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Abstract. For four newly suggested realistic Equations of State
of neutron star matter, we construct equilibrium sequences
of rapidly rotating neutron stars in general relativity. The se-
quences are the normal and supramassive evolutionary se-
quences of constant rest mass. We find that for these equations of
state the maximum (gravitational) mass rotating models occur
(in central density and rotation rateΩ) before the maximum-
Ω models. We calculate equilibrium sequences for a constant
value ofΩ corresponding to the most rapidly rotating pulsar
PSR 1937+21. Also calculated is the radius of the marginally
stable orbit and its dependence onΩ, relevant for modeling of
kilo-Hertz quasi-periodic oscillations in X-ray binaries.
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1. Introduction

Equilibrium sequences of rapidly rotating neutron stars are im-
portant in modelling a variety of phenomena of astrophysi-
cal interest, such as millisecond pulsars, low-mass X-ray bina-
ries (LMXBs) and Quasi Periodic Oscillators (QPOs). Models
of rapidly rotating neutron stars in general relativity must be
constructed numerically. Early work on this have been based
on incompressible fluids and polytropic models (Bonazzola &
Schneider 1974; Butterworth 1976). In 1986 Friedman et al.
(1986) reported calculations of rapidly rotating neutron stars
in general relativity using a set of realistic Equations of State
(EOS) for neutron star matter. A similar work based on a formal-
ism due to Komatsu et al. (1989) (KEH formalism) was done by
Cook et al. (1994) for purpose of studying quasi-stationary evo-
lution of isolated neutron stars. An alternative approach based
on spectral methods was developed by Bonazzola et al. (1993).
Extensive calculations using the spectral method for a broad
set of realistic EOS of neutron star matter were presented in
Salgado et al. (1994a; 1994b).

A key input in determining the structure of neutron stars is
the EOS of high density matter. The work of Friedman et al.
(1986) and that of Cook et al. (1994) make abundantly clear
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that the EOS also plays a significant role in deciding the various
equilibrium sequences of rotating neutron stars. For example,
the Keplerian frequency of a test particle in orbit around a neu-
tron star ranges from 55% of its spherical value for models based
on the softest EOS to 75% of the spherical value for models with
the stiffest EOS. The spreads in rotation-induced changes in the
values of masses and radii from static neutron star cases also
display considerable EOS dependence. These quantities (espe-
cially the Keplerian frequency of a particle in orbit around the
rotating neutron star and the radius of the innermost stable circu-
lar orbit) are important for deciding the boundary layer structure
and hence the emission characteristic of LMXB and QPOs.

Although dense matter has been a subject of study for nearly
three decades now, there is no general agreement still on its
exact composition, and on its EOS, especially for densities in
excess several times nuclear matter density. The bulk of a neu-
tron star (core) is made up of an electrically neutral quantum
fluid composed of neutrons, protons, electrons and muons in
equilibrium with respect to the weak interactions (beta-stable
nuclear matter). However, at ultra-high densities, a variety of
new and exotic hadronic degrees of freedom may become im-
portant (like hyperons, aK− condensate or a deconfined phase
of quark matter). The possible appearance of such an exotic core
has enormous consequences for the transport properties of neu-
tron stars and also for the formation of black holes (Brown &
Bethe 1994; Bombaci 1996). The consequences of the existence
of an exotic core (such as quark matter or kaon condensation)
on the properties of rapidly rotating neutron stars will be re-
ported in a forthcoming paper (Datta et al. 1998). In the present
work, we have considered a conventional picture assuming the
neutron star core to be composed of only beta-stable nuclear
matter. Even in this picture, the determination of the EOS of
asymmetric nuclear matter to describe the core of the neutron
star, remains a formidable theoretical problem. In fact, one has
to extrapolate the EOS to extreme conditions of high density
and high neutron-proton asymmetry,i.e. in a regime where the
EOS is poorly constrained by nuclear data and experiments.
Astrophysical observational data, such as based on the binary
pulsar PSR 1913+16, which give1.4 M� as the mass of the
neutron star in the binary (Taylor & Weisberg 1989) and analy-
sis of Vela pulsar postglitch timing data can be used to broadly
rule out very soft EOS (Datta & Alpar 1993). Recently, some
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new EOS of asymmetric nuclear matter have been calculated
and applied to the study of non-rotating neutron stars (Baldo et
al. 1997; Prakash et al. 1997; Bombaci 1995). These EOS are
based on (i) a microscopic Brueckner-Bethe-Goldstone many-
body approach and (ii) a phenomenological model based on
effective nuclear forces. These satisfy the basic requirements
of reproducing the empirical saturation point for symmetric nu-
clear matter, the symmetry energy and the incompressibility
parameter at the saturation density (see Table 1). These models
have the desirable physical feature that the velocity of sound in
the medium does not violate the causality condition. Therefore,
these can be taken to berealistic EOS, and so it would be of
interest to see the equilibrium rotating sequences that would be
possible with these EOS. In this paper we report calculations
of equilibrium sequences of rapidly rotating neutron stars in
general relativity for these new realistic EOS models. The var-
ious equilibrium sequences that we construct are normal and
supramassive evolutionary sequences of constant rest mass. In
addition, we build equilibrium sequences for a constant value
of rotation rate corresponding to a period ofP = 1.558 ms of
the millisecond pulsar PSR 1937+21 (Backer et al. 1982), the
most rapidly rotating pulsar known.

