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ABSTRACT

The aim of this work is to identify the physical processes that occur in the network and contribute to its dynamics
and heating. We model the network as consisting of individual flux tubes, each with a nonpotential field structure,
that are located in intergranular lanes. With a typical horizontal size of about 150 km at the base of the photosphere,
they expand upward and merge with their neighbors at a height of about 600 km. Above a height of approximately
1000 km the magnetic field starts to become uniform. Waves are excited in this medium by means of motions at the
lower boundary. We focus on transverse driving, which generates both fast and slow waves within a flux tube and
acoustic waves at the interface of the tube and the ambient medium. The acoustic waves at the interface are due to
compression of the gas on one side of the flux tube and expansion on the other. These longitudinal waves are guided
upward along field lines at the two sides of the flux tube, and their amplitude increases with height due to the density
stratification. Being acoustic in nature, they produce a compression and significant shock heating of the plasma in
the chromospheric part of the flux tube. For impulsive excitation with a time constant of 120 s, we find that a
dominant feature of our simulations is the creation of vortical motions that propagate upward.We have identified an
efficient mechanism for the generation of acoustic waves at the tube edge, which is a consequence of the sharp
interface of the flux concentration. We examine some broad implications of our results.
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1. INTRODUCTION

The quiet solar chromosphere is bifurcated into the magnetic
network on the boundary of supergranulation cells and the largely
field-free internetwork medium in the cell interior, with respec-
tive filling factors in a 2:3 ratio in the middle chromosphere (i.e.,
at a height of about 1Mm above the level of unit optical depth at
5000 8). The network is about 30% brighter in Ca ii K2v emis-
sion than the internetwork chromosphere (Skumanich et al.
1975). Both the network and the internetwork media show bright
points (BPs), which are prominent in the emission peaks in the
cores of the Ca ii H and K lines, formed in the middle chromo-
sphere. However, the dynamical and spectral properties of net-
work and internetwork BPs are quite different. In internetwork
areas the chromospheric velocity power spectrum is dominated
by oscillations with frequencies at and above the acoustic cut-
off frequency (period of 3 minutes in upper photosphere; e.g.,
Rutten&Uitenbroek 1991), whereas in the network, Ca iiH line-
center velocity and intensity power spectra are dominated by
low-frequency oscillations with periods of 7–20 minutes (Lites
et al. 1993). These long-period waves have also been observed
at larger heights (Curdt & Heinzel 1998; McAteer et al. 2002,
2003). Furthermore, network BPs show high emission in the line
core most of the time (Lites et al. 1993), whereas internetwork
locations have a bright phase only about 5%–10% of the time
(von Uexküll & Kneer 1995). Finally, 80% of network BPs have
symmetric profiles in the line core, with more or less equal in-
tensity in the blue and red emission peaks on either side of the
central absorption. In contrast, only about 30% of internetwork
BPs have symmetric profiles, and 40% have blue-peak enhance-

ments (Grossmann-Doerth et al. 1974), hence the name H2v or
K2v bright point.
While the qualitative properties of internetwork BPs are rea-

sonably well understood, including their formation in upward-
propagating acoustic shocks that encounter downward-flowing
gas (Carlsson & Stein 1995), this is not true for network BPs.
The physical processes that heat the magnetic network have not
been fully identified. Are network BPs heated by wave dissipa-
tion, and if so, what is the nature of these waves? How can we
understand the observed relatively constant emission and sym-
metric line profiles of network BPs? The source of energy for
network BPs is likely to be magnetohydrodynamic waves. Pos-
sible candidates are

1. kink (transverse) waves, generated inside flux tubes by
the buffeting action of granules,

2. longitudinal waves, generated by pressure fluctuations in-
side flux tubes,

3. torsional (Alfvén) waves, generated inside flux tubes,

4. acoustic waves generated in the field-free atmosphere sur-
rounding flux tubes, that penetrate into the tubes, and

5. acoustic waves generated at the interface of flux tubes and
the outside medium, that also penetrate into flux tubes.

The first three are well-known flux tube modes (e.g., Spruit
1981). Several investigations have focused on the generation
and propagation of transverse and longitudinal wave modes and
their dissipation in the chromosphere (e.g., Zhugzhda et al. 1995;
Fawzy et al. 2002; Ulmschneider 2003 and references therein).
Torsional waves have received some attention (e.g., Hollweg
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et al. 1982; Noble et al. 2003). The fourth wave type is an obvi-
ous source since it is responsible for heating the internetwork
medium. However, the importance of the fifth wave type, which
we found during the course of this investigation, does not appear
to have been adequately recognized earlier. It will be discussed in
more detail later on.

The present study is a continuation of earlier work on the ex-
citation of transverse and longitudinal waves in magnetic flux
tubes by the impact of fast granules on flux tubes (Hasan &
Kalkofen 1999), as observed by Muller & Roudier (1992) and
Muller et al. (1994), and following the investigation byChoudhuri
et al. (1993), who studied the generation of kink waves by foot-
point motion of flux tubes. The observational signature of the
modeled process was highly intermittent in radiation emerging
in the H and K lines, contrary to observations. When we added
waves that were generated by high-frequency motion due to the
turbulence of the medium surrounding flux tubes (Hasan et al.
2000), the energy injection into the gas inside a flux tube became
less intermittent, and the time variation of the emergent radiation
was in better agreement with the more steady observed intensity
from the magnetic network.

