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The electric quadrupole moment for the 4d D / state of 8Sr*; one of the most important candidates
for an optical clock, has been calculated using the relativistic coupled-cluster theory. This is the first
application of this theory to determine atomic electric quadrupole moments. The result of the calculation
is presented and the important many-body contributions are highlighted. The calculated electric quadru-
pole moment is (2.94 + 0.07)ea%, where a is the Bohr radius and e the electronic charge while the
measured value is (2.6 = 0.3)ea3. This is so far the most accurate determination of the electric quadrupole
moment for the above mentioned state. We have also calculated the electric quadrupole moments for the
metastable 4d 2D3/2 state of 38Sr™ and for the 3d 2D3/2y5/2 and 5d 2D3/2,5/2 states of “*Ca* and 13¥Ba™,

respectively.
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The current frequency standard is based on the ground
state hyperfine transition in '3*Cs which is in the micro-
wave regime and has an uncertainty of one part in 10" [1].
However, demands from several areas of science and tech-
nology have led to a worldwide search [2] for even more
accurate clocks in the optical regime. Some of the promi-
nent candidates that belong to this category are '*Hg™ [3],
88Qr™ [4,5], '71'YbT [6], ¥*Ca™ [7], 138Ba™, etc. A series of
measurements of the electric quadrupole moments have
been performed on the metastable D states of most of these
ions fairly recently [8—11] in connection with the inves-
tigations for accurate optical frequency standards. These
measurements provide an excellent opportunity for new
tests of relativistic atomic many-body theories. The hyper-
fine structure constants and the electric quadrupole mo-
ments are sensitive to the regions near and far from the
nucleus, respectively, but they both are influenced by elec-
tron correlation. Therefore, the knowledge that one would
acquire from calculations of atomic electric quadrupole
moments is complementary to that acquired from hyperfine
interactions. However, calculations of atomic electric
quadrupole moments have received relatively little atten-
tion so far. The most rigorous calculation to date has been
performed by Itano [12] by using the relativistic configu-
ration interaction (RCI) method with a multiconfiguration
Dirac-Fock—extended optimized level (MCDF-EQOL) or-
bital basis. In this Letter, we use the relativistic coupled-
cluster (RCC) theory to calculate the electric quadrupole
moments of $8Srt, 3Ca™, and '3¥Ba™. This is the first
application of this theory to calculate atomic electric quad-
rupole moments. We place special emphasis on our Sr*
calculation as this ion is one of the leading candidates in
the search for an optical frequency standard [3—7].

The RCC theory is equivalent to all-order relativistic
many-body perturbation theory. The details of the applica-
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tion of this theory have been discussed earlier in the
literature [13—15]. Here we shall only give a brief outline.
Treating the N-electron closed shell Dirac-Fock state |P)
as the reference state, the exact wave function in RCC
theory can be expressed as

|W) = exp(T)|D), (D

where T is the core electron excitation operator. In the
coupled-cluster singles and doubles (CCSD) approxima-
tion, T can be expressed as the sum of one- and two-body
excitation operators, i.e., T = T| + T,, and can be written
in the second quantized form as

1
T=T +T,= Yaba,h + D3 apalaya, i, (2)
ap abpq

where #; and ¢} are the amplitudes of the singles and
double excitation operators, respectively. For a single va-
lence system we define the reference state as,

|DY*1Y = af | D) 3)

with the particle creation operator a}. The wave function
corresponding to this state can be written as

WY 1) = exp(DI(1 + S,)HPY). 4)

Here,

1
S, =81, + 85 = Za;avsi’ + EZa,ta;abavsﬁz 5)
vEp bpq

corresponds to the excitation operator in the valence sector
and v stands for valence orbital; s, and s?] are the ampli-
tudes of single and doubles excitations, respectively.
Details concerning the evaluation of the closed and open
shell amplitudes have been discussed earlier [16]. Triple
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excitations are included in our open shell RCC amplitude
calculations in an approximate way [CCSD(T)] [17,18].
The expectation value of any operator O with respect to
the state |[WV*!) is given by
<‘I’N+1|O|‘I’N+1>
(WNFT|PNTy
B (ONHI{1 + STIO{1 + SHPN )
(PVFI{L + Sthexp(TT) exp(T){1 + S}HDN 1Y
(6)

(0)=

where O = exp(T1)0 exp(T).

The first few terms in the above expectation value can be
identified as O, 0S,, 0S,, SIOSI, etc.; are referred to as
dressed Dirac-Fock (DDF), dressed pair correlation (DPC)
[Fig. 1(a)] and dressed core polarization (DCP) [Fig. 1(b)],
respectively. We use the term “‘dressed” because the op-
erator O includes the effects of the core excitation operator
T. Among the above, we can identify few other terms
which play crucial role in determining the correlation
effects. One of those terms is SIr 0S8, + c.c. [Fig. 1(c)]
which is called as dressed higher order pair correlation
(DHOPC) since it directly involves the correlation between
a pair of electrons. In Table II individual contributions
from these diagrams are listed.