2. Rapidly and rigidly rotating relativistic stars

The space-time around a rotating neutron star can be described
in quasi-isotropic coordinates, as a generalization of Bardeen’s
metric (Bardeen 1970):

ds2 = gµνdxµdxν(µ, ν = 0, 1, 2, 3)
= −eγ+ρdt2 + e2α(r2dθ2 + dr2) + eγ−ρr2sin2θ

(dφ − ωdt)2 (1)

wheregµν is the metric tensor. The metric potentialsγ, ρ, α,
and the angular velocity of the stellar fluid relative to the local
inertial frame (ω) are all functions of the quasi-isotropic radial
coordinate (r) and the polar angle (θ). We use here geometric
units: c = 1 = G. We assume a perfect fluid description, for
which the energy momentum tensor is given by:

Tµν = (ε + P )uµuν + Pgµν (2)

whereε is the total energy density,P the pressure anduµ the
unit time-like four velocity vector that satisfies

uµuµ = −1 (3)

The proper velocityv of the matter, relative to the local Zero
Angular Momentum Observer (ZAMO), is given in terms of the
the angular velocityΩ ≡ u3/u0 of the fluid element (measured
by a distant observer in an asymptotically flat space-time), by
the following equation (see Bardeen 1970):

v = (Ω − ω)rsinθe−ρ (4)

The four velocity (uµ) of the matter can be written as

uµ =
e−(γ+ρ)/2

(1 − v2)1/2 (1, 0, 0,Ω) (5)

Substitution of the above into Einstein field equations pro-
jected on to the frame of reference of a ZAMO yield three el-
liptic equations for the metric potentialsρ, γ andω and two
linear ordinary differential equations for the metric potentialα
(Komatsu et al. 1989; Butterworth & Ipser 1976; Bardeen &
Wagoner 1971). In the KEH formalism (Komatsu et al. 1989),
the elliptic differential equations are converted to integral equa-
tions for the metric potentials using Green’s function approach.

From the relativistic equations of motion, the equation of
hydrostatic equilibrium for a barytropic fluid may be obtained
as:

h(P ) − hp ≡
∫ P

Pp

dP

(ε + P )
= lnut − lnut

p −
∫ Ω

Ωc

F (Ω)dΩ(6)

whereh(P ) is termed as the specific enthalpy.Pp, ut are the
rescaled values of pressure and t-component of the four velocity
respectively andhp is the specific enthalpy at the pole;F (Ω) =
utuφ is the integrability condition imposed on the equation of
hydrostatic equilibrium, and it can be physically interpreted as
the rotation law for the matter constituting the neutron star. An
appropriately chosen value ofhp defines the surface of the star.
Equation (6) shows that the hydrostatic equilibrium equation is
integrable ifP (ε) andutuφ are specified.

As shown by Bardeen 1970 (see also Butterworth & Ipser
1976), the quantityutuφ is a function ofΩ only. Komatsu et al.
(1989) have suggested the following specific form forF (Ω):

F (Ω) = A2(Ωc − Ω) (7)

whereA is a rotation constant such that whenA → ∞, the
configuration approaches rigid rotation (that is,Ω = Ωc) so
thatF (Ω) is finite. Furthermore, whenA → 0, the configuration
should approach that of rotation with constant specific angular
momentum.

On substituting Eqs. (5) and (7) into Eq. (8), we have the
hydrostatic equilibrium equation as

h(P ) − hp =
1
2

[γp + ρp − γ − ρ − ln(1 − v2) +

A2(Ω − Ωc)2
]

(8)

whereγp andρp are the values of the metric potentials at the
pole, andΩ = reΩ.

Therefore, the hydrostatic equilibrium equations at the cen-
tre and equator for a rigidly rotating neutron star become re-
spectively



B. Datta et al.: Equilibrium sequences of rotating neutron stars for new realistic Equations of State 945

Table 1. Saturation properties for the various equations of state used in the present work:no[fm−3] is the saturation number density,
Eo/A[MeV/fm3] the corresponding energy per nucleon andKo[MeV ] the incompressibility of symmetric nuclear matter.Esym(no)[MeV ]
is the symmetry energy at the saturation point. In the last row we report the empirical saturation properties of nuclear matter.

EOS interaction no Eo/A Ko Esym(no)
BBB1 Av14+TBF 0.178 −16.46 253 32.5
BBB2 Paris+TBF 0.176 −16.01 281 32.9

BPAL21 Skyrme-like 0.160 −16.00 180 30.0
BPAL32 Skyrme-like 0.160 −16.00 240 30.0

emp.sat.prop. 0.17 ± 0.01 −16 ± 1 220 ± 30 30 ± 2

Table 2. Maximum mass non-rotating models: the listed quantities are EOS models, central density (εc) in units ofg cm−3 , gravitational mass
(MG) in solar units, radius (R) in km, baryonic mass (M0) and proper mass (MP ) in solar units and lastly the radius (rorb) of the innermost
stable orbit inkm. Note: the numbers following the letter E in column 2 of this and the subsequent tables, stand for powers of ten.

