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Abstract. Forfour newly suggested realistic Equations of Stathat the EOS also plays a significant role in deciding the various
of neutron star matter, we construct equilibrium sequenceguilibrium sequences of rotating neutron stars. For example,
of rapidly rotating neutron stars in general relativity. The sé¢he Keplerian frequency of a test particle in orbit around a neu-
quences are the normal and supramassive evolutionary tsen star ranges from 55% of its spherical value for models based
quences of constant rest mass. We find that for these equatiormthe softest EOS to 75% of the spherical value for models with
state the maximum (gravitational) mass rotating models ocdhe stiffest EOS. The spreads in rotation-induced changes in the
(in central density and rotation raf®) before the maximum- values of masses and radii from static neutron star cases also
Q) models. We calculate equilibrium sequences for a constaligplay considerable EOS dependence. These quantities (espe-
value of ) corresponding to the most rapidly rotating pulsacially the Keplerian frequency of a particle in orbit around the
PSR 1937+21. Also calculated is the radius of the marginaligtating neutron star and the radius of the innermost stable circu-
stable orbit and its dependence @nrelevant for modeling of lar orbit) are important for deciding the boundary layer structure
kilo-Hertz quasi-periodic oscillations in X-ray binaries. and hence the emission characteristic of LMXB and QPOs.
Although dense matter has been a subject of study for nearly

Key words: Equation of State — pulsars: general — relativity three decades now, there is no general agreement still on its
stars:neutron — stars: rotation exact composition, and on its EOS, especially for densities in
excess several times nuclear matter density. The bulk of a neu-
tron star ¢€ore) is made up of an electrically neutral quantum
fluid composed of neutrons, protons, electrons and muons in
equilibrium with respect to the weak interactions (beta-stable
Equilibrium sequences of rapidly rotating neutron stars are ifuclear matter). However, at ultra-high densities, a variety of
portant in modelling a variety of phenomena of astrophydiew and exotic hadronic degrees of freedom may become im-
cal interest, such as millisecond pulsars, low-mass X-ray birertant (like hyperons, &~ condensate or a deconfined phase
ries (LMXBs) and Quasi Periodic Oscillators (QPOs). ModeRf quark matter). The possible appearance of such an exotic core
of rapidly rotating neutron stars in general relativity must baas enormous consequences for the transport properties of neu-
constructed numerically. Early work on this have been basé@n stars and also for the formation of black holes (Brown &
on incompressible fluids and polytropic models (Bonazzola Bethe 1994; Bombaci 1996). The consequences of the existence
Schneider 1974; Butterworth 1976). In 1986 Friedman et &f an exotic core (such as quark matter or kaon condensation)
(1986) reported calculations of rapidly rotating neutron sta@§ the properties of rapidly rotating neutron stars will be re-
in general relativity using a set of realistic Equations of Stag@rted in a forthcoming paper (Datta et al. 1998). In the present
(EOS) for neutron star matter. A similar work based on a formanork, we have considered a conventional picture assuming the
ism due to Komatsu et al. (1989) (KEH formalism) was done Byeutron star core to be composed of only beta-stable nuclear
Cook et al. (1994) for purpose of studying quasi-stationary ev@atter. Even in this picture, the determination of the EOS of
lution of isolated neutron stars. An alternative approach basgg/mmetric nuclear matter to describe the core of the neutron
on spectral methods was developed by Bonazzola et al. (19983, remains a formidable theoretical problem. In fact, one has
Extensive calculations using the spectral method for a bro#@dextrapolate the EOS to extreme conditions of high density
set of realistic EOS of neutron star matter were presentedaifd high neutron-proton asymmetg. in a regime where the
Salgado et al. (1994a; 1994b). EOS is poorly constrained by nuclear data and experiments.

A key input in determining the structure of neutron stars fstrophysical observational data, such as based on the binary
the EOS of high density matter. The work of Friedman et dulsar PSR 1913+16, which givie4 M, as the mass of the

(1986) and that of Cook et al. (1994) make abundantly clea@utron star in the binary (Taylor & Weisberg 1989) and analy-
sis of Vela pulsar postglitch timing data can be used to broadly

* Also at Raman Research Institute, Bangalore 560 080, INDIA rule out very soft EOS (Datta & Alpar 1993). Recently, some

