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Abstract. A study has been undertaken to classify stars in an H-R diagram using
a neural network by setting the input feature in max-min-max Sub arrays. The
input features we have considered are B-V color index, absolute magnitude and
temperature in all five classes namely hot subdwarfs, white dwarfs, main sequence,
normal giants and red giants. For classifying the output we have taken twenty eight
stars which cover all above said five classes and have achieved an accuracy of
86.6%. Further we have evaluated the dependencies of the neural network output
on different confidence interval widths. In addition we have studied the normalized
system error on the number of hidden layers and the minimum number of hidden
layers and the minimum number of input features that are required for output
prediction. We would like to call this algorithm as max-min-max Generalized Delta
Rule.

Key words : neural networks, star classification, H-R diagram

1. Introduction

It is known that the human brain is built of cells called neurons. A collection of neurons
linked together in such a way that individual neurons can perform separate functions
simultaneously is called a neural network. The computational model neural network called
Artificial Neural Network (ANN) is characterized by the network topology, the connection
strength between pairs of neurons (weights), node properties and the status-updating rules
(Simon Haykin 1995). The ability to learn is a fundamental trait of intelligence. Learning in
neural networks whether Supervised (training with teacher), Unsupervised (training without
teacher), or Hybrid (combines supervised and unsupervised learning) is accomplished by
adjusting weights between connections in response to new inputs or training patterns (Yi
Shang et al. 1996). Work on ANN models has a long history. Development of detailed
mathematical models began more than 43 years ago. Perceptron rule LMS algorithm, Stein
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bucties learning matrix, madaline Rule 1, mode seeking technique (first Competitive learning),
Widrows reinforcement learning algorithm, Grossberg’s Adaptive Resonance theory (ART),
Outer product rules and equivalent approach of Hopfield and others, Adaptive Bi-directional
Associative Memory (BAM), Generalized Delta Rule (GDR), etc., are the sequence of land
marks in the neural network evolution (Bernard Widrow 1990).

2. ANN overview

An artificial neuron Fig. 1a has a set of inputs. X, X,, X,, ....., X_collectively denoted by

the vector X. Each input signal is multiplied by a weight W,, W, W_....., W_respectively and

Figure 1a. Nonlinear model of a Neuron.

applied to an adder for summing the input signals, weighted by the respective synapses of the
néuron : the operations described here constitute a linear combiner. The output called (NETX)
is ' '

NETX = 3 W, Xj
j=1
The NET signal is processed by any nonlinear activation (squashing) function f (Commonly
used activation functions are threshold function, piecewise linear sigmoid and Gaussian) are
shown in Fig. 1b, to produce the neurons output OUT.

Output is = f X, W, Xj=fs NETX ' 2.1
j=1 .
where f_is a Sigmoid function

There is a crude analogy here to a biological neuron : wires and interconnections model
axons and dendrites, connection weights represent synapses, and the threshold function
approximates the activity in Soma.
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Figure 1b. The modified sigmoid function.

By connecting neurons into networks, their power can be greatly increased. Capabilities
of the network can be further enhanced by cascading a group of single layer neural networks
into a multilayer neural network. Output of one layer is the input to the next layer as shown
in Fig. 1c. It is the presence of the nonlinear activation function which makes a multilayer
ANN more powerful than a single layer ANN. This structure is known as a nonrecurrent or
feedforward network. If feedback connections are present, the network is called recurrent.
Non recurrent networks have no memory. Their output is solely determined by current inputs
and weights. Recurrent networks exhibit properties similar to that of short term memory in
humans (Jain et al. 1996).
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Figure lc. Basic architecture of an ANN for star  Figure 1d. Max-Min-Max Sub arrays of patterns in N
classification. dimension (Refer to Box 1).
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3. Network architecture and methodology

Before this decade most people believed that a Neural Network model is crude, but at present
the field of ANN is enjoying great popularity. We have used neural networks to classify stars -
in an H-R diagram, as there is no known mathematical models for the prediction or classification
of such a problem. To increase the capability for the network we have used multilayer
network. For better accuracy of the output we have used modified sigmoid function at the
internal representation units and the output at node j Fig. Ic is f; (x) and is given by,

| |
f (x) = (3.1)

J 1.005+e —NetX +6j) /8

n

(where NetX = El Wij Xj, Oj serves as a threshold or bias its function. It is to shift the

activation function to the left along the horizontal axis, 8 will modify the shape of the
Sigmoid function as shown in Fig. 1b).

We have trained the NN for different numerical constants (1.5, 1.45,....; 0.50) at the
denominator of equation (3.1), and achieved minimum error for 1.005. This function is highly
nonlinear, continuous and continuously differentiable. The Back Propagation Algorithm (BPA)
was originally introduced by Paul Werbgs in 1974. The BPA is an iterative gradient algorithm
designed to minimize the mean square error between the actual output of multilayer feedforward
perceptron and the desires output. BPA is a hill climbing algorithm based on the steepest (or
equivalent) descent principle. It adjusts parameter by an amount proportional to the component
of the gradient of the error in the direction of the parameter. This algorithm has also been
called “the Generalized Delta Rule (GDR)”. The neurons in layers other than the input and
output layers are called hidden units or hidden nodes, as their outputs do not directly interact
with the environment. With BPA, the weights associated with hidden layers can also be
adjusted and the multilayer ANN is thus enabled to learn.