The above studies modeled wave excitation and propaga-
tion in terms of the Klein-Gordon equation, motivated by the
identification of the power peak near 7 minutes in the observed
power spectrum (Lites et al. 1993; Curdt & Heinzel 1998;
McAteer et al. 2002) with the cutoff period of kink waves in
thin magnetic flux tubes (Kalkofen 1997). This analysis was
based on a linear approximation in which the longitudinal and
transverse waves are decoupled. However, it is well known
that the velocity amplitude v(z) for the two modes increases
with height z [for an isothermal atmosphere, as v / exp z/4Hð Þ,
where H is the pressure scale height], so that the motions are
expected to become supersonic higher up in the atmosphere. At
such heights, nonlinear effects become important, leading to a
coupling between the transverse and longitudinal modes. Some
progress on this question has been made in one dimension, us-
ing the nonlinear equations for a thin flux tube, by Ulmschneider
et al. (1991), Huang et al. (1995), and Zhugzhda et al. (1995), and
more recently by Hasan et al. (2003) and Hasan & Ulmschneider
(2004), who examined mode coupling between transverse and
longitudinal modes in the magnetic network. By solving the
nonlinear, time-dependent MHD equations, they found that sig-
nificant longitudinal wave generation occurs in the photosphere,
typically for Mach numbers as low as 0.2, and that the onset of
shock formation occurs at heights of about 600 km above the
photospheric base, accompanied by heating (Hasan et al. 2003;
Hasan & Ulmschneider 2004). The efficiency of mode coupling
was found to depend on the magnetic field strength in the net-
work and is a maximum for field strengths corresponding to � �
0:2, when the kink and tube wave speeds are almost identical.
This can have interesting observational implications. Furthermore,
even when the two speeds are different, once shock formation
occurs, the longitudinal and transverse shocks exhibit strongmode
coupling.

The above studies on the magnetic network make use of two
important idealizations: they assume that the magnetic flux tubes
are thin, an approximation that becomes invalid at about the
height of formation of the emission peaks in the cores of the H
and K lines, and they neglect the interaction of neighboring flux
tubes. Some progress in this direction has recently been made by
Rosenthal et al. (2002) and Bogdan et al. (2003), who studied
wave propagation in a two-dimensional stratified atmosphere, as-
suming a potential magnetic field to model the network and in-
ternetwork regions on the Sun. They examined the propagation

of waves that are excited from a spatially localized source in the
photosphere. Their results indicate that there is strong mode cou-
pling between fast and slowwaves at the so-called magnetic can-
opy, which they identifywith regionswhere themagnetic and gas
pressures are comparable. As a consequence of the potential-field
approximation, some magnetic field lines are nearly horizontal
even at the base of the field. Such amodel may not be appropriate
for a network patch, which is perhaps better idealized as a collec-
tion of vertical tubes (Cranmer & van Ballegooijen 2005).

Thus, the problem that we address concerns wave propagation
in regions that are largely representative of individual structures
in the magnetic network—this is different from the one analyzed
by Rosenthal et al. (2002) and Bogdan et al. (2003). Our initial
configuration consists of flux tubes in two-dimensional magne-
tostatic equilibrium with a sharp interface between the tube and
the surrounding gas. Waves are generated in this medium by
means of transverse motion at the lower boundary, which dis-
places the entire flux tube, unlike the problem studied in the
above papers, in which the source region is confined to a por-
tion of the magnetic structure. This can have interesting conse-
quences, some of which were unrecognized thus far. These are
explored below. Our calculations indicate the presence of a new
and efficient mechanism for longitudinal wave generation and
shock formation in the chromosphere.

The present study forms the first of a series devoted to a de-
tailed investigation ofwave propagation in themagnetic network.
As a first step, we go beyond the thin flux tube approximation and
employ a two-dimensional treatment in slab geometry, similar to
Rosenthal et al. and Bogdan et al. For simplicity, we neglect non-
adiabatic effects at this stage, which we will include in a separate
paper.

Several papers have looked at MHD waves in various geom-
etries in the solar atmosphere using multidimensional simula-
tions (e.g., Shibata 1983; Cargill et al. 1997; Ofman & Davila
1998; Sakai et al. 1998; Ofman et al. 1999; additional references
can be found in Bogdan et al. 2003).

The organization of this paper is as follows: in x 2 we de-
scribe the initial equilibrium model, its construction and in x 3
the numerical method of solution along with the driving mech-
anism. The results of our calculation are presented in x 4, fol-
lowed by a discussion and summary in x 5.

2. MODEL

Following Cranmer & van Ballegooijen (2005), we treat a
network element (typical flux �3 ;1019 Mx) as consisting of a
collection of smaller flux tubes that are spatially separated from
one another in the photosphere. The gas pressure in the atmo-
sphere decreases with increasing height, causing a lateral expan-
sion of the flux tubes. Neighboring flux tubes within the network
element merge into a monolithic structure at some height. Above
this ‘‘merging height’’ the network element consists of a single
thick flux tube that further expands with height. The outer edge
of this tube forms a magnetic canopy that overlies the neighbor-
ing supergranular cells. A second merging occurs when neigh-
boring network elements come together at a canopy height.
Figure 1 schematically shows the picture we have for the net-
work field structure. It consists of three distinct regions:

1. Photospheric region up to about 0.6 Mm.—Consisting
of individual flux tubes, this region has a typical diameter of
200 km in the low photosphere. Their footpoints are located in
intergranular lanes and separated from one another by about the
diameter of a granule (�1 Mm). They expand upward and
merge with their neighbors at a height of about 0.6 Mm.
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2. Lower chromosphere, between the heights of 0.6 and
1 Mm.—The merged network flux element expands laterally
over the surrounding supergranular cell center and overlying
field-free chromosphere.

3. Upper chromosphere and corona, between 1 and 12Mm.—
The fully merged magnetic field fills the available volume. At
larger heights, the field expands primarily in the vertical direction
and becomes more or less uniform. However, at lower heights,
between 1 and 2 Mm, the field strength varies significantly with
horizontal position, and the field strength directly above the flux
tubes (Fig. 1, left) ismuch larger than above the supergranular cell
center (Fig. 1, right).