1. Introduction
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new EOS of asymmetric nuclear matter have been calculafidte four velocity (#) of the matter can be written as
and applied to the study of non-rotating neutron stars (Baldo et
al. 1997; Prakash et al. 1997; Bombaci 1995). These EOS are
based on (i) a microscopic Brueckner-Bethe-Goldstone many;
body approach and (ii) a phenomenological model based on (1 — v2)1/2
effective nuclear forces. These satisfy the basic requirements

of reproducing the empirical saturation point for symmetric nu- Substitution of the above into Einstein field equations pro-
clear matter, the symmetry energy and the incompressibiljgcted on to the frame of reference of a ZAMO yield three el-
parameter at the saturation density (see Table 1). These motiglis equations for the metric potentials v andw and two
have the desirable physical feature that the velocity of soundiirear ordinary differential equations for the metric potential
the medium does not violate the causality condition. Therefof&omatsu et al. 1989; Butterworth & Ipser 1976; Bardeen &
these can be taken to bealistic EOS, and so it would be of Wagoner 1971). In the KEH formalism (Komatsu et al. 1989),
interest to see the equilibrium rotating sequences that wouldtbe elliptic differential equations are converted to integral equa-
possible with these EOS. In this paper we report calculatioti@ns for the metric potentials using Green'’s function approach.
of equilibrium sequences of rapidly rotating neutron stars in From the relativistic equations of motion, the equation of
general relativity for these new realistic EOS models. The varydrostatic equilibrium for a barytropic fluid may be obtained
ious equilibrium sequences that we construct are normal aasi

supramassive evolutionary sequences of constant rest mass. In

addition, we build equilibrium sequences for a constant value P op 0

of rotation rate corresponding to a periodf= 1.558 ms of _ ot ¢

the millisecond pulsar PSR 1937+21 (Backer et al. 1982), kP =t = /Pp (e+P) Inu” = Iner, = /5 F()de)
most rapidly rotating pulsar known.

(1,0,0,9) (5)

whereh(P) is termed as the specific enthalgy,, u' are the
2. Rapidly and rigidly rotating relativistic stars rescaled values of pressure and t-component of the four velocity
) ) respectively and,, is the specific enthalpy at the polE(Q}) =
The space-time around a rotating neutron star can be descripggl, s the integrability condition imposed on the equation of
in quasi-isotropic coordinates, as a generalization of Bardeeﬁ%rostaﬂc equilibrium, and it can be physically interpreted as
metric (Bardeen 1970): the rotation law for the matter constituting the neutron star. An
appropriately chosen value bf, defines the surface of the star.
ds? — Gudatdz” (v = 0,1,2,3) Equation (5) shows th?t the hydros_t:_altic equilibrium equation is
o2 L Bay a2 ) yp 2. 2 integrable ifP(e) andu‘uy are specified.
= —"Pdi" 4 " (r7d6” 4 dr”) + 7 Prsin”g As shown by Bardeen 1970 (see also Butterworth & Ipser
(d¢ — wdt)® (1) 1976), the quantity:‘u, is a function of2 only. Komatsu et al.

1989) have suggested the following specific form FgK2):
whereg,,,, is the metric tensor. The metric potentialsp, «, ( ) have sugg wing specit Figy)

and the angular velocity of the stellar fluid relative to the local
inertial frame @) are all functions of the quasi-isotropic radiaIF
coordinate £) and the polar angleéd]. We use here geometric

unl_ts: ¢ =1=G.Weassume a perf_ect_flwd d?SCI’IptIOI’l, fo\cvhereA is a rotation constant such that whén— oo, the
which the energy momentum tensor is given by:

configuration approaches rigid rotation (that§s,= €2.) so
thatF'(Q2) is finite. Furthermore, wheA — 0, the configuration

(@) = A%(Q - Q) (7)

T = (e+ P)ufu” + Pg"” 2) should approach that of rotation with constant specific angular
_ _ momentum.
wheree is the total energy density? the pressure and" the On substituting Egs. (5) and (7) into Eq. (8), we have the
unit time-like four velocity vector that satisfies hydrostatic equilibrium equation as
utu, = —1 3 1
3 hP)=hy = slp+pp—7—p —In(l—2") +

The proper velocity of the matter, relative to the local Zero 2

Angular Momentum Observer (ZAMO), is given in terms of the
the angular velocity2 = v /u° of the fluid element (measured _ _
by a distant observer in an asymptotically flat space-time), B{1€ré7» andp, are the values of the metric potentials at the

the following equation (see Bardeen 1970): pole, and2 = .. . o )
Therefore, the hydrostatic equilibrium equations at the cen-

tre and equator for a rigidly rotating neutron star become re-
v = (Q—w)rsinfe™” (4) spectively

AX(Q - 0,)2] (8)
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Table 1. Saturation properties for the various equations of state used in the presentrwbfk=3] is the saturation number density,
E,/A[MeV/fm?] the corresponding energy per nucleon &g eV the incompressibility of symmetric nuclear mattg,, ., (n, ) [MeV)
is the symmetry energy at the saturation point. In the last row we report the empirical saturation properties of nuclear matter.