The orbitals used in the present work are expanded in
terms of a finite basis set comprising of Gaussian type
orbitals using a two parameter Fermi nuclear distribution
[19]. The interaction of the atomic quadrupole moment
with the external electric-field gradient is analogous to the
interaction of a nuclear quadrupole moment with the elec-
tric fields generated by the atomic electrons inside the
nucleus. In the presence of the electric field, this gives
rise to an energy shift by coupling with the gradient of the
electric field. Thus the treatment of the electric quadrupole
moment is analogous to the nuclear counterpart. The quad-
rupole moment ® of an atomic state |W(y, J, M)) is de-
fined as the diagonal matrix element of the quadrupole
operator with the maximum value M;, given by

0 = (V(yJ N[O |¥(yJ])). )

Here, v is an additional quantum number which distin-
guishes the initial and final states. The electric quadrupole
operator in terms of the electronic coordinates is given by

v _ v T
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q
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FIG. 1. The diagrams (a) and (c) are subsets of DPC diagrams.
Diagram (b) is one of the direct DCP diagram.

e
®zz = _52(3112‘ - r%)’
J

where the sum is over all the electrons and z is the coor-
dinate of the jth electron. To calculate the quantity we
express the quadrupole operator in its single particle form
as

0 = > ai ®)

and the single particle reduced matrix element is expressed
as [20]

Golla@li = GAIC 1 [ dr (P Py, + 00 0.
&)

In Eq. (9), the subscripts f and i correspond to the final and
initial states, respectively; P and Q are the radial part of the
large and small components of the single particle Dirac-
Fock wave functions, respectively, j; is the total angular
momentum for the ith electron. The angular factor is given
in by

<jf||C,(,]§)||ji> = (_])(jfﬂ/z)\/(zjf n 1)\/(2ji D

B2 ,
X(_1/2 0 1/2)77(1,k,l), (10)

where

1 ifl+k+1 even

N =
(L k1) {0 otherwise;

[ and k being the orbital angular momentum and the rank,
respectively.

Finally using the Wigner-Eckart theorem we define the
electric quadrupole moment in terms of the reduced matrix
elements as

@) AN PR T AN .
GOl = (KGO
(1)

We focus on the clock transition 5s >S, ,—4d *D , in
8Sr* shown in Fig. 2. The electric quadrupole shift in the
energy levels arises due to the interaction of atomic electric
quadrupole moment (EQM) with the external electric-field
gradient. The electric quadrupole moment in the state
4d 2D5 /o Was measured experimentally by Barwood et al.
at the National Physical Laboratory, UK [8]. Since the
ground state 5s 2§ 12 does not posses any electric quadru-
pole moment, the contribution to the quadrupole shift for
the clock frequency comes only from the 4d 2D /, State.

In Table I we have presented the details of the basis
functions used in this calculation and in Table II contri-
butions from different many-body terms. The value of
® in the 4d 2D5 /o state measured experimentally is
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FIG. 2. Diagram indicating the clock transition in %Sr*.
Excitation energies of the 4d °D;,, and 4d Dy, levels are

given in cm ™!

(2.6 = O.3)ea(2) [8], where e is the electronic charge and
is the Bohr radius. Our calculated value for the 4d 2D5 /2

stretched state is (2.94 =+ 0.07)ea3. To test the convergence
of our calculation we have performed more than five
calculations with different basis sets of increasing dimen-
sions and by extrapolating the results to an infinite basis
set. We have estimated the error incurred in our present
work, by taking the difference between our RCC calcula-
tions with singles, doubles as well as the most important
triple excitations [CCSD(T)] and only single and double
excitations (CCSD). We have also estimated the effect of
Breit interaction which turns out to be 0.3% and lies
between the error of our calculation. A nonrelativistic
Hartree-Fock determination resulted in ® = 3.03ea% [8].
A subsequent calculation based on RCI with MCDF-EOL
orbital basis yielded @ = 3.02ea(2) [10]. In that calculation,
correlation effects arising from a subset of the terms Sy, T
for single excitations and S, and 7, for double excitations
were considered, where S and S, are the cluster operators
representing single excitations from the valence 4d orbital
to a virtual orbital and double excitations from the valence
4d and the core {4s,4p,3d} orbitals, with at most one
excitation from the core, respectively. In our calculation,
in addition to these effects, the effects arising from the
nonlinear terms like 7" % T,T,, etc., have been included. In
the framework of CCSD theory, the single and double
excitations have been treated to all orders in electron
correlation including excitations from the entire core.