Our model is based on the idea that the base of flux tubes is
located in subsurface layers, where convective flows may be dif-
ferent from those in the visible photosphere. Flux tubes occur
in regions with convective downflows below intergranular lanes.
These downflows are likely to be highly turbulent, involving lat-
eral motions that produce transverse waves in the flux tubes.When
the upward-propagating waves reach the photosphere, they cause
horizontalmotions offlux tubes relative to their local surroundings.
This generates excess pressure on the leading edge of a flux tube
and a pressure deficit on the trailing edge. Our two-dimensional
MHD calculations (see x 3) indicate that these pressure pulses
produce an upward-velocity pulse on the leading side of the flux
tube and a downward pulse on the trailing side. These pressure
pulses and vertical flows are an integral part of the MHDwave, so
the transverse and longitudinal motions are strongly coupled.

2.1. Initial Two-dimensional Magnetostatic Model

Let us consider an individual flux tube at the base of a mag-
netic network element on the quiet Sun; the region of interest is

indicated by the small box in Figure 1. At heights below about
600 km, the flux tubes are spatially distinct from one another and
are embedded in a field-free ‘‘external’’ medium. At�1000 km,
the flux tubes merge into a more uniform field. The structure
of the flux tube at the initial instant is assumed to be in static
equilibrium and is determined by the magnetostatic force bal-
ance equation:

�:pþ �gggþ 1

4�
(:<B)<B ¼ 0; ð1Þ

where ggg ¼ �gẑ is the gravitational acceleration, p is the gas
pressure, � is the density, and B is the magnetic field. The third
term in equation (1) describes the Lorentz force due to elec-
tric currents at the boundary between the flux tube and its local
surroundings.
We have developed a numerical code for solving equation (1)

in two dimensions; all quantities are assumed to be independent
of the horizontal y-coordinate, so the flux tubes are approxi-
mated by sheets. However, despite this difference we continue
to use the term flux tube to represent a flux sheet. We consider a
rectangular domain x ¼ ½L; 2L� and z ¼ ½0; H �, representing
one-half of a flux sheet; x ¼ L is the flux sheet axis, x ¼ 2L is
the interface with the neighboring sheet on the right, and z ¼ 0
is the base of the photosphere. The magnetic field is written in
terms of a flux function A(x, z):

Bx ¼ � @A

@z
; Bz ¼

@A

@x
: ð2Þ

The distribution of A(x, 0) at the lower boundary is computed
from the pressure balance condition for a thin flux sheet: p þ
B2
z /8� ¼ constant along the bottom boundary. The boundary

conditions for A are A(L; z) ¼ 0 and A(2L; z) ¼ Amax, where
Amax is one-half of the total magnetic flux within the sheet. The
gas pressure and density are expressed as

p ¼ pint(z) 1þ ��1
0 F(A)

� �
; ð3Þ

� ¼ �int(z) 1þ ��1
0 F(A)

� �
; ð4Þ

respectively, where pint (z) is the internal gas pressure as func-
tion of height along the axis of the flux sheet, �int (z) is the in-
ternal density, �int (z) ¼ �g�1dpint/dz, �0 is the ratio of gas and
magnetic pressures at the base (on axis), and F(A) is a function
describing the variation of gas pressure across field lines. Note
that the temperature depends only on height ( p/� is indepen-
dent of x). The function F (A) varies from zero on the axis of
the sheet to F(Amax) ¼ 1 in the external medium, resulting in
distributed electric currents at the interface between the sheet
and its local surroundings.
Inserting equations (2), (3), and (4) into equation (1) yields

92Aþ 4�pint(z)�
�1
0

dF

dA
¼ 0; ð5Þ

which can be solved by minimizing the following Lagrangian:

W ¼
Z H

0

Z 2L

L

1

2
9Aj j2�4�pint(z)�

�1
0 F(A)

� �
dx dz: ð6Þ

The minimization is done by varying the A-values on a grid of
120 ; 240 cells, using the conjugate-gradient method (Press
et al. 1992). A similar technique was used in Hasan et al. (2003),
where we constructed a model of a very thin flux tube (see the
Appendix of that paper), and in Cranmer & van Ballegooijen

Fig. 1.—Model of a network element consisting of individual flux tubes sep-
arated at the photospheric surface by a distance of 1000 km that merge at a height of
about 600 km. The box corresponds to the domain taken up for dynamical simu-
lations. [See the electronic edition of the Journal for a color version of this figure.]
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(2005). In these papers a Lagrangian description was used, and
the radial positions r (�, z) varied on a fixed grid of � (the flux
function in cylindrical coordinates) and height z. In the present
paper we vary A(x, z) on a fixed grid of x and z.

A model containing one whole flux sheet can be obtained by
mirroring the field with respect to x ¼ L, and models containing
multiple sheets can be obtained by further mirroring with re-
spect to x ¼ 2L. The resulting fields will be used as initial con-
ditions for the two-dimensional MHD calculation (see x 3).

We perform calculations for a single sheet using the follow-
ing form for F(A):

F(A) ¼ 4

3

A

Amax

� �2

� 1

3

A

Amax

� �8

if A � Amax: ð7Þ

The resultant field configuration in the flux sheet, as we
see below, has a sharp interface (especially in the photospheric

layers) across which the field drops rapidly to a small value. We
refer to this weak field region as the external or ambient me-
dium. There is, however, a smooth transition of gas pressure
from the interior to the exterior of the sheet.