EOS interaction No E,/A K, Esym(no)
BBB1 AV14+TBF 0.178 —16.46 253 325
BBB2 Paris+TBF 0.176 —16.01 281 32.9

BPAL21  Skyrme-like 0.160 —16.00 180 30.0
BPAL32  Skyrme-like 0.160 —16.00 240 30.0

emp.satprop. 0.17 £0.01 —16+1 220430 30 +2

Table 2. Maximum mass non-rotating models: the listed quantities are EOS models, central depgityiits ofg em ™2 , gravitational mass
(M¢g) in solar units, radiusR) in km, baryonic massiX/,) and proper mass\{p) in solar units and lastly the radius,(;) of the innermost
stable orbit inkm. Note: the numbers following the letter E in column 2 of this and the subsequent tables, stand for powers of ten.

EOS ce Ma R Mo M,  Tort 1
(gem™) (Mo) (km) (Mo) (Mo) (km)  (gem?)

BBB1 3.09E+15 1.788 9.646 2.082 2.356 15.845 1.428E+45
BBB2 3.12E+15 1.917 9.519 2261 2.608 16.984 1.593E+45
BPAL21 3.51E+15 1.684 9.292 1940 2222 14921 1.191E+45
BPAL32 2.67E+15 1.947 10.509 2.263 2579 17.254 1.826E+45

Here,r is the proper time anll’ is the effective potential given
by

1
h(Pe) = hy = 5 [+ pp= Ye = pe] = 0 )
(Yo + Pp — Ve — pe) — I[1 — (R — we)?*rZe™>P<] = 0(10) ?/r?

evY—pP

V2 = evtr {1 +

where the subscripts p, e and c on the variables stand respectively

for the corresponding values at the pole, equator and centerThe conditions for circular orbits, extremum of energy and min-
We solve (numerically) the integral equationsfofy andw, imum of energy are respectively:

the ordinary differential equation (#) for the metric potential

«, together with Egs. (8), (9) and (10), iteratively to obtain

} + 2wEl — W32 (14)

~, a, w, the equatorial coordinate radius), angular velocity E> = V° (15)
(€2), and the densityef and pressureK) profiles. V, =0 (16)
Vir > 0. a7

2.1. Innermost stable orbits ) )
For marginally stable orbits,
Since the metric (1) is stationary and axisymmetric, the energy

and angular momentum are constants of motion. Therefore, for
a particle in stable orbit around the neutron star, the specifig. = 0. (18)
energyE (in units of the rest energyoc?, wheremy is the ) ]
rest mass of the particle) and the specific angular momehtuff OUr notation, a comma followed by one represents a first
(in units ofmoc) can be identified as-p, andps respectively, order partial deer&th? with respecttoetc.. '
wherep,, (1 = 0,1,2, 3), stands for the four-momentum of the From the expression for the effect_lve potential an_d the_ con-
particle. From the conditiop, p" = —1, we have the equationsd't'ons (15), (16) and (18), one obtams_ th_ree e_quatlon_s in the
of motion of the particle (confined to the equatorial plane) ifiree unknowns: namely, £, andi. In principle, if analytical
this gravitational field as expressions foe?*7, e2*, ¢7~# andw are known, it would be
a straightforward exercise to solve these equations to obtain
E, and!. In practice, however, this is not so, and the solutions

i dt =0 = e~ (7P (E — wl) (11) for the metric coefficientg¥+?, 2, e_V*P, andw have tq be
37' l obtained as arrays of numbers for various valuesawidé using
¢ £ — = = 67(’y+p)w(E —wl) + - (W_M( ) a numerical method. Furthermore, the condition (18) will intro-

duce second order derivativesgfp, andw, which means that

2 . . . . .
care has to be exercised in ensuring the numerical accuracies

2 = ety (dr) = B2 V2 (13) ;

dr of the quantities calculated. For this purpose, it is convenient to
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express and! in terms of the physical velocityusing Eq. (4) 5. usingthese values oft!, Qi1 pi, ~%, of, &%, equation
(Bardeen 1972) as: (9) is solved to obtain the matter energy distribution
namelye !, P+l i+l etc,
6. theintegral equations for the metric potentials are solved

B _ e(Y+p)/2 to obtainpi+!, vi+1, »i+! andaitl.

E—uwl —_— (29) ) "
V1—v? 7. steps (1) to (6) are repeated untilconverges to within
vre(1—p)/2 atolerance of0~5.

-v Oncer, converges, the metric potentialsy, w anda together

Egs. (19) and (20) can be recognized as the condition for circuféf the density §) and pressurel) profiles can be used to
orbits. Conditions (16) and (18) yield respectively, compute the structure parameters (see Cook et al. 1994).