EOS εc MG R M0 Mp rorb I
(g cm−3 ) (M� ) (km) (M� ) (M� ) (km) (g cm2)

BBB1 3.09E+15 1.788 9.646 2.082 2.356 15.845 1.428E+45
BBB2 3.12E+15 1.917 9.519 2.261 2.608 16.984 1.593E+45
BPAL21 3.51E+15 1.684 9.292 1.940 2.222 14.921 1.191E+45
BPAL32 2.67E+15 1.947 10.509 2.263 2.579 17.254 1.826E+45

h(Pc) − hp − 1
2

[γp + ρp− γc − ρc] = 0 (9)

(γp + ρp − γe − ρe) − ln[1 − (Ωe − ωe)2r2
ee−2ρe ] = 0(10)

where the subscripts p, e and c on the variables stand respectively
for the corresponding values at the pole, equator and center.

We solve (numerically) the integral equations forρ, γ andω,
the ordinary differential equation (inθ) for the metric potential
α, together with Eqs. (8), (9) and (10), iteratively to obtainρ,
γ, α, ω, the equatorial coordinate radius (re), angular velocity
(Ω), and the density (ε) and pressure (P ) profiles.

2.1. Innermost stable orbits

Since the metric (1) is stationary and axisymmetric, the energy
and angular momentum are constants of motion. Therefore, for
a particle in stable orbit around the neutron star, the specific
energyE (in units of the rest energym0c

2, wherem0 is the
rest mass of the particle) and the specific angular momentuml
(in units ofm0c) can be identified as−p0 andp3 respectively,
where,pµ (µ = 0, 1, 2, 3), stands for the four-momentum of the
particle. From the conditionpµpµ = −1, we have the equations
of motion of the particle (confined to the equatorial plane) in
this gravitational field as

ṫ =
dt

dτ
= p0 = e−(γ+ρ)(E − ωl) (11)

φ̇ =
dφ

dτ
= p3 = Ωp0 = e−(γ+ρ)ω(E − ωl) +

l

r2e(γ−ρ) (12)

ṙ2 ≡ e2α+γ+ρ

(
dr

dτ

)2

= E2 − V 2. (13)

Here,τ is the proper time andV is the effective potential given
by

V 2 = eγ+ρ

[
1 +

l2/r2

eγ−ρ

]
+ 2ωEl − ω2l2. (14)

The conditions for circular orbits, extremum of energy and min-
imum of energy are respectively:

E2 = V 2 (15)

V,r = 0 (16)

V,rr > 0. (17)

For marginally stable orbits,

V,rr = 0. (18)

In our notation, a comma followed by one ‘r’ represents a first
order partial derivative with respect tor, etc..

From the expression for the effective potential and the con-
ditions (15), (16) and (18), one obtains three equations in the
three unknowns: namely,r, E, andl. In principle, if analytical
expressions foreγ+ρ, e2α, eγ−ρ andω are known, it would be
a straightforward exercise to solve these equations to obtainr,
E, andl. In practice, however, this is not so, and the solutions
for the metric coefficientseγ+ρ, e2α, eγ−ρ, andω have to be
obtained as arrays of numbers for various values ofr andθ using
a numerical method. Furthermore, the condition (18) will intro-
duce second order derivatives ofγ, ρ, andω, which means that
care has to be exercised in ensuring the numerical accuracies
of the quantities calculated. For this purpose, it is convenient to
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expressE andl in terms of the physical velocityv using Eq. (4)
(Bardeen 1972) as:

E − ωl =
e(γ+ρ)/2
√

1 − v2
(19)

l =
vre(γ−ρ)/2
√

1 − v2
. (20)

Eqs. (19) and (20) can be recognized as the condition for circular
orbits. Conditions (16) and (18) yield respectively,

v = ±
(√

e−2ρr4ω2
,r + 2r(γ,r + ρ,r) + r2(γ2

,r − ρ2
,r)±

e−ρr2ω,r

)
/(2 + r(γ,r − ρ,r)) (21)

V,rr ≡ 2
[
r

4
(ρ2

,r − γ2
,r) − 1

2
e−2ρω2

,rr
3 − ρ,r +

1
r

]
v2

+[2 + r(γ,r − ρ,r)]vv,r − e−ρω,rrv

+
r

2
(γ2

,r − ρ2
,r) − e−ρr2ω,rv,r = 0 (22)

where we have made use of Eq. (21) and its derivative with
respect to r in order to eliminate the second order derivatives in
Eq. (22). The zero ofV,rr will give the innermost stable circular
orbit radius (rorb). In Eq. (21), the positive sign refers to the co-
rotating particles and the negative sign to the counter-rotating
particles. In this study we have considered only the co-rotation
case.

3. Numerical procedure

The numerical procedure followed by us is the KEH formalism.
This is based on an earlier work by Hachisu (1986) which has
a self-consistency requirement that requires that the maximum
(central) energy densityεc and the ratio of the polar to equatorial
radial coordinatesrp/re be fixed for each iterative cycle. Ifρi,
γi , αi andri

e are the values of the corresponding parameters
during theith iterative cycle, then:

1. these values are first scaled (divided) by(ri
e)

2 to obtain
ρ̂i, γ̂i andα̂i respectively.