4. Star classification

Around 1910 Ejnar Hertz Sprung in Denmark and Henry Norris Russel at Princeton University
in the United States independently plotted the graph of brightness of the stars versus temperature
of stars is called H-R diagram. The reason for the existence of the discrete sequences in H-
R diagram can be understood in terms of the Vogt-Russel theorem (Chandrashekar 1939,
1951) and its discussion illustrated here (Chandrashekar 1939, Flugge 1958, Johnson et al.
1953). In interpreting the H-R diagram it is important to remember that star formation and
evolution is an ongoing process (Chandrashekar 1951).

We have taken five classes namely Hot subdwarfs, White dwarfs, Main Sequence, Normal
Giants and Red supergiants, with fifty stars (50) from each class and a total of two hundred
fifty (250) stars for training. These five classes (dashed line regions) and accepted terminologies
in the H-R diagram are shown in Fig. 2.
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Figure 2. Neural Network prediction of the Hertz Sprung - H.N Russel (HR) diagram.

5. Computer implementation and discussion of the neural network output

In the case of supervised (training with teacher) learning, we may think of the teacher as
having knowledge of the environment that is represented by a set of input-output examples.
The environment is, however, unknown to the neural network. Suppose now that the teacher
and the neural network are both exposed to a training vector (i.e. example) drawn from the
environment. By virtue of built in knowledge, the teacher is able to provide the neural
network with a desired or target response for that training vector. If this is repeated for all
examples known to the teacher it is equivalent to training the Neural Network.

Our main objective is to make the neural network to classify a given input (Star Classes),
in the following way. Neural network can predict and classify, this classification is based on
training. Thus effective training ensures that the neural network output is accurate and
acceptable. Thus showing the classified output of a neural network which is an “apparent”
predictive process, is actually a Least Mean Square (LMS) classification process sufficiently
accurate for enduse. Practically speaking this can be ensured if only a “proper” choice of
training set is used. What constitutes such a choice? Ideally if the neural network is trained
with a training set comprising of all possible input-output relations that it will ever encounter
in future also. This in many cases is impossible, impractical and unnecessary too (for example
to recognize English words we only need twenty six characters namely from a to z). Thus
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N

rather a collection of “rich” set of inputs is more meaningful. This richness can be easily seen
to be a representation of the diverse and significant features that are to be found in the
exhaustive set. For our problem we have chosen fifty stars from each class namely, Hot
Subdwarfs, White dwarfs, Main sequence, Normal giants and Red giants, their significant
parameters associated with respective class.

We want to check now if this is a rich set? Training is done with data, the output of which
is known. This training set is to be validated to ensure that the Neural Network has been
subjected, to the entire spectrum of choice of inputs. This can be done if further inputs whose
outputs are known is given at the input to check the effectiveness by training.

Now to validate whether the training set is “rich” for this, we gave input and checked the
output from trained neural network. For the same input without output features it should give
correct classification. We achieved 100% accuracy. Thus the performance of the neural network
is highly dependent on training and obviously our training process is correct. For obtaining
predicted/classified outputs for the data (the output for which is truly unknown) we fed data
of twenty eight stars (Allen 1974) belonging to all classes. The following steps (i) to (vii)
gives the computer implementation of this process related to a neural network.

(1) The three input parameters (B-V Color index, Absolute magnitude, and Temperature)
for the five classes namely, Hot subdwarfs, White dwarfs, Main Sequence, Normal
Giants and Red giants, consisting of fifty stars in each class (Sample data’s are shown
in Appendix B) are taken.

(ii)) Each of these values are normalized between 0 and 1 and is shown in appendix C.

(iii) The above values are encoded as a max-min-max pattern with output features as shown
in Box 1.

(iv) This is used to train the Neural Network for 2000 iterations (The C language
implementation on CYBER 180 is shown in Appendix A).

(v) The output after 2000 iterations (convergence limit that we have chosen) is compared
with known data. '

(vi) For validating the training we fed the same input data’s as in step (iii) without output
features and we achieved 100% accuracy in classification.

(vii) This trained and validated network is now used to classify data the output of which is
unknown. This is done by feeding the three parameters (as in step (i)) at the input of
the Neural Network and the output from this Neural Network is the classified answer.
In our case we choose data totalling twenty eight stars (Allen C W 1974) belonging to
all classes as given in Appendix D and the results (classified output) are shown in
table 1.

(viii) The process is repeated all over by first training the neural network for 5000, 10,000
iterations and we studied the normalised system error as a function number of hidden
layers (1 to 5) and number of units in a hidden layer (1 to 10).
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Table 1. Evaluation score table of the star classification.