4. New Equation of State models

,::l:(\/72p42 Wy + po) +12(72 — p2)+ _ _ _
v e 2y p) 105 = %) 4.1. Microscopic equation of state

67p7”2w,r)/(2 +r(ve —pr) (21)  In a microscopic approach the input is the two-body nucleon-
r 1 1 nucleon (NN) interaction, described by so-caltedlisticinter-
Virp = 2 L(P?r - ’Y,zr) - iefzpw?ﬂ‘s —prt - v? actions like the Argonne, Bonn, Nijmegen, Paris, Urbana poten-
_ tials (see.g.Machleidt 1989). The theoretical basis to construct
247 = pr)lov, — e Pwpry these realistic NN potentials is the meson-exchange theory of
+g(7’2r — P,Qr) —er’w, v, =0 (22) nuclear forces. In this scheme, nucleons, nucleon resonances

(e.g-A(1232)), and mesons such as p andw, are incorpo-

where we have made use of Eq. (21) and its derivative witfted in a potential representation. The various parameters in
respect to r in order to eliminate the second order derivativedil¢ Potential are then adjusted to reproduce the experimental
Eq. (22). The zero of’,.,. will give the innermost stable circular data for the two-body problem (deuteron properties and NN
orbit radius ¢.,4). In Eq. (21), the positive sign refers to the coscattering phase shifts). Then one has to solve the complicated
rotating particles and the negative sign to the counter-rotatifittny-body problem to get the EOS.

particles. In this study we have considered only the co-rotation Recently, Baldo et al. (1997), hereafter BBB, have com-
case. puted a new EOS of beta-stable nuclear matter, and with this

EOS they have calculated the structure of non-rotating neutron
_ stars. Intheir approach, the energy per nucleon of nuclear matter
3. Numerical procedure is obtained in the Brueckner-Hartree-Fock (BHF) approxima-

The numerical procedure followed by us is the KEH formalisniOn Of the Brueckner-Bethe-Goldstone theory. The only input

This is based on an earlier work by Hachisu (1986) which hggantity for these calculations is the nuclear interaction. In their
a self-consistency requirement that requires that the maximggiculation BBB used the Argonne v14 (Av14)) (Wiringa et
(central) energy density. and the ratio of the polar to equatoriaf"l' 1984) or the Par.|s (Lacombe et al. 1980) two-body nuclear
radial coordinates, /. be fixed for each iterative cycle. ¥, force, implementedin both cases by the Urbanathree-body force

~i, af andri are the values of the corresponding paramete‘r-EBF) (Carlson et al. 1983; Schiavilla et al. 1986). As is well
during theithe iterative cycle, then: known, the need for a TBF arises to obtain a correct saturation

point of symmetric nuclear matter in a non-relativistic many-

1. these values are first scaled (divided)¥)? to obtain body approach. In the following we refer to the EOS obtained
5,4 and@’ respectively. in BBB with the Av14+TBF and Paris+TBF, as the BBB1 and

2. anew value of, is calculated using Eq. (10) fer= e, BBB2 equation of state respectively. The saturation properties
i.e.v = 0so that for these two microscopic models are summarized in Table 1,

and the calculated speed of sound is shown in Fig. 1. The latter
always remains within the causality bound.

Vo T Pp Ve T Pe 4.2. Phenomenological equation of state
3. the value of2. is computed from Eq. (11) as In this case the input is a density-dependent effective NN in-
teraction. The most popular of this kind of interaction is the
) ) ; e Skyrme interaction (Skyrme 1956). In the present work we used
Q= @l e |1 e(wﬁ‘)”_%_”f’)} (24) a generalized Skyrme-like EOS developed in ref. (Prakash et al.
1997; Bombaci 1995), and we refer to it as the BPAL EOS.
4. the values of the three scaled metric potenfigl§’ and An important feature of the BPAL models is the possibility to

&' are rescaled (multiplied) bgi1)? have different forms for the density dependence of the potential
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Table 3. Maximum mass rotating models: the listed quantities are EOS models, central degsityupnits of g cm = , angular velocity )
in units of10* rad s~! of the neutron star as measured by an observer at infinity, moment of in@rtiir(eutron star in units af0*> g em?,
gravitational massN/¢) in solar units, ratio of the rotational energy to the total gravitational enéfgy\(), radius ) in km, eccentricity
(e), ratio of inertial frame dragging at the center of the star to the rotationaa.), angular momentumJ) in 10*° cgs units, radiusi{,;)
of the innermost stable orbit ikim, the polar ¢,), forward (Z¢) and backwardZs) redshifts, baryonic masd{o) and proper mass\W{r) in
solar units.