2. a new value ofre is calculated using Eq. (10) forε = εc

i.e.v = 0 so that

ri+1
e =

2[h(P (εc)) − hp]
γ̂i

p + ρ̂i
p − γ̂i

c − ρ̂i
c

(23)

3. the value ofΩc is computed from Eq. (11) as

Ωi+1
c = ω̂i

e + eρi
e

[
1 − e(γi

p+ρi
p−γi

e−ρi
e)

]
(24)

4. the values of the three scaled metric potentialsρ̂i, γ̂i and
α̂i are rescaled (multiplied) by(ri+1

e )2

5. using these values ofri+1
e , Ωi+1

c , ρi, γi, αi, ω̂i, equation
(9) is solved to obtain the matter energy distribution
namelyεi+1, P i+1, vi+1 etc.

6. the integral equations for the metric potentials are solved
to obtainρi+1, γi+1, ω̂i+1 andαi+1.

7. steps (1) to (6) are repeated untilre converges to within
a tolerance of10−5.

Oncere converges, the metric potentialsρ, γ, ω andα together
with the density (ε) and pressure (P ) profiles can be used to
compute the structure parameters (see Cook et al. 1994).

4. New Equation of State models

4.1. Microscopic equation of state

In a microscopic approach the input is the two-body nucleon-
nucleon (NN) interaction, described by so-calledrealistic inter-
actions like the Argonne, Bonn, Nijmegen, Paris, Urbana poten-
tials (seee.g.Machleidt 1989). The theoretical basis to construct
these realistic NN potentials is the meson-exchange theory of
nuclear forces. In this scheme, nucleons, nucleon resonances
(e.g.∆(1232)), and mesons such asπ, ρ andω, are incorpo-
rated in a potential representation. The various parameters in
the potential are then adjusted to reproduce the experimental
data for the two-body problem (deuteron properties and NN
scattering phase shifts). Then one has to solve the complicated
many-body problem to get the EOS.

Recently, Baldo et al. (1997), hereafter BBB, have com-
puted a new EOS of beta-stable nuclear matter, and with this
EOS they have calculated the structure of non-rotating neutron
stars. In their approach, the energy per nucleon of nuclear matter
is obtained in the Brueckner-Hartree-Fock (BHF) approxima-
tion of the Brueckner-Bethe-Goldstone theory. The only input
quantity for these calculations is the nuclear interaction. In their
calculation BBB used the Argonne v14 (Av14)) (Wiringa et
al. 1984) or the Paris (Lacombe et al. 1980) two-body nuclear
force, implemented in both cases by the Urbana three-body force
(TBF) (Carlson et al. 1983; Schiavilla et al. 1986). As is well
known, the need for a TBF arises to obtain a correct saturation
point of symmetric nuclear matter in a non-relativistic many-
body approach. In the following we refer to the EOS obtained
in BBB with the Av14+TBF and Paris+TBF, as the BBB1 and
BBB2 equation of state respectively. The saturation properties
for these two microscopic models are summarized in Table 1,
and the calculated speed of sound is shown in Fig. 1. The latter
always remains within the causality bound.

4.2. Phenomenological equation of state

In this case the input is a density-dependent effective NN in-
teraction. The most popular of this kind of interaction is the
Skyrme interaction (Skyrme 1956). In the present work we used
a generalized Skyrme-like EOS developed in ref. (Prakash et al.
1997; Bombaci 1995), and we refer to it as the BPAL EOS.
An important feature of the BPAL models is the possibility to
have different forms for the density dependence of the potential
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Table 3. Maximum mass rotating models: the listed quantities are EOS models, central density (εc) in units ofg cm−3 , angular velocity (Ω)
in units of104 rad s−1 of the neutron star as measured by an observer at infinity, moment of inertia (I) of neutron star in units of1045 g cm2,
gravitational mass (MG) in solar units, ratio of the rotational energy to the total gravitational energy (T/W ), radius (R) in km, eccentricity
(e), ratio of inertial frame dragging at the center of the star to the rotation rate (ωc/Ωc), angular momentum (J) in 1049 cgs units, radius (rorb)
of the innermost stable orbit inkm, the polar (Zp), forward (Zf ) and backward (Zb) redshifts, baryonic mass (M0) and proper mass (MP ) in
solar units.

