters in the text.

The parameters Q∗ and (J1/J0)2 are solved by successive approximations by
identifying J2

2 ¿ J2
1 ¿ J2

0 .

3. Numerical results and discussion

The results obtained earlier form the content of refs [3–8]. We now summarize
these findings. We illustrate the algebraic procedure by ‘simulating’ numerically the
problem of scattering by a rough grating, using the following choice of parameters:
λ = 6328 Å, a = 328 Å, Λ = 6.25 × 10−4 cm, Q = 1.0057 × 104 cm−1, x = 3/2,
i.e. we consider a Cauchy-type correlation function for the disorder. As mentioned
earlier in the introduction, we consider a single periodicity buried in a Gaussian
noise.

The intensity of the scattered light in such a configuration is shown in figure
2a. It is clear that the intensity curve has only the central maximum and no other
structure is visible. This can mean three things.

1. There is no extra structure present and the intensity curve has shown every-
thing that needs to be observed.

2. Any periodicity, if it exists, is buried in this central maximum and the peri-
odicity in the system is undetectable.

3. This situation also implies, based on the input from theory, that, any peak,
if present and be subsumed by the central peak, must have the same shape
as the central peak itself.

The derivatives of the intensity are shown in figures 2b and 2c. The derivatives show
additional structures that are absent in the intensity curve in 2a. The existence of
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Figure 3. Comparison between fa(kx) and Z(kx) and χ(kx). kx(vx) is the
x-axis. (a) Dotted curve: fa(kx) vs. kx; broken curve: Z(kx) vs. kx. (b)
Dotted curve: fa(kx) vs. kx; broken curve: χ(kx) vs. kx.

these added structures shows clearly that the quantities 〈ρρ∗〉1 and 〈ρρ∗〉2 give rise
to structures that are absent in 〈ρρ∗〉 as there is no additional input from outside.
But this method may not be very satisfactory because the derivatives are known to
add noise to the system and this happens because the derivative is taken not only
of the signal but also of the noise already present.

This actually forms just the preliminary step of our analysis and we go on to the
matched filter analysis from here.

Figure 3a shows Z(kx) plotted against kx and its comparison with fa(kx) when
plotted against kx. Figure 3b shows χ(kx) vs. kx and its comparison with fa(kx)
vs. kx. These quantities are defined in the section on the theory. It is clear that
χ(kx) is a normalized version of Z(kx). These graphs provide the basic step in our
matched filter analysis. It is seen that the peak in χ(kx) is shifted from the origin
and the position of the peak gives us Q∗. As Q∗ defines the position of the first
peak, 2Q∗ should give the position of the second peak and 3Q∗ and 4Q∗ correspond
to the third and fourth peaks and so on. We know, Q∗ = (2π/Λ) where Λ is the
wavelength of the periodic part of the surface. Having known the position, for
instance, of the first peak, one has to determine the other parameters, namely a,
required for the correct identification of the periodic structure. One thus defines
∆2, as in the section on theory. The choice of the best fit is ascertained by checking
∆2, as defined in (22). The point where ∆2 has a minimum corresponds to the
case where the hypothesis has the minimum deviation from the data. The position
where ∆2 is a minimum gives us all the required parameters to enable correct
identification.

The improved detectability is related to the central point in matched filtering that
the fa(kx) selected must give a satisfactory match to f(kx). From the parameters
of randomness used in our numerical simulations the quantity r2

0 is calculable and is
expected to follow (λ2r0) = constant. Correct identification of matched filter would
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Table 1. Parameters at different wavelengths.

Wavelength Q (104 cm−1) a (calculated) r0/Λ Error in Q Error in a
λ (Å) (Å) (%) (%)

10000 0.994 520 0.4044 −1.09 0.37
7500 0.995 405 0.2275 −0.99 4.62
6943 1.02 343 0.1949 1.6 1.3
6328 1.05 304 0.1619 4.5 7
6000 1.001 288 0.1456 −0.40 7.7
5700 0.99 304 0.1314 −1.5 10
5000 1.040 200 0.1011 3.48 24.7

Table 2. Parameters at different r0/Λ for wavelength 6328 Å.

b and y at ∆2
min r0/Λ r0/Λ a (calc.) Error

b y (actual) (calc.) (∗10−8) in a (%)

26.0 ∗ 10−8 1.5 0.4858 0.4710 326 0.51
17.0 ∗ 10−8 1.5 0.3886 0.3808 325.8 0.61
12.0 ∗ 10−8 1.6 0.3239 0.3100 326 0.51
8.0 ∗ 10−8 1.5 0.2591 0.2612 333 1.63
4.3 ∗ 10−8 1.5 0.1943 0.1915 320 2.35
2.9 ∗ 10−8 1.4 0.1619 0.1630 305 7.01
2.1 ∗ 10−8 1.4 0.1500 0.1386 277 18
2.1 ∗ 10−8 1.4 0.1401 0.1386 266 23
1.8 ∗ 10−8 1.5 0.1300 0.1239 267 23
1.5 ∗ 10−8 1.4 0.1205 0.1171 226 31
1.3 ∗ 10−8 1.4 0.1134 0.1089 216 34
1.0 ∗ 10−8 1.8 0.1004 0.0847 206 37