EOS € Q I Mg T/W R e we/QU% J Tew Zn  Zy  Zy My M,

BBB1  2.56E+15 1.095 2.428 2.135 0.120 13.129 0.703 0.764 2.658 13.490 0@P830 1.975 2.471 2.734
BBB2  2.82E+15 1.203 2.539 2.272 0.123 12.519 0.687 0.825 3.055 13.550 0-&84849 2.483 2.653 3.008
BPAL21 3.03E+15 1.115 1.904 1.966 0.105 12.604 0.697 0.764 2.123 12.674 084323 1.811 2.253 2.530
BPAL32 2.27E+15 1.001 3.005 2.300 0.113 14.276 0.699 0.771 3.008 14.611 0G-®/328 1.933 2.657 2.962

1.0 1.5
L 1 1of- .
09 ; BPAL32 B} L ]
B ] 05F -
: 18 ;
08— — X 00f -
L 1 % i 1
L B o r ]
o L 1l @ -osp -
2 + . [ ]
- - —-1.0 - N
i ] s ]
0.6~ -] 71.5{/,/ -
r b R R R B
B ] 0.4 0.6 0.8 1.0 1.2 1.4 1.6
05— — log(e/10%)
B 1 Fig.2. Pressure as a function of density for the new EOS models.
| Curves 1-4 stand for BBB1, BBB2, BPAL21 and BPAL32 respectively.
0.4 - ‘ ‘ ‘ ‘ ‘ Also shown for comparison are the EOS models BPAL12 (Bombaci
0.5 1.0 4 1.5 1995) a very soft EOS (represented by BPAL12 in figure) and Sahu,
n (fm™7) Basu & Datta (1993) a very stiff EOS (represented by CSM in figure).

Fig. 1. Speed of sound in beta-stable nuclear matter as a function of

the nucleon number density for different models of EOS used in théthe proton fraction (Lattimer et al. 1991; Page & Applegate
present work. The three continuous lines refer from top to bottom 9992)_

the figurc_e to _the BB_Bl, BPAL32 and BPAL21 model respectively; the In Fig. 2 we plot the pressure-density relationship for EOS
dashed line is relative to the BBB2 EOS. The dot on each curve givesyjels BBB1, BBB2, BPAL21 and BPAL32 (cursd - 4) and
::r:)?qfsi pj;(:igrf] ?grutr;](;taég]; :]izt:lr of the non-rotating maximum Matso compare it with two other EOS models, one of which is
g ' avery softtOS BPAL12 (Prakash et al. 1997; Bombaci 1995)
and the other &ery stiffEOS (Sahu et al. 1993):

(1) Soft:BPAL12(Prakash etal. 1997; Bombaci 1999 his
partEg’;fn(n) of the nuclear symmetry energy, modelling difEOS is characterized b, = 120 MeV andEgyO; ~ n. The
ferent results predicted by microscopic calculations (Wiringalue 120 MeV for the incompressibility is unrealistically small
et al. 1988, Bombaci & Lombardo 1991). In particulal,?,,  when compared with the val220+30 MeV extracted from nu-
is proportional to the nucleon number densityn the case of clear phenomenology (Blaizot 1980; Myers & Swiatecky 1996),
BPAL32, and to\/n in the case of BPAL21 EOS. The dentowever BPAL12 EOS is still able to sustain the measured mass
sity dependence of the symmetry energy plays a very importdm4 M, of the pulsar PSR1913+16 as the maximum gravita-
role in the physics of neutron stars. This function determingenal mass of non-rotating neutron stars constructed with this
the proton fraction in beta-stable nuclear matter, which, in tufBOS is1.46 M, .
is crucial for an accelerated rate of cooling of a neutron star (2) Stiff: Sahu et al. (1993)This is a field theoretical EOS
through the so-called direct Urca process above a critical valoe neutron matter in beta equilibrium based on the chiral sigma
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Table 4. Maximum angular momentum models

EOS e Q I Mg T/W R e we/QU% J Tew Zn Zf  Zy My M,

BBB1  2.44E+15 1.079 2.465 2.133 0.120 13.264 0.706 0.756 2.660 13.558 0-@&r328 1.935 2.468 2.721
BBB2  2.82E+15 1.203 2.539 2.272 0.123 12.519 0.687 0.825 3.055 13.550 0-84349 2.483 2.653 3.008
BPAL21 2.91E+15 1.100 1.933 1.965 0.106 12.730 0.699 0.757 2.125 12.733 0G-@3821 1.779 2.252 2.519
BPAL32 2.14E+15 0.981 3.070 2.299 0.114 14.481 0.702 0.760 3.011 14.713 086326 1.881 2.655 2.944

model. The model includes an isoscalar vector field generated
dynamically and reproduces the empirical values of the nuclear
matter saturation density and binding energy and also the isospin®© -
symmetry coefficient for asymmetric nuclear matter. The en- r
ergy per nucleon of nuclear matter according to Sahu et al. |
(1993) is in very good agreement, up to about four times the |
equilibrium nuclear matter density, with estimates inferred from L
heavy-ion collision experimental data. The maximum gravita- | .|
tional mass of non-rotating neutron stars constructed with this
EOSis2.59 M, .