673

Star Actual Class Neural Network Prediction Evaluation Score
Algol P Per Hot Subdwarf Hot Subdwarf T
Merak p UMa Hot Subdwarf Hot Subdwarf T
Sirius A Hot Subdwarf Hot Subdwarf T
V. Maanen; Wolf 28 White Dwarf White Dwarf T
Eri; 26965B White Dwarf White Dwarf T
Ac* 58 25002B White Dwarf White Dwarf T
L145-141 White Dwarf White Dwarf T
Sirius B White Dwarf White Dwarf T
Alpheratz o And Main Sequence Hot Subdwarf T
Alphecca a CrB Main Sequence Hot Subdwarf F
Spica Main Sequence Main Sequnce T
Gienah y Crv Main Sequence Hot Subdwarf F
Altair Main Sequence Main Sequence T
Sun Main Sequence Main Sequence T
61 Cygni Main Sequence Main Sequence T
Kruger 60 A Main Sequence Main Sequence T
Lal 21258 B Main Sequence Main Sequence T
Procyon; 61421 A Normal Giant Main Sequence F
Arcturus o Boo Normal Giant Normal Giant T
Kochab B UMi Normal Giant Normal Giant T
Arcturus Normal Giant Normal Giant T
Antares o Sco Red Giant Red Giant T
Shaula 6 Sco Red Giant Red Giant T
Deneb a Cyg Red Giant Red Giant T
Enif € Peg Red Giant Red Giant T
Betelgeuse Red Giant Red Giant T
Polaris Red Giant Red Giant - T
Canopus Red Giant Red Giant T
Total number of stars taken for output generation : 26

Number of misclassification : 03

Accuracy : 86.60%

5.1 Remarks

In the manner described above, the Neural Network, classified the stars into its proper class
without any error for single hidden layer and in that five nodes. This trained network was
further subjected to data from twenty eight stars belonging to all classes (Step 5-vi) at its input
and output correspondingly predicted / classified. Only three stars are misclassified namely
Gienah y Cr V, Alphecca oo Crf and Procyon : 61421 A. This yields classification which is
86.6% accurate. ‘
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The above three misclassified stars are in the vicinity region of Normal giants, Main
Sequence and Hot subdwarfs. We may say that the error is due to the Euclidean distance. For
the three misclassified stars, this distance is small between classes as compared to its nearest
neighbour star of the same class. This result is comparable to or even better than similar
classification techniques like Nearest neighbourhood, k-nearest neighbour, clustering techniques,
as Neural Network also can be seen as an improved version of Nearest Neighbourhood
classifier technique. This method has been successfully employed by many authors to classify
UV spectra (Gulati el al., 1994), some schemes for general classification by Automated
approach using ANN (Gulati et al., 1994), star classification using spectral and luminosity
classification of stars (Klush 1994). The results in these are very encouraging and in particular
in the classification of UV spectra where the classification accuracy of 94% has been achieved.

6. Interval estimation

The learning process experienced by a neural network is stochastic in nature. Here we are
attempting to predict (actually classify) some behaviour or a response or a pattern associated
with physical data (like H-R diagram) on different confidence intervals. The term “confidence
interval” has an intuitive meaning as well as a technical meaning. It is natural to expect it
to mean “an interval in which one may be confident that a parameter lies”. With out loss of
generality we have assumed our target problem is exhibiting normal or Gaussian distribution,
with mean P and standard deviation 6. The Fig. 3a shows the relation between confidence
coefficient and confidence interval width.

100 9
9950 Yo

95 %
90 %

80 %

70% .-

60 %

O,
CONFIDENCE INTERVAL 50 %
WIDTH CONFIDENCE
'COEFFICIENT

Figure 3a. Relation between confidence coefficient & confidence interval widtfx
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Many confidence intervals can be discussed in terms of one-dimensional statistic T(x) a
continuous random variable, given probabilities o, and o, it is possible to find T (6) and T,
(8) such that '

PITX) < T, 0)[6] = o | 6.
& P[TX) > T, (8)|0,] = 6.2)

Confidence limits for O based statistic T is shown in Fig. 3b. For every particular value
of @ the probability that T lies between T (8) — T,(8) is 1-o,,—ct,. The basic idea of confidence
intervals is to express confidence 1-0—c, that the point (8,T) lies in the confidence belt after
T has been observed.

Figure 3b. Confidence limits for q based on the statistic T.

6.1 Computer implementation of confidence interval concept

(6-i) The three input parameters (B-V Color index, Absolute magnitude, and Temperature)
for the five classes namely, Hot subdwarfs, White dwarfs, Main Sequence, Normal
Giants and Red giants, consisting of fifty stars in each class (Sample data’s are shown
in Appendix B) are taken. Calculate mean X and standard deviation ¢ for each class,
normalize these values between O and 1, and then encode between X + 6/3 as in Box
1.

(6-ii) Repeat the steps from (iv) to (viii) as discussed in section 5.
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(6-iii) The steps from (6-i) to (6-ii) is repeated at different confidence intervals viz., X + 6/2,
X+ 0, X + 20 and X + 30. Its results are discussed in section 7.

7. Dependence of the Neural Network prediction on an confidence interval,
number of iterations and hidden layers

(i) At Xz 0/2 and X = 30 confidence interval limits, the normalized system error (NSE) is
minimum as shown in Fig. 4a, and the best fit line is Y = — 0.0084X+0.040.