The internal pressure as a function of height was approxi-
mated as a sum of two exponentials:

pint(z) ¼ p1 exp (�z=H1)þ p2 exp (�z=H2); ð8Þ

with a photospheric pressure scale height of H1 ¼ 110 km and
a chromospheric scale height of H2 ¼ 220 km. To obtain kilo-
gauss fields in the photosphere, we used �0 ¼ 0:5, so that the
external gas pressure is 3 times the internal gas pressure.

In the present calculations we consider a full flux sheet placed
symmetrically with respect to the midpoint of the computational
domain (x ¼ L), which we take to be a square of size 1200 km
with a uniform grid of 240 ;240 cells, corresponding to a mesh
spacing of 5 km in either direction. We take L ¼ 600 km so that
the flux tube axis is at x ¼ 600 km and redefine Amax to be the
total magnetic flux in the flux sheet [A(L; 0) ¼ 0:5Amax].

Figure 2 depicts the magnetic field lines in the equilibrium
state in the right half of the flux tube. Each field line is annotated
by the fractional flux f � A/Amax as measured from the left edge
of the computational domain. Thus, f ¼ 0:5 corresponds to the
tube axis at x ¼ 600 km. The heavy solid line corresponding to
f ¼ 0:96 has been arbitrarily chosen to denote the field line de-
marcating the interface between the tube and the ambient me-
dium (with weak field). In practice, the precise choice of f for
the boundary line does notmatter as long as f � 1 at the interface.

Fig. 2.—Magnetic field lines (solid curves) in the right half of a flux tube.
Each line is annotated by the fractional flux f ¼ A/Amax with respect to the left
boundary x ¼ 0. The heavy solid line representing f ¼ 0:96 has been chosen to
represent the interface of the tube with the ambient medium (with weak field).
The dashed curves denote field lines at f ¼ 0:97, 0.98, and 0.99.

TABLE 1

Parameters on the Tube Axis and Ambient Medium

Tube Axis Ambient Medium

Variable Base Top Base Top

Temperature (K) .............. 4800 8200 4800 8200

Density (g cm�3) ............. 1:3 ; 10�7 9:5 ;10�12 4:0 ; 10�7 2:9 ; 10�11

Pressure (dyn cm�2) ........ 4:1 ; 104 8.2 1:2 ;105 22

Sound speed (km s�1) ..... 7.1 12 7.1 12

Alfvén speed (km s�1) .... 11 92 0.30 52

Magnetic field (G) ........... 1400 100 70 100

� ....................................... 0.5 0.02 600 0.06

Fig. 3.—Variation of (a) the temperature T and (b) the logarithm of the pressure p as a function of height on the field lines corresponding to f ¼ 0:55 (solid curve),
0.75 (dotted curve), and 0.99 (dashed curve) in the equilibrium configuration. Note that the temperature is uniform (by assumption) in the horizontal direction.
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To illustrate this, we also show field lines (dashes) corresponding
to f ¼ 0:97, 0.98, and 0.99. Close to the lower boundary, the
separation between these lines is insignificant (at z ¼ 0 the dis-
tance between them for f ¼ 0:96 and 0.99 is about 20 km).Above
z ¼ 400 km, most of the region is filled with field lines and so
effectively there is no external medium above these layers. There
is, however, a small height range below z ¼ 400 km where the
position of the interface depends on the f value chosen for the
interface. But at these heights the field is rather weak (� > 50).
The essential point is that close to the lower boundary (where
wave excitation occurs) the magnetic flux is confined to a well-
defined region with a width of about 150 km containing 99% of
the magnetic flux.

Table 1 provides some of the parameters of the equilibrium
model on the tube axis and in the ambient medium (taken at f ¼
0:99) at the base (z ¼ 0) and the top (z ¼ 1200 km) of the com-
putational domain. The sound speed cS varies from 7.1 km s�1

at z ¼ 0 to 9.2 km s�1 at z ¼ 1200 km. The ambient medium is,
as stated before, not field-free. At the base of the tube, the field
drops rapidly outside the interface and this region is effectively
field-free in view of the large value of �.

Figures 3a and 3b depict the variation with height of the tem-
perature and pressure, respectively. It should be noted that the
temperature by assumption is constant in the horizontal direc-
tion. In Figure 3b, the pressure is shown on different field lines.
The dashed curve ( f ¼ 0:99) essentially depicts the height vari-
ation of the pressure in the weak field medium where �31.
Figures 4a and 4b show the height variation of the magnetic

field strength B and of � on various field lines, parameterized by
f ¼ 0:5, 0.8, and 0.9. The field strength on each of the field lines
drops rapidly with z in the first few hundred kilometers, after
which it approaches a constant value of about 100 G. On the
other hand, � is practically constant with z in the lower region of
the atmosphere, which is similar to the behavior one finds in a
thin flux tube with equal internal and external temperature at the
same height (e.g., see Hasan et al. 2003), and where both B2 and
p have the same height dependence. In the upper part of the flux
tube, B is constant and � drops off sharply with z, essentially
mimicking the p dependence. The Alfvén speed, which is re-
lated to � by the approximate relation vA � cS /

ffiffiffi
�

p
, is almost

constant (with height) in the lower regions of the atmosphere in
the tube, but increases sharply with z in the higher layers.

Fig. 4.—Variation of (a) the magnetic field strength B and (b) � as a function of height on the field lines corresponding to f ¼ 0:5 (solid curve), 0.8 (dotted curve), and
0.9 (dashed curve) in the equilibrium configuration.

Fig. 5.—Variation of (a) Bz and (b) Bx with horizontal distance (from the left edge of the computational domain) at the following heights: z ¼ 0 (solid line), 500 km
(dotted line), and 1000 km (dashed line).
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Figure 5 shows the variation with horizontal distance x of
(a) the vertical component of the magnetic field Bz and (b) the
horizontal component Bx at various heights, z ¼ 0 (solid line),
500 (dotted line), and 1000 km (dashed line). The solid lines
clearly show that the magnetic field at the base is confined to a
width of about 150 km. At a height of 1000 km, Bx becomes
very small (a few gauss) and the field is essentially vertical and
constant (approximately 100 G) in the horizontal direction.