– – 0.0907 – – –
– – 0.0810 – – –

demand that (b/2yr2
0) = 1 in every case. As (r0/Λ) reduces, the errors in finding

b and y do contribute to large errors in finding Q∗ and Zmax, due to smallness
of (a/λ) and hence the detectability suffers immensely. In our matched filtering,
once the n = 0 peak is filtered out we are to distinguish the two comparable peaks
at n = ±1, but separated by a larger ∆kx = 2Q∗. The latter, according to the
Rayleigh criterion or the Sparrow criterion, allows distinguishability of the peaks
for much lower values of r0.

Table 1 gives parameters for different wavelengths supporting the matched filter
method. Next, to find the detection limit, r0/Λ is varied in each case by varying
the correlation length of the rough surface. Table 2, on the other hand, gives the
details of the fit for a fixed wavelength of 6328 Å. The values of r0/Λ in different
cases are varied by varying the correlation length. Tables 1 and 2 complement each
other. The interest here is in observing the situation for lower values of (r0/Λ).
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This paper is part of our continued effort to reach lower values of detectabil-
ity in (r0/Λ). Here, we fit the data to a polynomial to find a minimum. A brief
discussion on curve fitting is necessary here. The best choice would have been to
let the parameters float (to be determined by the fit) and choose a non-linear

Figure 4. Twelve plots showing different detection limits. These are ob-
tained by plotting b (x-axis) vs. ∆2 (y-axis) for different y values. 1 – 0.4858,
2 – 0.3886, 3 – 0.32, 4 – 0.25, 5 – 0.19, 6 – 0.16, 7 – 0.15, 8 – 0,13, 9 – 0.12,
10 – 0.10, 11 – 0.09, 12 – 0.08.
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Figure 4. Continued.

data fitting. But this procedure can lead to erroneous results unless there are
enough constraints on the parameters. Also, here the answer need not be unique.
The existence of closely related physical minima (as opposed to the mathematical
minimum) can lead to confusing results. A polynomial fit, on the other hand, is
linear in the parameters and the answer is unique [11] . We have therefore chosen
a polynomial to represent the trend in the data.

The simulated data are fitted to a polynomial of the following kind:

Y = a(0) + a(1)∗x + a(2)∗x2 + a(3)∗x3,

where a(0), a(1), a(2), a(3) are the parameters to be determined, Y represents ∆2

and x denotes b. The polynomial fit gives a reasonably good representation of the
data. That the fit is good is shown by the value of the reduced chi-square,

Reduced chi-square =
∑

((1/(number of points)2)
(calculated value – simulated value)2)

which is nearly unity. As one can easily see, the resolution in the simulated data
has been reduced for r0/Λ < 0.15 and also the range in b where data is generated
has to be increased in order to find a clearly defined curve in the b vs. ‘(delta)ˆ2’
(meaning ∆2) graph. This result is borne out by the fact that the errors become
quite high as one reaches lower (r0/Λ) values. But the point in carrying out this
exercise is to make the periodic structure detectable.

Up to (r0/Λ) = 0.11 we find a minimum in the b vs. ∆2 curve. For values of
(r0/Λ) = 0.15 and lower, we find a lot of scatter in the data. However, the existence
of the minimum is clear until it reaches values close to 0.11.

Figure 4 summarizes the results of our analysis. These figures together consist
of 12 graphs showing the polynomial fit. In each case we have fitted the data to a
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polynomial of order three. Lower power terms alone were not sufficient to fit the
data and higher power terms were found unnecessary. From the fit we find that as
(r0/Λ) becomes less, (1) the numerical value of the minimum increases and (2) for
(r0/Λ) < 0.11, the minimum is not clear any more.

For lower values of (r0/Λ) we find only a monotonic increase, but no clearly
defined minimum. We therefore conclude that (r0/Λ ∼ 0.11) forms the limit of
detectability when the extended matched filtering technique is used.

4. Conclusion

It is to be noted that this problem is in some sense one of resolution enhancement
and we have dealt with only one periodicity. In our opinion we have reached the
limit of detection in the problem containing a single periodicity. As we go to higher
order peaks (2nd, 3rd and so on), the intensity of the peaks drops very sharply
and detection becomes very difficult. We will stop working on the single periodic
structure at this stage. We have demonstrated quite convincingly that the range
of detection in (r0/Λ ∼= 0.11) happens to be much lower than the value predicted
earlier. Multiple periodic structures occur more frequently in nature and naturally
form a logical extension of this work. We anticipate that the detectability should
deteriorate as the number of periodic structures buried in randomness go up. It
should be interesting to see whether this method can resolve two closely placed
peaks in a periodic structure, hidden behind randomness.
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