TABLE II. Contributions of the electric quadrupole moment
for the 4d Dy, state of **Sr* in atomic units from different
many-body effects in the CCSD(T) calculation. The terms like
DDF, DCP, DPC, DHOPC are explained in the text. The remain-
ing terms in Eq. (6) are referred to as ‘“‘others.” The number
given in the column “Triples” corresponds to the contribution
from approximate perturbative triple excitations.

DDF DPC DCP DHOPC Others
34963 —0.4306 —0.0642 0.0353 —0.0944

Triples Total
—0.07 294

This amounts to a more rigorous treatment of electron
correlation in comparison to the previous calculation per-
formed using the RCI method. We have also determined
the EQM for the metastable 4d 2D, ), state of 8Sr*. The

value we obtained is 2.12ea3, whereas Itano’s calculation
yields the value 2.107ea3 [12].

It is clear from Table II that the DDF contribution is the
largest. The leading correlation contribution comes from
the DPC effects and the DCP effects are an order of
magnitude smaller. This can be understood from the DPC
diagram [Fig. 1(a)] which has a valence electron in the
4ds, state. Hence the dominant contribution to the electric
quadrupole moment arises from the overlap between vir-
tual ds,, orbitals and the valence, owing to the fact that S,
is an operator of rank 0 and the electric quadrupole matrix
elements for the valence 4ds,, and the diffuse virtual ds,
orbitals are substantial. On the other hand, in the DCP
diagram [Fig. 1(b)], the matrix element of the same opera-
tor could also involve the less diffuse s or p orbitals.
Hence, for a property like the electric quadrupole moment,
whose magnitude depends on the square of the radial
distance from the nucleus, this trend seems reasonable,
whereas for properties like hyperfine interaction which is
sensitive to the near nuclear region, the trend is just the
opposite for the d states [15]. As expected, the contribution
of the DHOPC effect, i.e., SIr 0S8, [Fig. 1(c)] is relatively
important as it involves an electric quadrupole matrix
element between the valence 4ds;, and a virtual ds),
orbital. Unlike many other properties, particularly the hy-
perfine interactions, an all-order determination of this dia-
gram is essential for obtaining an accurate value of the
electric quadrupole moment. One of the strengths of RCC

TABLE I. Number of basis functions used to generate the even-tempered Dirac-Fock orbitals and the corresponding value of ¢ and
B used for Sr™.
S1/2 P12 P32 d3/2 ds/z f5/2 f7/2 87/2 89/2

Number of basis 38 35 35 30 30 25 25 20 20
a(X1079) 525 525 525 425 425 427 427 425 425

B 2.33 2.33 2.33 2.13 2.13 2.13 2.13 1.98 1.98
Active holes 4 3 3 1 1 0 0 0 0
Active particles 10 10 10 11 11 8 8 6 6
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TABLE III. Electric quadrupole moments (in ea%) for the
metastable Dy, 5, states of ¥*Ca™ and '**Ba*.

43Ca+ 138Ba+
States 3d 2D3/2 3d 2D5/2 5d 2D3/2 5d 2D5/2
Present work 1.338 1.916 2.309 3.382
Others [12] 1.338 1.917 2.297 3.379

theory is that it can evaluate such diagrams to all orders in
the residual Coulomb interaction.

We have also calculated the EQMs of the metastable
’Dy ), 5, States of “Ca™ and '**Ba™ and they are given in
Table III. We have also estimated the error for these
calculations similar to 88Sr™ and they vary from 0.5% to
1.8%. Our coupled-cluster calculations of EQMs for the
metastable D states of these two ions agree well with the
other calculations [12]. We find that the correlation effects
are similar to 38Sr*. Our analyses reveal that for both the
°D;,, and *D; ,, states the largest contribution is at the
DDF level, followed by DPC and DCP, respectively. The
latter two are opposite in sign. More specifically, the Dirac-
Fock values overestimate the EQMs and that is the reason
why the correlation effects are so important in these cases.
This is demonstrated in the case of the **St* 4d”D; ) state

in Table II.

In conclusion, we have performed an ab initio calcula-
tion of the electric quadrupole moment for the 4d 2D5 /2
state of 8Sr* to an accuracy of less than 2.5% using the
RCC theory. In addition we have also determined the

EQM of 4d 2D3 /o State of the same ion and the EQMs
of the metastable *D; , , states of ¥Ca™ and **Ba*.
Evaluation of the correlation effects to all orders as well as
the inclusion of the dominant triple excitations in our
calculation were crucial in achieving this accuracy. This
is the first application of RCC theory to determine the
electric quadrupole moment of atomic systems. Our RCC

calculation of the EQM for the 4d 2D ), state in 8Sr is
the most accurate determination of this property to date. It
also highlights the potential of the RCC theory to deter-
mine the atomic properties at large distances from the
nucleus with unprecedented accuracy.
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