3. METHOD AND BOUNDARY CONDITIONS

We consider wave generation in the configuration described
in the previous section by perturbing the lower boundary and
solving the two-dimensional magnetohydrodynamic (MHD)
equations in conservation form for an inviscid adiabatic fluid.
These consist of the usual continuity, momentum, entropy (with-
out sources), and magnetic induction equations (for details see
Steiner et al. 1994). The unknown variables are the density, mo-
mentum, entropy per unit mass, and magnetic field. We assume
that the plasma consists of fully ionized hydrogen with a mean
molecular weight of 1.297. The temperature is computed from
the specific entropy, and the pressure is found using the ideal
gas law.

The above MHD equations are solved following the numeri-
cal procedure given by Steiner et al. (1994). Briefly, the equations
are discretized on a two-dimensional mesh using a finite-volume
method, which has the advantage of preserving:=B ¼ 0 to ma-
chine accuracy. The method employs finite differences to com-
pute numerical fluxes based on the flux-corrected transport (FCT)
scheme of Oran & Boris (1987). The time integration is explicit
and has second-order accuracy in the time step. Small time steps
are required to satisfy the Courant condition in the upper part of
the domain, where the Alfvén speed is large.

Periodic boundary conditions are used at the horizontal bound-
aries. At the top boundary, (1) the vertical and horizontal compo-
nents of momentum are set to zero; (2) the density is determined
using linear logarithmic extrapolation; (3) the horizontal com-
ponent of the magnetic field and temperature are set equal to the
corresponding values at the preceding interior point. The vertical
component of the magnetic field is determined using the condi-
tion:=B ¼ 0. Similar conditions are used at the lower boundary,
except for the density, temperature and horizontal component of
the velocity (or momentum). The density is obtained using cubic
spline extrapolation, the temperature is kept constant at its initial
value and vx at z ¼ 0 is specified as follows:

vx(x; 0; t) ¼ v0 sin (2�t=P); ð9Þ

where v0 denotes the amplitude of the horizontal motion and P
is the wave period. This form was chosen to simulate the effect
of transverse motion of the lower boundary. For simplicity, we
assume that all points at the lower boundary have this motion,
since this does not generate any waves in the ambient medium,
other than at the interface with the flux tube, as we see below.

4. DYNAMICS OF A FLUX SHEET

In x 2, we presented a model for a single flux sheet in static
equilibrium. The stability of this equilibrium was checked by solv-
ing the time-dependent two-dimensional MHD equations with-
out any external driving (assuming rigid boundaries in the vertical
direction).We found that this equilibrium was maintained to high
accuracy. Themaximum amplitude of the flowswas nomore than
a few meters per second over timescales greater than the sound
travel time (in both the vertical and horizontal directions), cor-
responding to over 10,000 time steps.

Let us now consider wave generation in the equilibrium atmo-
sphere by means of a transverse motion at the lower boundary
(z ¼ 0) of the atmosphere, which displaces the flux sheet.We focus
on two limiting cases, corresponding to impulsive and periodic
excitation, respectively.

4.1. Impulsive Excitation

This case corresponds to uniform displacement of the lower
boundary at z ¼ 0 to the right, which lasts half a wave period
(P ¼ 240 s) and then stops. The peak transverse velocity is
v0 ¼ 750 m s�1. Figures 6a–6d show, at times of 52, 82, 109,
and 136 s, respectively, the velocity field (arrows), the magnetic
field (black lines) and the temperature change �T ¼ T � T0,
where T0 is the initial temperature at each height. Themaximum
value of the velocity and the color table for the temperature are
shown on the right of each figure. We have omitted velocities
smaller than 30 m s�1. The white lines denote contours of con-
stant � for values of � ¼ 0:1, 0.5, 1.0 (thick line), and 10.

The horizontal motion of the flux tube at the lower bound-
ary pushes the field lines uniformly to the right. In the flux tube,
this motion is communicated to the upper layers as a fast mode,
which travels with the local Alfvén speed. The transverse mo-
tion of the field lines compresses the gas on the right interface of
the tube and the ambient medium (above the base, where there
is no horizontal motion in the field-free medium).

Figure 7 clearly shows at t ¼ 82 s the development of a pres-
sure enhancement and depletion, respectively, at the right and
left interfaces of the tube with respect to the field-free gas. This
essentially creates a pressure dipole that in turn generates a vor-
tex motion with upflow and downflow motions on the right and
left sides, respectively. The top of the vortex motion is in the op-
posite direction to that at the base. From Figure 6 we find that
as time proceeds, the vortex grows in size and also moves up-
ward. This motion carries the field lines, pushing them slightly
counterclockwise in the lower regions of atmosphere.

As the vortex extends upward, there is a hint of a shock form-
ing at its upper edge, as can be seen in Figure 6c. Once the
transverse driving motion stops at the base, the vortex motions
diminish and the flow is now guided along the field lines. This is
evident in Figure 6d, which shows at t ¼ 136 s negligible flows
near the base of the flux tube and large flows almost aligned
with the magnetic field in the upper atmosphere. The large up-
flows generate a shock that can be discerned at a height of
about 900 km along with a temperature enhancement greater
than 400 K.