EOS εc Ω I MG T/W R e ωc/Ωc J rorb Zp Zf Zb M0 Mp

BBB1 2.56E+15 1.095 2.428 2.135 0.120 13.129 0.703 0.764 2.658 13.490 0.690−0.330 1.975 2.471 2.734
BBB2 2.82E+15 1.203 2.539 2.272 0.123 12.519 0.687 0.825 3.055 13.550 0.849−0.349 2.483 2.653 3.008
BPAL21 3.03E+15 1.115 1.904 1.966 0.105 12.604 0.697 0.764 2.123 12.674 0.641−0.323 1.811 2.253 2.530
BPAL32 2.27E+15 1.001 3.005 2.300 0.113 14.276 0.699 0.771 3.008 14.611 0.679−0.328 1.933 2.657 2.962

Fig. 1. Speed of sound in beta-stable nuclear matter as a function of
the nucleon number density for different models of EOS used in the
present work. The three continuous lines refer from top to bottom of
the figure to the BBB1, BPAL32 and BPAL21 model respectively; the
dashed line is relative to the BBB2 EOS. The dot on each curve gives
the speed of sound at the center of the non-rotating maximum mass
configuration for that EOS model.

partEpot
sym(n) of the nuclear symmetry energy, modelling dif-

ferent results predicted by microscopic calculations (Wiringa
et al. 1988, Bombaci & Lombardo 1991). In particular,Epot

sym

is proportional to the nucleon number densityn in the case of
BPAL32, and to

√
n in the case of BPAL21 EOS. The den-

sity dependence of the symmetry energy plays a very important
role in the physics of neutron stars. This function determines
the proton fraction in beta-stable nuclear matter, which, in turn,
is crucial for an accelerated rate of cooling of a neutron star
through the so-called direct Urca process above a critical value

Fig. 2. Pressure as a function of density for the new EOS models.
Curves 1-4 stand for BBB1, BBB2, BPAL21 and BPAL32 respectively.
Also shown for comparison are the EOS models BPAL12 (Bombaci
1995) a very soft EOS (represented by BPAL12 in figure) and Sahu,
Basu & Datta (1993) a very stiff EOS (represented by CSM in figure).

of the proton fraction (Lattimer et al. 1991; Page & Applegate
1992).

In Fig. 2 we plot the pressure-density relationship for EOS
models BBB1, BBB2, BPAL21 and BPAL32 (curves 1 - 4) and
also compare it with two other EOS models, one of which is
a very softEOS BPAL12 (Prakash et al. 1997; Bombaci 1995)
and the other avery stiffEOS (Sahu et al. 1993):

(1) Soft:BPAL12(Prakash et al. 1997; Bombaci 1995): This
EOS is characterized byK0 = 120 MeV andEpot

sym ∼ n. The
value 120 MeV for the incompressibility is unrealistically small
when compared with the value220±30 MeV extracted from nu-
clear phenomenology (Blaizot 1980; Myers & Swiatecky 1996),
however BPAL12 EOS is still able to sustain the measured mass
1.44M� of the pulsar PSR1913+16 as the maximum gravita-
tional mass of non-rotating neutron stars constructed with this
EOS is1.46 M� .

(2) Stiff: Sahu et al. (1993): This is a field theoretical EOS
for neutron matter in beta equilibrium based on the chiral sigma
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Table 4.Maximum angular momentum models

EOS εc Ω I MG T/W R e ωc/Ωc J rorb Zp Zf Zb M0 Mp

BBB1 2.44E+15 1.079 2.465 2.133 0.120 13.264 0.706 0.756 2.660 13.558 0.677−0.328 1.935 2.468 2.721
BBB2 2.82E+15 1.203 2.539 2.272 0.123 12.519 0.687 0.825 3.055 13.550 0.849−0.349 2.483 2.653 3.008
BPAL21 2.91E+15 1.100 1.933 1.965 0.106 12.730 0.699 0.757 2.125 12.733 0.630−0.321 1.779 2.252 2.519
BPAL32 2.14E+15 0.981 3.070 2.299 0.114 14.481 0.702 0.760 3.011 14.713 0.661−0.326 1.881 2.655 2.944

model. The model includes an isoscalar vector field generated
dynamically and reproduces the empirical values of the nuclear
matter saturation density and binding energy and also the isospin
symmetry coefficient for asymmetric nuclear matter. The en-
ergy per nucleon of nuclear matter according to Sahu et al.
(1993) is in very good agreement, up to about four times the
equilibrium nuclear matter density, with estimates inferred from
heavy-ion collision experimental data. The maximum gravita-
tional mass of non-rotating neutron stars constructed with this
EOS is2.59 M� .

For our computations, we constructed the composite EOS
for the entire span of neutron star densities by joining the new
high density EOS models to that of Negele & Vautherin (1973)
for the density range (1014 − 5 × 1010) g cm−3 , Baym et al.
(1972) for densities down to∼ 103 g cm−3 and Feynman et al.
(1949) for densities less than103 g cm−3 .

5. Results and discussion

The equilibrium sequences of rotating neutron stars depend on
two parameters: the central density (εc) and the rotation rate
(Ω). For purpose of illustration, we choose three limits in this
parameter space. These are: (i) the static or non-rotating limit,
(ii) the limit at which instability to quasi-radial mode sets in and
(iii) the centrifugal mass shed limit. The last limit corresponds to
the maximumΩ for which centrifugal forces are able to balance
the inward gravitational force.

Table 2 summarizes the non-rotating neutron star structure
parametes for the EOS models BBB1, BBB2, BPAL21 and
BPAL32. The values listed correspond to the maximum sta-
ble mass configuration. The entries in this table are the central
density (εc), the gravitational mass (MG), the rest (baryonic)
mass (M0) of the neutron star and the radius (R). The maxi-
mum mass is an indicator of the softness/stiffness of the EOS
and its values as listed in Table 2 reflect that the EOS models
used are all intermediate in stiffness. Among these, BPAL21 is
the softest EOS and BPAL32 the stiffest one.