N

LAY
»
)

NORMALIZED SYSTEM ERROR

Xt o3 X % a2 Xtao X 20 X t3c
CONFIDENCE INTERVALS

Figure 4a. Normalized System Error versus confidence intervals.

(i1) In all confidence intervals ( X = 0/3 to X + 30) the NSE decreases till 10000 iterations
and is minimum for X + ¢/2 limit values and is shown in Fig. 4b.
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3
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o1
%%

Toon T
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Figure 4b. Normalized System Error versus number of iterations.
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(iii) As the number of units in a hidden layer is increased from 1 to 10 the NSE decreases
and the best fit line is given by Y = —0.00091X+0.0689 and is shown in Fig. 4c.

¥ Y =-0.00091X+0.0639

- NORMALIZED SYSTEM ERROR

o.00% 4~ + +
1 2 3 4 5 6 7 8 9 10
NUMBER OF UNITS IN A HHIDDEN LAYER

Figure 4c. Normalized System Error versus number of units in a hidden layer.

(iv) As we increase the number of hidden layers the NSE increases, its best fit line is given
by Y=0.073X+0.07 and is shown in Fig. 4d.

A~

o-0% -+ +
. 1 2 L 4
! NUMBER OF HIDDEN LAYERS

Figure 4d. Normalized System Error versus number of hidden layers.
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8. Remarks

There is no exact mathematical proof / law for how many number of hidden layers and nodes
in that layer to use (Timothy Masters, 1993). Using too few will starve the network and too
many will increase the training time and may cause overfitting. Some follow geometric
pyramid rule in which the number of neurons decrease from input to output in a pyramid like
fashion. For example refer to Fig. 1c let m,h,n represent the number of input, hidden, and
output nodes respectively, then number of hidden nodes in a layer j.is h = (mn)'?

(if m=12 units, n=3 units then h=6 units). If there are two hidden layers say h, and h,, then
define r = (n/m)"?, h=mr> and h,=mr.

We studied the normalised system error as a function of number of hidden layers (1 to 5)
and number of units in a hidden layer (1 to 10) and we achieved best performance when
number of hidden layer is one and in that layer three nodes are taken. Further we have carried
out similar classification and prediction of elements in a periodic table and crystal class and
we observed that one hidden layer and three nodes in that layer is sufficient upto eight
classification problem. For sixteen class problem we found the normalized system error to be
higher.

9. Conclusion

The max-min-max subarray input features are used with Generalized Delta Rule with
encouraging results. This is an attempt to show the advancement and capability of a neural
networks. Further an important problem like star classification has been shown to be amenable
to neural network based classification techniques. It would be interesting to extend this
mapping to other aspects of Astrophysics classification problem like Galaxies and other
Cosmic structure, classification perhaps using other types of neural networks. The dependency
of input parameters on a confidence intervals, number of iterations and number of hidden
layers are also studied.
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Appendix A

Here we suggest a C language implementation for the algorithm.

1. Define constants a used throughout the function

2. (a) Generate random numbers (Computer independent)
(b) Initialize weights with random numbers beweeen 0.5 and +0.5

3. Learning()
{
(a) Read user input data input file during the file iteration session
(b) Arrange all the input values in descending order as stated in Box 1 from step 1 to
(c) Specify architecture of net and values of learning parameters
(d) Allocate dynamic strorage for the net.
(e) Read file containing weights and thresholds.
(f) Create file for net architecture and learning parameters.
(g) Create file for saving weights and thresholds learned from training.

}
4. Bottom up calculation( )
{
(a) Check several condition to see whether learning should terminate.
(b) Check System error
}

5. Output generation( )

{
Create input data for output generation

}

6. Update weights () /* Only if computer hangs */
{
If the number of iterations are very large then store the weights in a separate file after specified steps. (say 200, 400,
600,...)

}
7. Main ()
{
do
{
Scanf (“%f” & select);
Switch(Select[o])
Case ‘0’ : case ‘O’
Output generation( );
break;
Case ‘1’ : Case ‘L;
Leamning();
break;
}
while
{
(cont[o]=="y’ Il (cont[O]=="Y"));
}
}
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Box 1. Max-Min-Max Generalised Delta Rule (GDR)

(1) Arrange all the patterns in an array
X, [Wl=[B]

where W is the weight matrix, X is the input patterns, B is the number of classes

x' x'i2 X! . . . xhiN [

xla X'22 X'2 . . . x'an

x's1 x's2 X33 . . . XN

x'e-om xXlg-mz Xlg-ma . . . xi-nyN

xhi1 X' x's . . . xhiN 15T Class

Xlaem  X'aez  Xlaens . . . XlasnN

xla-m  xla-nz xlaoms - . . x'a-nN

x'a1 x'a2 x!la3 x'aN
———————————————————————— — L - = —

X X212 X% XN

X221 X322 X223 x%N

X231 X% x%33 x:N

X6 X%z X3Gos . . . X%G-1N

% x%2 %3 . . . X3N 24 Class

X%t X3gen2 X%Gens . . . X2G+1)N

Xeay  x¥e-2 Xie-13 X>@-1N

x%B1 x%p2 X%B3 x%eN

Wi =
X"z1 X' X'z3 . . . X"

Note : T - - = -
(@) (Rx,—Rx, )>(Rx,~Rx,).. .>(Rx(i_nN—RxlN)=(Rx“ﬂ)N—Rxml)N)<(Rxﬁ+3)—Rx(M))<. ..<(Rx,,—Rx
where RxIN means Fow x . Similarly we can do for second, third, ... n" classes.
bB)A+B+...+Z=M
(2) Calculate mean ( x) and standard deviation (o) for each class input pattern paratmers.