Figures 8a and 8b denote the z-variation of vs and vn, the field-
aligned and normal velocity components respectively at 82, 109,
and 150 s along a specific field line. We choose a field line pa-
rameterized by f ¼ 0:6, which is just to the right of the flux tube
axis. Let us first consider the behavior of the field-aligned flow,
shown in Figure 8a. As time proceeds, the vertical component
of the velocity pulse increases with height in magnitude on
account of the density stratification and it steepens on account
of nonlinear effects as it propagates upward. At t ¼ 150 s the
pulse resembles a shock. The presence of a wake behind
the shock should also be noted, which is a generic feature as-
sociated with the propagation of a pulse in a vertically strati-
fied atmosphere (e.g., Hasan et al. 2003). Figure 8b shows the
z-variation of the normal component of the flow. The curves
corresponding to t ¼ 82 and 109 s show the normal component
profiles during the impulsive phase (i.e., during the time inter-
val that transverse driving motions are present at z ¼ 0). The
dashed curve shows the profile at t ¼ 150 s, after the transverse
motion at the base has halted. This profile is broadened due to
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the fact that the Alfvén speed, which is the characteristic prop-
agation speed of the transverse pulse, increases sharply with
height. In the lower regions of the atmosphere, where � � 0:6,
vA � 10 km s�1, whereas at a height of 600 km, it has increased
to about 18 km s�1.

4.2. Periodic Excitation

We now consider the periodic excitation of waves due to
transverse driving of the lower boundary, with a period of 24 s
(similar to Rosenthal et al. [2002] and Bogdan et al. [2003]),
although with a higher amplitude of 750 m s�1. Figures 9a–9d
show the wave pattern that develops in this case. As before, the
colors are used to denote the temperature perturbation with re-
spect to the initial value at each height and the white curves
depict contours of constant �.
The horizontal motion of the tube at the lower boundary is a

source of acoustic waves at the interface. These waves propa-
gate isotropically in the ambient medium and near the interface
(or more precisely in the region where �31) as ‘‘spherical’’
acoustic waves. The yellow and blue strips associated with�T,
with an almost constant separation, clearly show the acoustic
waves propagating outward at the sound speed from their source
near the bottom edge of the tube. The wavelength of these waves

Fig. 7.—Relative pressure perturbation (about the initial state), �p/p0, at
t ¼ 82 s in a network element due to horizontal motion at the lower boundary
with an amplitude of 750 m s�1 and a period of P ¼ 240 s. The thin black curves
are the magnetic field lines, and the white curves denote contours of constant �
corresponding to � ¼ 0:1, 0.5, 1.0 (thick curve), and 10.

Fig. 6.—Flow pattern and temperature perturbation, �T (about the initial state), at (a) 55 s, (b) 82 s, (c) 109 s, and (d ) 136 s in a network element due to
horizontal motion at the lower boundary, with an amplitude of 750 m s�1, applied for half a wave period (P ¼ 240 s), after which the motion ceases. The thin black
curves are the magnetic field lines, the arrows denote the direction of the flow, and the color scale shows the temperature perturbation. The white curves denote
contours of constant � corresponding to � ¼ 0:1, 0.5, 1.0 (thick curve), and 10.
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Fig. 8.—Variation of the velocity components (a) along the magnetic field vs and (b) normal to the magnetic field vn at t ¼ 82 s (solid curve), 109 s (dotted curve), and
150 s (dashed curve) on a field line characterized by f ¼ 0:6 in a network element due to a horizontal motion at the lower boundary with an amplitude of 750 m s�1 and a
period P ¼ 240 s.

Fig. 9.—Flow pattern (arrows) and the temperature perturbation (about the initial state), �T, at (a) 41 s, (b) 68 s, (c) 96 s, and (d ) 123 s in a network element due
to a periodic horizontal motion at the lower boundary with an amplitude of 750 m s�1 and a wave period of P ¼ 24 s. The thin black curves represent the magnetic
field lines. The white curves denote contours of constant � corresponding to � ¼ 0:1, 0.5, 1.0 (thick curve), and 10.



is approximately constant, since the acoustic speed varies weakly
in the lower part of the computational domain.

In the flux tube, the horizontal driving motions generate both
fast and slow modes. Close to the tube axis, the field is strong
(� < 1) and the transverse motion generates a fast wave that
propagates upward at the Alfvén speed. Its propagation can be
clearly seen in Figure 10a, which depicts at t ¼ 68 s the varia-
tion of the normal velocity component vn as a color contour
plot. The fast wave front shows an asymmetry in propagation,
since the Alfvén speed is largest on the tube axis and decreases
in the horizontal direction. On the axis the Alfvén speed is
10 km s�1 at z ¼ 0, 18 km s�1 at z ¼ 600 km, and 30 km s�1

at z ¼ 800 km (the last is roughly the height at which the fast
mode has reached as can be seen from the blue halo). The in-
crease in separation in the vertical direction between the color
peaks clearly shows the increase in wavelength due to the in-
crease in Alfvén speed with z.

The horizontal motions at the lower boundary produce com-
pressions and decompressions of the gas in the tube, where

�k1. The resulting pressure variations are periodic in height
and time and are 180� out of phase on opposite sides of the tube
axis, as can be seen in Figure 11, which depicts the relative pres-
sure perturbation in the network element. The associated pres-
sure gradients drive periodic vertical flows that propagate upward
along the field lines of the flux tube at approximately the acous-
tic speed. These motions can be discerned in Figure 10b, which
shows at t ¼ 68 s the velocity component along the field. The
vertical flows are an integral part of the flux tube wave, so the
wave has both transverse and longitudinal character in different
parts of the tube.
As a wave emanating from the lower boundary, where � > 1,

travels upward along field lines, it reaches layers where � ¼ 1.
In such regions, the wave changes character and undergoes
mode conversion, which has been discussed in some detail by
Rosenthal et al. (2002) and Bogdan et al. (2003). In the low-�
region, the wave consists of two almost decoupled parts: a fast

Fig. 10.—Velocity components (a) vn, normal to the field, and (b) vs, along the field, at t ¼ 68 s in a network element due to a horizontal motion at the lower boundary
with an amplitude of 750 m s�1 and a period of P ¼ 24 s. The thin black curves represent the magnetic field lines, and the white curves denote contours of constant �,
corresponding to � ¼ 0:1, 0.5, 1.0 (thick curve), and 10.