In Table 3 we list the following quantities corresponding
to the maximum gravitational mass configurations: central den-
sity, rotation rate, moment of inertia (I), gravitational mass,
ratio of rotational kinetic energy to total graviational energy
(T/W ), equatorial radius, eccentricity (e) wheree is defined

to be
√

1 − R2
p/R2, Rp being the polar radius of the configu-

ration, ratio of rotation rate (ωc) of stellar fluid relative to the

Fig. 3. The functional dependence of the gravitational mass with cen-
tral density for EOS model BBB1. In this and all subsequent figures, the
bold solid curve represents the non-rotating or static limit, and the bold
dashed curve the centrifugal mass shed limit. The long dashed curve is
the constant-Ω sequence corresponding to the periodP = 1.558 ms.
The thin solid curves that are roughly horizontal are the constant rest
mass evolutionary sequences. The evolutionary sequences above the
maximum stable non-rotating mass configuration, are the supramas-
sive evolutionary sequences and those that are below this limit, are the
normal evolutionary sequences. The almost vertical thin dashed line
is the limit for instability against quasi-radial modes. The supramas-
sive evolutionary sequences beyond the quasi-radial mode instability
limit are represented by dotted lines. The numbers against some of
the curves in this and all subsequent figures represent the baryonic
mass for the corresponding sequence; the equilibrium sequence that
has1.4 M� configuration at the static limit is represented by an aster-
isk against it.
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Fig. 4. Gravitational mass (MG) in solar units versus equatorial radius
(R) in km for EOS model BBB1.

inertial frame at the centre of the star to the rotation rate, the
angular momentum (J), the value of the radius of the innermost
stable orbit (rorb), the polar, forward and backward redshifts
(Zp, Zf , Zb), the rest mass (M0) and the proper mass (Mp)
of the neutron star. The values of these quantities are listed in
Table 4 for the maximum angular momentum models. From
Table 3, it can be seen that the gravitational mass of the max-
imum stable rotating configuration has a value that is close to
2 M� . Interestingly, this is close to predictions from analysis
of LMXB observational data (Zhang et al. 1996). Therefore, if
the internal constitution of the compact star in LMXBs were to
be described by the EOS models that we have considered here,
and furthermore, if it were to have a mass∼ 2 M� , the star has
to be rotating near centrifugal break-up speeds (rotation periods
∼ 0.5 ms). Interestingly, for such configurations, it can be seen
from Table 3, that the separation of the innermost stable orbit
from the neutron star surface (namely, the boundary layer ex-
tent) is highly EOS dependent. This separation ranges from0.07
km to1.031 km. This relatively large spread can be understood
in terms of the spreads on values ofεc andΩ corresponding to
the centrifugal mass shed. These results will have relevance in
modeling LMXBs/QPOs. For such neutron stars as the central
objects in LMXBs, there will be a very significant re-ordering of
the contributions of the disk and the boundary layer luminosities
to the total luminosity (Thampan & Datta 1998).

Fig. 5. Neutron star rotation rate (Ω) in units of104 rad s−1 versus
its specific angular momentum (cJ/GM2

0 ) for EOS model BBB1. The
inset shows a close up view of the region surrounding the instability
limit to quasi-radial mode near the mass shed limit.

The results of our computations for rotating neutron stars
corresponding to the four new EOS models are given below.

5.1. EOS model BPAL21

The normal sequences for this EOS have rest massM0/M� <
1.9395 and supramassive sequences have rest mass1.9395 <
M0/M� < 2.2515.

5.2. EOS model BBB1

In Fig. 3 we show the functional dependence of the gravitational
mass with central density. In this and all subsequent figures, the
bold solid curve represents the non-rotating or static limit, and
the bold dashed curve the centrifugal mass shed limit. The long
dashed curve is the constant-Ω sequence corresponding to the
periodP = 1.558 ms. The thin solid curves that are roughly
horizontal are the constant rest mass evolutionary sequences.
The evolutionary sequences above the maximum stable non-
rotating mass configuration are the supramassive evolutionary
sequences, and those that are below this limit are the normal
evolutionary sequences. The almost vertical thin dashed line is
the limit for instability against quasi-radial modes. The supra-
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Table 5.ConstantΩ sequences: the sequences have angular velocity of the fastest known pulsar PSR 1937+21