For our computations, we constructed the composite EOS
for the entire span of neutron star densities by joining the new
high density EOS models to that of Negele & Vautherin (1973¥ r
for the density rangel('* — 5 x 10'°) g cm~3 , Baym et al. 1.0
(1972) for densities down te 102 g cm 2 and Feynman et al. L
(1949) for densities less thd3 g cm =3 .

5. Results and discussion L

The equilibrium sequences of rotating neutron stars depend on®-2 |~
two parameters: the central density)(and the rotation rate r
(€2). For purpose of illustration, we choose three limits in this -
parameter space. These are: (i) the static or non-rotating limit, L
(ii) the limit at which instability to quasi-radial mode sets in and
(iii) the centrifugal mass shed limit. The lastlimit correspondsto ool .« | v v 1 v o v v 0 L0y
the maximunt?2 for which centrifugal forces are able to balance 144 146 14.8 15.0 15.2 15.4 15.6
the inward gravitational force. log(p)

Table 2 summarizes the non-rotating neutron star structiy:

das. 3. The functional dependence of the gravitational mass with cen-
parametes for the EOS models BBB1, BBB2, BPAL21 arny | density for EOS model BBBL1. In this and all subsequent figures, the

BPAL32. The values listed correspond to the maximum stggq solid curve represents the non-rotating or static limit, and the bold
ble mass configuration. The entries in this table are the cenaénhed curve the centrifugal mass shed limit. The long dashed curve is
density €.), the gravitational mass\{), the rest (baryonic) the constanf2 sequence corresponding to the perid= 1.558 ms.

mass (/) of the neutron star and the radiuB)( The maxi- The thin solid curves that are roughly horizontal are the constant rest
mum mass is an indicator of the softness/stiffness of the E@8ss evolutionary sequences. The evolutionary sequences above the
and its values as listed in Table 2 reflect that the EOS modgl8ximum stable non-rotating mass configuration, are the supramas-
used are all intermediate in stiffness. Among these, BPAL21S¥e evolutionary sequences and those that are below this limit, are the
the softest EOS and BPAL32 the stiffest one. normal evolutionary sequences. The almost vertical thin dashed line

In Table 3 we list the followina quantities corres ondinée the limit for instability against quasi-radial modes. The supramas-
94 P ive evolutionary sequences beyond the quasi-radial mode instability

t‘? the ma>.<|mum gravitational m.ass gonflgurgtlons: central dqpﬁit are represented by dotted lines. The numbers against some of
sity, rotation rate, moment of inertid, gravitational mass, the curves in this and all subsequent figures represent the baryonic

ratio of rotationgl kine.tic energy to 'total graviat'ional ENerG¥ass for the corresponding sequence; the equilibrium sequence that
(T'/W), equatorial radius, eccentricitg)(wheree is defined nhas1.4 M, configuration at the static limit is represented by an aster-

to be,/1 — R2/R?, R, being the polar radius of the configu- sk againstit.
ration, ratio of rotation ratew(.) of stellar fluid relative to the
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L4l s ‘ EOS BBB1 4

1.2

|- 4 3 /| .
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i ,
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’ / \
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R (km) cd/GM,
Fig. 4. Gravitational massi/¢) in solar units versus equatorial radius,:ig. 5. Neutron star rotation rateé?) in units of 10* rad s~* versus
(R) in km for EOS model BBB1. its specific angular momentura{/GMZ2) for EOS model BBB1. The

inset shows a close up view of the region surrounding the instability

inertial frame at the centre of the star to the rotation rate, tH@'t to quasi-radial mode near the mass shed limit.

angular momentuml), the value of the radius of the innermost

stable orbit {,,;), the polar, forward and backward redshifts The results of our computations for rotating neutron stars
(Zp, Z¢, Zp), the rest massM{p) and the proper mass\{,) corresponding to the four new EOS models are given below.
of the neutron star. The values of these quantities are listed in

Table 4 for the maximum angular momentum models. Fro

Table 3, it can be seen that the gravitational mass of the mgg' EOS model BPAL21

imum stable rotating configuration has a value that is closeThe normal sequences for this EOS have rest mgga/, <