Fig. 11.—Relative pressure perturbation (about the initial state), �p/p0, at
t ¼ 68 s in a network element due to horizontal motion at the lower boundary
with an amplitude of 750 m s�1 and a period of P ¼ 24 s. The thin black curves
represent the magnetic field lines, and the white curve denotes the contour � ¼ 1.

Fig. 12.—Variation of the velocity component along the magnetic field, vs, at
times t ¼ 68 s (solid curve), 96 s (dotted curve), and 123 s (dashed curve) on
a field line characterized by f ¼ 0:6 in a network element due to horizontal
motion at the lower boundary with an amplitude of 750 m s�1 and a period of
P ¼ 24 s.
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mode, described in the preceding paragraph (see Fig. 10a), and
a slowmode that is guided along the field lines. The slowmodes
on opposite sides of tube axis as stated earlier are 180� out of
phase with each other, and their amplitudes increase with height
due to the density stratification. Being mainly acoustic in na-
ture, they produce a compression and heating of the plasma in
the chromosphere. This can be seen for instance in Figure 9d,
where the wave front located at a height of about 1000 km pro-
duces heating greater than 500 K. Figure 12 shows the varia-
tion of the field-aligned velocity component, vs, on a field line
f ¼ 0:6 at three different times, shown by the different curves.
One can see the amplitude increase and steepening of the wave
due to nonlinear effects as it propagates upward at the acoustic
speed of around 7 km s�1. This clearly establishes the nature of
this wave as acoustic. It is interesting to note the occurrence of
weak shocks at a Mach number of about 0.2.

5. DISCUSSION AND SUMMARY

The present investigation is a continuation of our earlier work
on the dynamics of the magnetic network on the Sun. In our pre-
vious studies we used a simplified picture of magnetic elements
in terms of a quasi one-dimensional treatment based on the thin
flux tube approximation. This approach was useful in providing
a qualitative picture of wave propagation and nonlinear mode
coupling in the lower regions of the atmosphere where the thin
flux tube approximation is applicable. However, as already pointed
out in x 1, this approximation breaks down in the chromosphere
due to the expansion of the flux tube with height as well as due
to the merging of different tubes. We overcome these limita-
tions by using a two-dimensional treatment. In the first part
of this study we focus on a single flux tube and examine the con-
sequences when the lower boundary is perturbed by a transverse
motion. Future work will extend the present analysis to multiple
tubes as well as other types of excitation mechanisms.

The choice of using a transverse velocity perturbation at the
lower boundary was to some extent motivated by observations,
particularly those of Muller & Roudier (1992) and Muller et al.
(1994), who studied the footpoint motions of a large number of
network bright points, generally regarded as a proxy for mag-
netic elements. We considered the driving motions to occur at
a fixed height in the atmosphere. In reality, we expect that the
displacement of the flux tubes occurs in response to turbulent
motions below the photospheric base. These flows are absent or
weak on the surface. Thus, the pressure fluctuations in our model
are a direct consequence of the relative motion of the flux tube
with respect to its local surroundings. These play a key role in
driving the vortexmotions that propagate high up in the flux tube.
It appears reasonable to expect that such pressure fluctuations
indeed occur in the solar network.

We chose two limiting forms for the time behavior of the per-
turbation as an idealization for drivers that (1) generate discrete
pulses well separated in time and (2) are periodic and contin-
uous. The values of the time constant for the pulse in the first
case and the wave period in the second case were chosen be-
cause of practical considerations related to the limit of not let-
ting the simulation exceed a total time at which reflections from
the top boundary become important.

We find that the transverse drivingmotions at the lower bound-
ary lead to strong pressure perturbations in the field-free medium
at the tube interface. This is an efficient process for generating
vortical motions, recognized earlier by Shibata (1983) in two-
dimensional simulations, who found that such motions can arise
due to a pressure perturbation applied at the base of a uniformly
magnetized stratified atmosphere (� > 1). In our simulations the

strong pressure fluctuations are essentially localized in regions
where � is greater than unity. The observational signature asso-
ciated with vortex formation would be the prediction of simul-
taneous upward and downward motions on opposite sides of
flux tubes. Under what conditions does a vortex form? It appears
that for wave periods that are sufficiently long (compared to the
Alfvén travel time) the dynamics is likely to be dominated by
vortical motions, but it is difficult at this stage to say anything
more definitive.

An important consequence of our calculations is that the in-
terface between the flux tube and the ambient medium is both a
source of acoustic waves in the ambient medium as well as fast
and slow waves inside the flux tube. This can have interesting
consequences: the acoustic waves that travel isotropically in
the field-free medium will impinge on neighboring flux tubes in
the network and excite waves in them. On the other hand, the
modes generated in the high-� region of the tube (at the interface)
undergo mode conversion as they propagate upward and enter
layers in the atmosphere where � � 1, as also found by Rosenthal
et al. (2002) and Bogdan et al. (2003). In the upper part of the
flux tube, where the field is essentially vertical and �T1, the
acoustic-like longitudinal motions steepen and form shocks ac-
companied by heating, as also found out for instance by Hasan &
Ulmschneider (2004) using a thin flux tube calculation. There is,
however, an important qualitative difference between the present
results and those of Zhugzhda et al. 1995, Hasan et al. (2003), and
Hasan & Ulmschneider (2004). In the latter, longitudinal motions
are generated from transverse driving motions at the flux tube
footpoints as a consequence of nonlinear mode coupling that is
most efficient when the transverse and longitudinal mode speeds
are comparable (roughly for � � 0:2). In the present work, the
mode conversion occurs essentially in the linear regime and is a
consequence of the spatial variation of � in the tube. We find that
transverse driving motions with velocities less than 1 km s�1 are
sufficient to produce strong shocks in the chromosphere.