(3) Encode the values between X+ 36 and X~ 3¢ limits.

(A—l)N)

(4) Keep the highest magnitude input feature column into the left most.
(5) Present an input and specify the desired output.
(6) If there are four classes declare output classes as 00, 01, 10 & 11 Don’t tollow Gray order.
(7) Initialize all the weights to small random values (-0.5 to 0.5)
(8) Compute the actual output of the network Y
1
1.005+e ~Net X +8) /8
Where Net X = 3, W, iX, 9j = threshold or bias, 8_ : will modify the shape of the Sigmoid function. The non linear
function used is the Sigmoid.

(9) Calculate the error between the actual output Yj & the desired output dj
The error term is
8, =0, (1-0)) (d, -O,) where k is output layer
8, = 0(1-0) X3 W, where j is the hidden layer above the node j.
(10) Adjust the weights by
AW+ =a AW, (@) +n@EY)
where 1 is the learning parameter (0.70), « : is the momentum coefficient (default = 0.90)

j

(11) Repeat steps 7 through 10 for each training pair until the weights and error settle down.
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Appendix: B: Data for Classification

White Dwarfs Hot Subdwarfs Main sequence Normal giants Red giants

B-V Abs. Temp. B-V Abs. Temp. B-V Abs. Temp. B-V Abs. Temp. B-V Abs. Temp.
color Magn- K color Magn- K color Magn- K  color Magn- K color Magn- K

index itude index itude index itude index itude index itude

-

-0.20 10.00 11000 -0.30 6.30 13000 -0.40 -5.80 23000 2.00 -0.40 1000 2.00-6.00 1500
-0.20 11.00 12000 -0.435.70 27000 -0.37 -4.90 19000 2.00 -1.00 1500 1.90-6.70 1600
-0.35 10.40 12000 -0.405.00 23000 -0.34 -4.00 16000 2.00 -1.50 1500 1.90-6.00 1600
-0.25 11.20 11500 -0.404.40 23000 -0.32 -3.50 13500 1.95 -0.20 1550 1.80-6.00 1750
<025 10.50 11500 -0.404.00 23000 -0.29 -2.90 12800 1.90 -0.10 1600 1.80-6.50 1750
-0.10 11.40 10000 --0.433.50 27000 -0.27 -2.50 12000 1.90 -0.60 1600 1.80-7.00 1750
-0.10 10.80 10000 -0.443.00 28000 -0.24 -2.00 11500 1.90 -1.20 1600 1.70-6.00 2000
-0.10 1020 10000 -0.432.50 27000 -0.20 -1.50 11000 1.85 -0.50 1700 1.90-6.50 1600
-0.05 11.00 9000 -0.402.00 23000 -0.15 -0.90 10500 1.30 -0.75 1750 1.70 -7.00 2000
0.00 1200 8000 -0.42 1.50 25000 -0.11 -0.50 10100 1.80 -0.50 1750 1.70 -7.50 2000
0.00 11.00 8000 -0.42 1.00 25000 -0.08 0.00 9000 1.80 -1.00 1750 1.60 -6.20 2200
0.00 10.50 8000 -0.40 0.00 23000 -0.04 0.50 8800 1.70 0.00 2000 1.60-6.50 2200

0.05 12.20 8300 -0.35 -0.50 140000 0.00 1.00 8500 1.70 -0.50 2000 1.60-7.00 2200
0.05 10.60 8300 -0.30 -0.8010000 0.10 1.50 8400 1.70 1.20 2000 1.60-7.80 2200

0.10 12.40 8000 -0.35 -0.4014000 0.10 2.00 8000 1.70 -0.20 2000 1.55-7.00 2500
0.10 11.70 8000 -0.20 0.3011000 0.15 2.40 7800 1.70 -0.60 2000 1.50 -6.20 2800