2 My, . Interestingly, this is close to predictions from analysis.9395 and supramassive sequences have rest N385 <

of LMXB observational data (Zhang et al. 1996). Therefore, it/y/M, < 2.2515.

the internal constitution of the compact star in LMXBs were to
be described by thg EOS models that we have considered hg_rs_, EOS model BBB1
and furthermore, if it were to have a mas® M, , the star has

to be rotating near centrifugal break-up speeds (rotation peridd$-ig. 3 we show the functional dependence of the gravitational
~ 0.5 ms). Interestingly, for such configurations, it can be se@mass with central density. In this and all subsequent figures, the
from Table 3, that the separation of the innermost stable orbitld solid curve represents the non-rotating or static limit, and
from the neutron star surface (namely, the boundary layer éike bold dashed curve the centrifugal mass shed limit. The long
tent) is highly EOS dependent. This separation ranges@roin dashed curve is the constantsequence corresponding to the
km to1.031 km. This relatively large spread can be understogeeriod P = 1.558 ms. The thin solid curves that are roughly

in terms of the spreads on valuesepfand(2 corresponding to horizontal are the constant rest mass evolutionary sequences.
the centrifugal mass shed. These results will have relevanc&hre evolutionary sequences above the maximum stable non-
modeling LMXBs/QPOs. For such neutron stars as the centratating mass configuration are the supramassive evolutionary
objectsin LMXBs, there will be a very significant re-ordering ofequences, and those that are below this limit are the normal
the contributions of the disk and the boundary layer luminositiesolutionary sequences. The almost vertical thin dashed line is
to the total luminosity (Thampan & Datta 1998). the limit for instability against quasi-radial modes. The supra-
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Table 5. Constant2 sequences: the sequences have angular velocity of the fastest known pulsar PSR 1937+21

EOS e Q I Mg T/W R e we/QU% J Tew Zn Zf  Zy My M,

BBB1  5.21E+14 0.403 0.370 0.511 0.057 16.199 0.766 0.192 1.490 0.000 O-@¥867 0.326 0.526 0.539
6.00E+14 0.403 0.510 0.658 0.048 12.950 0.603 0.237 2.052 0.000 04403 0.315 0.686 0.704
1.00E+15 0.403 1.195 1.279 0.028 11.697 0.425 0.430 4.815 0.000 0.236 0.005 0.478 1.405 1.467
1.40E+15 0.403 1.522 1.590 0.021 11.201 0.361 0.546 6.130 12.478 0.334 0.078 0.607 1.799 1.914
1.90E+15 0.403 1.619 1.749 0.016 10.678 0.321 0.632 6.520 13.695 0.413 0.141 0.708 2.015 2.189
2.40E+15 0.403 1.587 1.805 0.014 10.248 0.297 0.686 6.391 14.188 0.463 0.185 0.769 2.096 2.319
2.90E+15 0.403 1.517 1.818 0.012 9.900 0.280 0.722 6.109 14.356 0.498 0.216 0.807 2.117 2.380
3.00E+15 0.403 1.501 1.819 0.012 9.839 0.278 0.729 6.047 14.369 0.503 0.221 0.813 2.117 2.388
3.30E+15 0.403 1.455 1.815 0.011 9.666 0.270 0.744 5.858 14.378 0.517 0.235 0.827 2.112 2.404
3.40E+15 0.403 1.439 1.814 0.011 9.613 0.268 0.750 5.796 14.374 0.521 0.239 0.831 2.110 2.408

BBB2 5.01E+14 0.403 0.396 0.525 0.059 16.359 0.768 0.194 1.596 0.000 0O-@B069 0.331 0.541 0.554
6.00E+14 0.403 0.587 0.713 0.048 12.965 0.590 0.250 2.363 0.000 041897 0.327 0.746 0.767
1.00E+15 0.403 1.232 1.292 0.029 11.833 0.429 0.431 4.964 0.000 0.236 0.002 0.481 1.416 1.482
1.40E+15 0.403 1.576 1.626 0.021 11.236 0.358 0.558 6.346 12.738 0.344 0.084 0.622 1.842 1.967
1.90E+15 0.403 1.733 1.838 0.015 10.604 0.309 0.665 6.978 14.386 0.453 0.169 0.764 2.134 2.341
2.40E+15 0.403 1.732 1.920 0.013 10.122 0.281 0.730 6.976 15.095 0.529 0.230 0.859 2.254 2.530
2.90E+15 0.403 1.676 1.943 0.011 9.762 0.264 0.772 6.751 15.349 0.577 0.272 0.919 2.291 2.621
3.10E+15 0.403 1.648 1.944 0.011 9.641 0.259 0.784 6.636 15.383 0.592 0.285 0.936 2.292 2.641
3.30E+15 0.403 1.619 1.943 0.010 9.531 0.255 0.795 6.522 15.397 0.604 0.296 0.950 2.291 2.656
3.40E+15 0.403 1.605 1.942 0.010 9.480 0.253 0.800 6.464 15.398 0.610 0.301 0.956 2.289 2.662