The present work is in the spirit of the investigations by
Rosenthal et al. (2002) and Bogdan et al. (2003) on wave prop-
agation in two-dimensional magnetic structures. There are, how-
ever, qualitative differences between the initial state and the form
of the perturbation used for driving the atmosphere in the two
sets of calculations. For instance, the initial equilibrium config-
uration adopted by the above authors assumes a potential field
that is typical of the large-scale pattern connecting different net-
work regions. Bogdan et al. (2003) consider a unipolar magnetic
structure that at the base is 2000 km wide surrounded by smaller
magnetized regions (about 750 kmwide) of opposite polarity (as
shown in Fig. 1 of their paper). At larger horizontal distance from
the flux concentration, the field is essentially horizontal although
much weaker. Thus, in the above configuration the entire atmo-
sphere is magnetized. On the other hand, we consider a non-
potential unipolar magnetic element representative of a tube in
a network element that is initially in magnetostatic equilibrium
and in which the flux at the photospheric level is effectively con-
fined inside a tube with a transverse dimension of about 150 km.
In such a model � is much higher in the ambient medium than in
a corresponding potential model although in the central regions
of the tube the field strengths are comparable. The essential dif-
ference, though, is in the sharp decline of the field strength across
the interface in our nonpotential model. It is possible that this
differencemay not be crucial forwave propagation, which ismost
likely influenced by the field in the central region of the tube up
to the curve corresponding to � � 1. In the tube and ambient
mediumwhere �31, the acoustic (or more precisely the acoustic-
gravity) waves are insensitive to the precise value of �, as long
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as it is sufficiently large (we are grateful to the referee for drawing
our attention to this fact).

However, we believe that the relatively well defined sharp in-
terface between the flux tube and ambient medium in our model
is responsible for the efficient acoustic wave emission at the tube
edge. This is because such waves can be strongly excited in the
narrow layer between the rigid interface of the flux tube and am-
bient medium against which the former is pressed. If the bound-
ary is smooth, this region is wider and suffers less compression.
On the other hand, if the boundary is sharp and discontinuous,
with the interior field strong everywhere, this transition layer
would not exist and the wave emission at the edge would again
be weak. We hope to pursue this line of investigation in future
work.

In our model the whole flux tube at the photosphere is dis-
placed and not just a small region inside it. The driving motion
in the simulations of Bogdan et al. (2003) is confined to a re-
gion about 400 km wide within the flux element. In our simu-
lations, the transverse motion of the entire magnetic element
creates strong pressure perturbations just outside the tube that in
turn are responsible for the vortical motions and the generation
of acoustic waves in the ambient medium as well as the strong
longitudinal motions that eventually produce shock heating in
the upper atmosphere. The fact that the flux tube interface is a
source of acoustic waves in the ambient medium is a new fea-
ture of the present work that does not appear to have received
adequate attention and as stated earlier would probably not be
noticeable in a distributed field configuration such as correspond-
ing to a potential field.

A further difference between our model and that of Bogdan
et al. (2003) is that we consider impulsive excitation in addition
to periodic excitation. We also consider a nonisothermal atmo-
sphere with the temperature increasing with height that is rep-
resentative of the solar chromosphere.

We should point out some limitations of our current study.
Our analysis is based on a two-dimensional treatment in slab
geometry, assuming that fluid displacements are confined to
the x-z plane. The waves examined by us are different from the
kink and sausage modes treated earlier by us using a simplified
thin flux tube approximation. Ideally, one would use a three-
dimensional treatment, which is currently beyond the scope of
this work. Our analysis also neglects the torsional Alfvén wave,
which in reality would couple to the fast and slow modes. Even
within the two-dimensional framework, we have had to restrict
the height range in our simulations to 1200 km, since the Alfvén
speed (that essentially controls the time step used in the numer-
ical scheme) increases very rapidly with z.
In summary, this paper is the first of a series of investigations

on the dynamics of the solar magnetic network based on a two-
dimensional treatment of the MHD equations. We have made
a start by considering processes occurring in a single flux tube
that expandswith height in the photosphere and assumes a ‘‘wine
glass’’ geometry in the chromosphere. Flows and wave motions
are generated in this configuration by transverse motions at the
base of the flux tube. For impulsive driving we find the presence
of vortical motions. An interesting feature for both impulsive and
periodic driving is the development of shock-like features in the
upper atmosphere, which can be important in heating the chro-
mosphere.We hope to extend the scope of the present calculation
in future work to include multiple flux tubes as well as include a
larger height extension in order to estimate transport of energy in
to the corona through this mechanism.

S. S. H. thankfully acknowledges support from the National
Science Foundation, USA, through grant ATM 02-07641. We
also greatly appreciate the insightful comments of the referee.

REFERENCES

Bogdan, T. J., et al. 2003, ApJ, 599, 626
Cargill, P. J., Spicer, D. S., & Zalesak, S. T. 1997, ApJ, 488, 854
Carlsson, M., & Stein, R. F. 1995, ApJ, 440, L29
Choudhuri, A. R., Auffret, H., & Priest, E. R. 1993, Sol. Phys., 143, 49
Cranmer, S. R., & van Ballegooijen, A. A. 2005, ApJS, 156, 265
Curdt, W., & Heinzel, P. 1998, ApJ, 503, L95
Fawzy, D., Rammacher, W., Ulmschneider, P., Musielak, Z. E., & Stěpień, K.
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