0.10 11.00 8000 -0.25 1.00 13500 020 2.80 7400 1.65 0.20 2100 1.50-6.90 2800

0.15 12.00 7500 -0.10-1.50 10000 025 3.10 7000 1.60 0.00 2100 1.50-7.90 2800

0.20 13.00 7400 -0.05 2.50 9000 030 240 6800 1.60 0.30 2100 1.45-7.00 2900

020 12.20 7400 -0.30 2.10 13000 0.35 3.80 6500 1.60 -0.50 2100 1.45-7.00 2900

020 1150 7400 -0.15 4.00 10500 0.40 3.90 6300 1.55 0.30°2500 1.45-7.50 2900

0.25 12.50 7000 -0.18 4.50 10800 0.45 420 6000 1.55 0.00 2500 1.40-6.20 3100

025 11.80 7000 -0.20 5.20 11000 0.50 4.40 5800 1.50 0.40 2300 1.40-6.50 3100

0.30 13.50 6800 -0.25 5.80 12500 5.50 4.60 5600 1.50 0.00 2800 1.40-7.00 3100

0.30 12.50 6800 -0.30 540 13000 0.60 5.00 5500 1.50 -0.30 2800 1.40-7.50 3100

0.30 12.00 6800 -0.25 5.00 12000 0.65 0.52 5300 1.35 0.50 3300 1.40-7.80 3100

0.35 13.00 6500 -0.25 5.00 12000 0.70 5.50 5000 1.30 0.00 3600 1.35-7.00 3300

0.40 14.00 6300 -0.35 4.50 14000 0.75 5.80 4900 130 0.50 3600 1.30-6.40 3600

0.40 13.00 6300 -0.25 4.50 12500 0.80 6.00 4800 1.30 0.90 3600 1.30-7.00 3600

040 12.50 6300 -0.30 4.00 13000 0.86 620 4600 125 0.50 3700 1.30-7.50 3600

0.45 13.50 6000 -0.20 4.00 10000 0.90 6.60 4500 1.20 0.50 3800 1.30-7.90 3600

0.50 1430 5800 -0.35 3.60 14000 100 7.00 4200 1.15 1.00 3900 1.35-7.00 3300

0.50 13.50 5800 -0.25 3.50 12500 1.09 720 4000 1.00 1.11 4200 1.30-6.40 3600

0.50 13.00 5800 -0.15 3.40 10500 1.10 740 4000 1.10 1.16 4200 1.30-7.00 3600

0.60 14.80 5500 -0.35 3.00 14000 120 7.80 3800 1.15 1.00 3900 1.30-7.50 3600

0.60 14.00 5500 -0.30 3.00 13000 1.30 840 3600 1.15 1.00 3900 1.30-8.00 3600

0.60 13.40 5500 -0.20 3.00 11000 1.40 890 3100 1.15 1.50 3900 1.25-7.00 3700

0.70 1520 5100 -0.35 2.5014000 145 920 2900 1.12 2.30 4000 1.20-6.70 3800

0.70 14.50 5100 -0.25 2.5012500 1.51 10.00 2800 1.00 0.60 4200 1.30-6.40 3600

0.70 14.00 5100 -0.15 2.5010500 1.55 10.50 2800 1.00 1.00 4200 1.30-7.00 3600

0.80 15.80 4800 -0.30 2.0013000 1.60 11.20 2200 1.00 1.50 4200 1.30-7.50 3600

0.80 15.00 4800 -0.20 20011000 1.66 12.00 2100 .1.00 2.00 4200 1.15-6.50 3900

0.80 -15.00 4800 -0.10 2.00 10000 1.69 12.40 2000 0.96 1.86 4300 1.10-6.20 4000

0.830° 14.40 4800 -0.15 '1.5010500 1.74 12.80 1600 0.93 1.20 4350 1.10-6.90 4000

090 16.00 4500 -0.25 1.50 12000 1.67 13.40 2200 1.35 0.55 3350 1.10-7.40 4000

0.90 1550 4500 -0.35 1.5014000 1.80 13.80 1750 1.70 0.10 2000 1.10-7.90 4000

0.90 15.00 4500 -020 1.0011000 1.85 14.50 1700 2.05 -1.00 1500 1.05-6.40 4100

0.95 1550 4400 -025 0.50 12500 . 1.94 15.60 1500 1.42 0.70 3000 1.00-6.90 4200

1.00 16.00 4200 -0.30 1.0013000 1.90 15.00 1600 1.76 0.20 2300 1.05+7.70 4000

1.00 15.40 4200 1.94 15.60 1550 1.42 0.70 3100 1.00-6.90 4200

-0.25 0.50 12500
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Appendix C: Input values for the Neural Network
White Dwarfs  Hot Subdwarfs Main sequence  Normal Giants  Red Giants

BV Abs. Temp.Output B-V . Abs. Temp. Output B-V Abs. Temp Outpst B-V Abs Temp Outpst B-V  Abs. Temp. Output
Colour Magn- K colour Magn- K cdlour Magn- K colauthgn—K .eolonr.thn-K

0.950 0.520 0.515 0910 0522 0.730 110

0610 000 0643 0630

0.9600.600 0730 110

0965 0604 0.730 110
0970 0.608 0.730 110
0975 0611 0730 110
0.950 0.604 0.730 110
0.985 0618 0.730 110
09900619 0.730 110
0.885 0.622 0.730 110
0.900 0.622 0.730 110

0.900 0.518 0.528

0.900 0511 0.528
0.900 0506 0.528
0.900 0.501 0528
0.755 0.510 0.529
0.895 0.505 0.529
0.895 0.518 0.531
0.890 0.515 0.531
0.890 0.510 0.531