EOS εc Ω I MG T/W R e ωc/Ωc J rorb Zp Zf Zb M0 Mp

BBB1 5.21E+14 0.403 0.370 0.511 0.057 16.199 0.766 0.192 1.490 0.000 0.078−0.167 0.326 0.526 0.539
6.00E+14 0.403 0.510 0.658 0.048 12.950 0.603 0.237 2.052 0.000 0.104−0.103 0.315 0.686 0.704
1.00E+15 0.403 1.195 1.279 0.028 11.697 0.425 0.430 4.815 0.000 0.236 0.005 0.478 1.405 1.467
1.40E+15 0.403 1.522 1.590 0.021 11.201 0.361 0.546 6.130 12.478 0.334 0.078 0.607 1.799 1.914
1.90E+15 0.403 1.619 1.749 0.016 10.678 0.321 0.632 6.520 13.695 0.413 0.141 0.708 2.015 2.189
2.40E+15 0.403 1.587 1.805 0.014 10.248 0.297 0.686 6.391 14.188 0.463 0.185 0.769 2.096 2.319
2.90E+15 0.403 1.517 1.818 0.012 9.900 0.280 0.722 6.109 14.356 0.498 0.216 0.807 2.117 2.380
3.00E+15 0.403 1.501 1.819 0.012 9.839 0.278 0.729 6.047 14.369 0.503 0.221 0.813 2.117 2.388
3.30E+15 0.403 1.455 1.815 0.011 9.666 0.270 0.744 5.858 14.378 0.517 0.235 0.827 2.112 2.404
3.40E+15 0.403 1.439 1.814 0.011 9.613 0.268 0.750 5.796 14.374 0.521 0.239 0.831 2.110 2.408

BBB2 5.01E+14 0.403 0.396 0.525 0.059 16.359 0.768 0.194 1.596 0.000 0.080−0.169 0.331 0.541 0.554
6.00E+14 0.403 0.587 0.713 0.048 12.965 0.590 0.250 2.363 0.000 0.113−0.097 0.327 0.746 0.767
1.00E+15 0.403 1.232 1.292 0.029 11.833 0.429 0.431 4.964 0.000 0.236 0.002 0.481 1.416 1.482
1.40E+15 0.403 1.576 1.626 0.021 11.236 0.358 0.558 6.346 12.738 0.344 0.084 0.622 1.842 1.967
1.90E+15 0.403 1.733 1.838 0.015 10.604 0.309 0.665 6.978 14.386 0.453 0.169 0.764 2.134 2.341
2.40E+15 0.403 1.732 1.920 0.013 10.122 0.281 0.730 6.976 15.095 0.529 0.230 0.859 2.254 2.530
2.90E+15 0.403 1.676 1.943 0.011 9.762 0.264 0.772 6.751 15.349 0.577 0.272 0.919 2.291 2.621
3.10E+15 0.403 1.648 1.944 0.011 9.641 0.259 0.784 6.636 15.383 0.592 0.285 0.936 2.292 2.641
3.30E+15 0.403 1.619 1.943 0.010 9.531 0.255 0.795 6.522 15.397 0.604 0.296 0.950 2.291 2.656
3.40E+15 0.403 1.605 1.942 0.010 9.480 0.253 0.800 6.464 15.398 0.610 0.301 0.956 2.289 2.662

BPAL21 5.19E+14 0.403 0.593 0.646 0.063 17.528 0.767 0.221 2.388 0.000 0.094−0.178 0.368 0.671 0.687
6.00E+14 0.403 0.698 0.758 0.053 14.288 0.631 0.256 2.812 0.000 0.113−0.118 0.348 0.793 0.815
1.50E+15 0.403 1.336 1.487 0.021 11.290 0.370 0.528 5.382 11.750 0.300 0.054 0.560 1.663 1.775
2.05E+15 0.403 1.382 1.632 0.016 10.582 0.324 0.616 5.565 12.854 0.375 0.119 0.650 1.858 2.027
2.50E+15 0.403 1.353 1.683 0.013 10.139 0.300 0.666 5.447 13.297 0.420 0.158 0.702 1.930 2.141
2.95E+15 0.403 1.302 1.705 0.012 9.779 0.282 0.702 5.245 13.513 0.454 0.190 0.740 1.961 2.208
3.80E+15 0.403 1.197 1.706 0.010 9.258 0.260 0.751 4.820 13.611 0.498 0.233 0.786 1.964 2.268
4.65E+15 0.403 1.100 1.687 0.008 8.874 0.247 0.784 4.431 13.528 0.525 0.262 0.812 1.936 2.284
5.55E+15 0.403 1.013 1.660 0.007 8.562 0.238 0.809 4.082 13.368 0.544 0.283 0.827 1.895 2.279
5.95E+15 0.403 0.974 1.643 0.007 8.438 0.234 0.818 3.925 13.267 0.549 0.290 0.830 1.870 2.266

BPAL32 4.21E+14 0.403 0.903 0.764 0.076 18.581 0.776 0.234 3.639 0.000 0.106−0.187 0.403 0.797 0.814
6.00E+14 0.403 1.364 1.120 0.051 14.448 0.572 0.333 5.493 0.000 0.167−0.088 0.430 1.198 1.234
1.00E+15 0.403 1.959 1.621 0.031 13.062 0.434 0.494 7.888 0.000 0.284 0.008 0.577 1.808 1.904
1.40E+15 0.403 2.124 1.848 0.022 12.239 0.371 0.595 8.554 14.331 0.370 0.078 0.686 2.108 2.268
1.90E+15 0.403 2.086 1.955 0.017 11.488 0.329 0.673 8.401 15.191 0.443 0.141 0.775 2.261 2.493
2.30E+15 0.403 1.996 1.982 0.015 11.032 0.306 0.715 8.037 15.463 0.483 0.177 0.821 2.300 2.582
2.70E+15 0.403 1.895 1.984 0.013 10.664 0.290 0.746 7.631 15.548 0.512 0.205 0.853 2.305 2.627
3.00E+15 0.403 1.821 1.977 0.012 10.433 0.281 0.765 7.333 15.544 0.529 0.221 0.870 2.295 2.645
3.50E+15 0.403 1.706 1.958 0.011 10.109 0.270 0.789 6.872 15.462 0.549 0.243 0.889 2.267 2.656
4.40E+15 0.403 1.533 1.915 0.009 9.665 0.256 0.820 6.176 15.218 0.572 0.270 0.906 2.202 2.645