0.760 0.704 0.580 000 0.715 0.576 0.640 0.920 0.592 0.517

0.915 0.578 0517
0910 0574 0517
0910 0582 051S
0910 0.580 0.516
0.905 0.583 0.520
0.995 0.575 0.520
0.900 0.583 0.520
0.900 0.580 0.521

0.760 0.697 0.580 000 0720 0577 0610
0.760 0.690 0.580 000 0.725 0590 0.600
0.765 0.700 0.575 000 0.740 0565 0.5%0
0.770 0.710 0.574 000 0.745 0.605 0.630
0.770 0.720 0.574 000 0.720 0.601 0.605
0.770 0.725 0.574 000 0.735 0.620 0.608
0.775 0,705 0.570 000 0.770 0.632 0610
0.775 0.698 0570 000 0.725 0634 0.625

1 .
0.730 0.680 0.600 000 0.707 0637 0.770 1 0950 0.570 0.515 0.940 0.513 0.515 0.983 0.531 0.730 110
0.715 0.685 0620 000 0.710 0.630 0.730 1 0950 0.576 0.515 0.930 0.513 0.517 0.916 0.540 0.730 110
0.725 0.692 0615 000 0.710 0.624 0.730 1 0945 0.570 0515 0.930 0.510 0.517 0.918 0.545 0.730 110
0.725 0.685 0615 000 0.710 0620 0.730 1 0540 0.565 0.516 0.930 0.520 0.520 0921 0.561 0.730 110
0.740 0.594 0600 000 0707 0615 0.770 1 0940 0.578 0515 0.940 0515 0515 0923 0.562 0.730 110
0.740 0.682 0.600 000 0.706 0.610 0.780 1 0935 0.579 0.515 0.920 0.510 0.520 0.926 0.560 0.730 110
0.745 0.690 0690 000 0.707 0.605 0.770 1 0930 0574 0.515 0.920 0.505 0.520 0.930 0.565 0.730 110
0.750 0.700 0.580 000 0710 0620 0.730 1 0930 0.558 0.515 0.910 0.518 0.520 0.935 0.571 0.730 110
0.750 0.690 0.580 000 0.708 0.595 0.750 1 0930 0.575 0.515 0.920 0.515 0.522 0.939 0.5750.730 110
0.750 0.685 0580 000 0708 0590 0.750 1 0920 0.580 0515 0.910 0.510 0.522 0.942 0.580 0.730 110
0.755 0.702 0.583 000 0.710 0.580 0.730 1 0920 0575 0.516 0.910 0.502 0.522 0.946 0.585 0.730 110
0.755 0.695 0.583 000 0.715 0.585 0.640 1 0920 0.570 0.516 0.905 0.510 0.525 0.950 0.590 0.730 110
0.755 0.686 0583 000 0.720 0572 0.600 1 0920 0575 0.517 0.905 0.510 0.525 0.955 0.595 0.730 110

1

1

1

1

0.780 0.7150.568 000 0.720 0.630 0.630 0.900 0.580 0.521 0.890 0.505 0.531 0.805 0.626 0.730 110
0.780 0.705 0.568 . 000 0.725 0.625 0.620 0.990 0.580 0.521 0.891 0.505 0.531 0.810 0.630 0.730 110
0.760 0.700 0.568 000 0.725 0.625 0.625 0.990 0.577 0.521 0.891 0.510 0.533 0.815 0.585 0.730 110
0.785 0.710 0.565 000 0.715 0.620 0.640 0.890 0.580 0.525 0.885 0.516 0.536 0.812 0635 0.730 110
0.790 0.720 0.563 000 0.725 0.620 0625 0.890 0.582 0.525 0.880 0.500 0.536 0.825 0.638 0.730 110

0.880 0.501 0.536
0.880 0.509 0.536
0.880 0.516 0.537
0.880 0.510 0.536
0.880 0.505 0.536
0.881 0.502 0.536
0.880 0.501 0.536
0.880 0.517 0.537
0.875 0.510 0.538
0.870 0.505 0.538
0.870 0.501 0.538
0.870 0.515 0.538
0.870 0.505 0.539
0.865 0.518 0.540
0.865 0.511 0.540

0.830 0.640 0.730 110
0.838 0.642 0.730 110
0.840 0.646 0.730 110
0.850 0650 0.730 110
0.859 0652 0.730 110
0.8360 0.654 0.730 110
0.870 0658 0.730 110
0.880 0.668 0.730 110
0.890 0669 0.730 110
0.895 0.672 0.730 110
0.901 0680 0.730 110
0.905 0.685 0.730 110
0910 0692 0.730 110
0916 0.700 0.730 110
0.919 0.704 0.730 110

0.790 0.710 0.563 000 0.720 0.616 0.630
0.750 0.705 0.563 000 0.730 0615 0610
0.795 0.715 0560 000 0.715 0.614 0.640
0.800 0.723 0.558 000 0.725 0.610 0.625
0.8300 0.723 0.558 000 0.735 0.610 0.605
0.800 0.715 0558 000 0.715 0610 0.640
0.800 0.710 0558 000 0.720 0.610 0.630
0.810 0.728 0558 000 0.730 0.610 0.610
0.810 0.720 0.555 000 O0.715 0.605 0.640
0.810 0.714 0555 000 0.725 0.605 0.625
0.820 0.732 0.554 000 0.735 0605 0.605
0.720 0.725 0551 000 0.720 0.605 0.630
0.820 0.720 0.551 000 0.730 0.600 0.610
0.830 0.738 0.548 000 0.740 0.600 0.600
0.830 0.730 0.548 000 0.735 0595 0.605

0.885 0.578 0.528
0.880 0.578 0.528
0.880 0.585 0.528
0.880 0.580 0.531
0.875 0.585 0.531
0.950 0.589 0.531
0.940 0.585 0.531
0.930 0.520 0.533
0.930 0.513 0.536
0.930 0.513 0.536
0.940 0.510 0.553
0.920 0.520 0.525
0.920 0.515 0.520
0.910 0.515 0.534
0.920 0501 0.535

OO OO0 OO0 00RO 00O00RC0000C0O00O0COOCOgre coooo000COOCODd
CC R R e e R R N L e e N Y T Y Ty - N )
b b bt b bt b bt bt o P b Dt ot o bk bt ot kbt Dot bt D ek bk Db

OO0 0000000000000 00000OC000000CO0C R CO0RDOR00OD000D
bt ot bt Pt et b b bttt b et (et b bt bt b et b et et B b Gt b Db b bt bt R s et g et e e b b s e bt e b bt
N o g e gy oy S U
OO OO0 0000000 dOO0000O00CCC00000CO0OPD CODODODSOOOO00S
bt e b et e b e b g b b b b b G ed B B R b RS L el bt et ek b puw P e ek bk pat b e Gt e bt et bk bk b bt et P
C OO0 000000000 O 0RO OO0 C00 000000000 COO0DORCOO0OOSO

0.830 0.730 0.548 000 0.725 0595 0.625 0.910 0.523 0.551 0.860 0.506 0.541 0.994 0.708 0.730 110
0.830 0.724 0.548- 000 0.740 0595 0.600 0910 0.512 0.545 0.860 0.501 0.541 0917 0.714 0.730 110
0.880 0.900 0.545 000 0.730 0.590 0.610 0.905 0.534 0.546 0.860 0.502 0.542 0.930 0.718 0.730 110
0.840 0.735 0.545 000 0.720 0.590 0.630 0.905 0.546 0.549 0.860 0.503 0.730 0.935 0.725 0.730 110
0.840 0.735 0.545 000 0.720 0.590 0.630 0.905 0.546 0.549 0.860 0.503 0.730 0.935 0.725 0.730 110
0.850 0.740 0542 000 0.725 0585 0.620 0910 0516 0.537 0.855 0.520 0.690 0.940 0.730 0.730 110
0850 0.734 0542 000 0.775 0.585 0.640 0.903 0.506 0.536 0.855 0.520 0.660 0.944 0.736 0.730 110

Note: (1) B-V : B-V Colour index
colour
index
(2) Abs. : Absolwic meguitade
Magn-
itade

(3) Temp. : Temperature in K
K
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Appendix D:
Data values of the twenty eight stars belonging to all classes for Neural network
validation.
B-V Colour Absolute Absolute STAR ACTUAL CLASS
Index Magnitude Temperature

M, K
-1.02 0.40 10000 Algol B Per Hot Subdwarfs
0.00 1.40 9500 Merak p UMa Hot Subdwarfs
-1.85 0.65 10500 Sirius A Hot Subdwarfs
0.52 14.00 6100 V. Maanen; Woif28 White Dwarf
-0.85 10.80 10000 Eri; 26965B White Dwarf
0.44 11.20 6800 Ac* 58 25002B White Dwarf
1.80 12.35 7800 L145-141 ‘White Dwarf
0.10 11.10 8500 Sirius B White Dwarf
-0.90 -1.80 10500 Alpheratza And Main Sequence
0.10 0.10 8500 Alphecca o Cr B Main Sequence
-0.50 -3.80 32000 Spica Main Sequence
-0.25 -1.80 11000 Gienah y Crv Main Sequence
0.24 220 7000 Alair - Main Sequence
0.52 3.90 5900 Sun Main Sequence
1.14 6.40 4000 61 Cygni Main Sequence
1.42 10.90 2950 " Kruger 60 A Main Sequence
1.63 12.60 2000 Lal 2125B Main Sequence
5.80 2.00 5900 Procyon; 61421 A Normal Giant
1.56 -0..80 2600 Arcturus a Boo Normal Giant
1.16 -0.10 3900 Kochab B UMi Normal Giant
0.90 -1.00 4600 Arcturus Normal Giant
0.80 -0.80 4800 Arcturus Red Giant
0.43 -5.90 6300 Shaula 6 Sco Red Giant
0.12 -7.90 7800 Deneb a Cyg Red Giant
1.52 -5.00 2700 Enif € Peg Red Giant
1.40 -5.20 2950 Betelgeuse Red Giant
0.43 -2.60 6300 Polaris Red Giant
028 -5.90 7200 Canopus Red Giant
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