massive evolutionary sequences beyond the quasi-radial mode
instability limit are represented by dotted lines. The maximum
mass sequence for this EOS corresponds to a rest mass value
of 2.471 M� . The supramassive sequences lie in the rest mass
range of2.356M� < M0 < 2.471M� . The gravitational mass
of the maximum stable rotating configuration is2.135 M� and
its radius is13.129 km. If we assume that the fastest pulsar
known to date, PSR 1937+21, has the canonical mass value
of 1.4M� and is described by EOS model BPAL21, then this

neutron star should have a central density of about1.2 × 1015

g cm−3 .

In Fig. 4 we give a plot ofMG as a function ofR. For the
millisecond pulsar PSR 1937 + 21 with an assumed mass value
of 1.4 M� , this corresponds to a radius of11 km.

In Fig. 5 we display the plot ofΩ as a function of the specific
angular momentumcJ/GM2

0 . The inset shows a close-up view
of the region surrounding the instability limit to quasi-radial
mode near the centrifugal mass shed limit. It is clear from this
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Fig. 6. MG - εc relationship for EOS models BBB2.

figure that the maximum mass rotating model (represented by
the plus sign) has a lower angular velocity than the maximum-Ω
model (represented by the intersection of the line representing
the instability to quasi-radial modes with that of the centrifugal
mass shed limit).

5.3. EOS model BBB2

The equilibrim sequences for BBB2 are displayed on Figs. 6-8
for the same representative set of parameters as for EOS model
BBB1

For this EOS, the supramassive sequences have rest masses
between2.261 M� and 2.653 M� and the maximum mass
at mass shed limit is2.272 M� with an equatorial radius of
12.519 km.

5.4. EOS model BPAL32

This EOS model being the stiffest out of the four models that we
consider here, has the highest value for the maximum rotating
gravitational mass (2.3 M� ). The rest masses of supramassive
sequences lie in the range2.263 M� < M0 < 2.655 M� .
Since the behaviour ofM with εc andR and that ofΩ with
cJ/GM2

0 for EOS models BPAL21 and BPAL32 are more or
less similar to those for EOS models BBB1 and BBB2, we do not

Fig. 7. MG - R variation for BBB2.

display the corresponding figures for the former EOS models
here.

In Table 5 we list the values of the various parameters for
the constantΩ sequences for the four EOS models considered
in this work. In general,rorb exhibits three characteristics: (a)
rorb is non-existent (b)rorb < R, and (c)rorb > R. For the
first two cases,rorb is taken to be the Keplerian orbit radius at
the surface of the star. From Table 5 it can be seen that for low
central densities, stable orbits can exist all the way up to the
surface of the neutron star but for high enough central densities,
the boundary layer (the separation between the surface of the
neutron star and its innermost stable orbit) can be substantial
(∼ 5 km for the maximum value of the listed central densities).
These results will have applications in modeling accretion flows
in LMXBs.

We now make a brief reference to other similar work. For
equilibrium Keplerian angular velocity corresponding to the pe-
riod of millisecond pulsar PSR 1937+21 and an assumed mass
of 1.4 M� for the neutron star, Friedman et al. (1986) suggest
that stiff EOS for neutron star interior are favoured. A similar
conclusion but based on a pulsar glitch model and the crustal
moment of inertia considerations has been reported by Datta
& Alpar (1993). The work of Friedman et al. (1986) show that
for a given EOS, the models with maximum gravitational mass
also have the greatest frequency of rotation. Cook et al. (1994)
found that while models with maximum gravitational mass also
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Fig. 8. Ω - cJ/GM2
0 variation for BBB2.

(due to stability conditions defined by Friedman et al. 1988)
have the maximum rotation rateΩ, the models for maximum
gravitational mass and maximum-Ω do not in general coincide.
In particular, for EOS models that display causality violation
near or before the maximum stable mass non-rotating config-
uration, the maximum-Ω model occurs before (in central den-
sity andΩ) the maximum mass model at the mass shed limit.
The EOS models that we have considered here do not violate
the causality condition until well beyond the maximum stable
mass non-rotating configuration. Our computations show that
the maximum gravitational mass rotating models for these EOS
occur (in central density andΩ) before the maximum-Ω mod-
els. In view of absence of correlation between QPO frequency
and source count rate (as suggested by recent observations, see
Berger et al. 1996; Zhang et al. 1996), our results on marginally
stable Keplerian orbits corresponding to realistic EOS will have
application in understanding kilo-Hertz quasi-periodic oscilla-
tions in X-ray binaries in terms of strong-field general relativity,
where rapid rotation of the accreting neutron star is important.
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