BPAL21 5.19E+14 0.403 0.593 0.646 0.063 17.528 0.767 0.221 2.388 0.000 0-@#78 0.368 0.671 0.687
6.00E+14 0.403 0.698 0.758 0.053 14.288 0.631 0.256 2.812 0.000 041318 0.348 0.793 0.815
1.50E+15 0.403 1.336 1.487 0.021 11.290 0.370 0.528 5.382 11.750 0.300 0.054 0.560 1.663 1.775
2.05E+15 0.403 1.382 1.632 0.016 10.582 0.324 0.616 5.565 12.854 0.375 0.119 0.650 1.858 2.027
2.50E+15 0.403 1.353 1.683 0.013 10.139 0.300 0.666 5.447 13.297 0.420 0.158 0.702 1.930 2.141
2.95E+15 0.403 1.302 1.705 0.012 9.779 0.282 0.702 5.245 13.513 0.454 0.190 0.740 1.961 2.208
3.80E+15 0.403 1.197 1.706 0.010 9.258 0.260 0.751 4.820 13.611 0.498 0.233 0.786 1.964 2.268
4.65E+15 0.403 1.100 1.687 0.008 8.874 0.247 0.784 4.431 13.528 0.525 0.262 0.812 1.936 2.284
5.55E+15 0.403 1.013 1.660 0.007 8.562 0.238 0.809 4.082 13.368 0.544 0.283 0.827 1.895 2.279
5.95E+15 0.403 0.974 1.643 0.007 8.438 0.234 0.818 3.925 13.267 0.549 0.290 0.830 1.870 2.266

BPAL32 4.21E+14 0.403 0.903 0.764 0.076 18581 0.776 0.234 3.639 0.000 O0O-I0687 0.403 0.797 0.814
6.00E+14 0.403 1.364 1.120 0.051 14.448 0.572 0.333 5.493 0.000 0A®V88 0.430 1.198 1.234
1.00E+15 0.403 1.959 1.621 0.031 13.062 0.434 0.494 7.888 0.000 0.284 0.008 0.577 1.808 1.904
1.40E+15 0.403 2.124 1.848 0.022 12.239 0.371 0.595 8.554 14.331 0.370 0.078 0.686 2.108 2.268
1.90E+15 0.403 2.086 1.955 0.017 11.488 0.329 0.673 8.401 15.191 0.443 0.141 0.775 2.261 2.493
2.30E+15 0.403 1.996 1.982 0.015 11.032 0.306 0.715 8.037 15.463 0.483 0.177 0.821 2.300 2.582
2.70E+15 0.403 1.895 1.984 0.013 10.664 0.290 0.746 7.631 15.548 0.512 0.205 0.853 2.305 2.627
3.00E+15 0.403 1.821 1.977 0.012 10.433 0.281 0.765 7.333 15.544 0.529 0.221 0.870 2.295 2.645
3.50E+15 0.403 1.706 1.958 0.011 10.109 0.270 0.789 6.872 15.462 0.549 0.243 0.889 2.267 2.656
4.40E+15 0.403 1.533 1.915 0.009 9.665 0.256 0.820 6.176 15.218 0.572 0.270 0.906 2.202 2.645

massive evolutionary sequences beyond the quasi-radial modatron star should have a central density of aticit< 10'°
instability limit are represented by dotted lines. The maximugem =3 .

mass sequence for this EOS corresponds to a rest mass valug, Fig. 4 we give a plot of\/:; as a function ofR. For the

of 2.471 Mg, . The supramassive sequences lie in the rest Masfisecond pulsar PSR 1937 + 21 with an assumed mass value
range oR.356 My < My < 2.471 Mg, . The gravitational mass ¢ | 4 My, , this corresponds to a radius tf km.

of the maximum stable rotating configuratior2i$35 M and In Fia. 5 we displav the plot function of th ii
its radius is13.129 km. If we assume that the fastest pulsar N Fig. > we dispiay the piot dk as a function of the Specitic

5 . i .
known to date, PSR 1937+21, has the canonical mass val ngular momentura//G'Mg. The inset shows a close-up view

of 1.4 M, and is described by EOS model BPAL21, then thig the region surrou_ndlng the mstablll'_[y _I|m|t_to qua5|-rad|al_
mode near the centrifugal mass shed limit. It is clear from this
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Fig.6. M¢ - e, relationship for EOS models BBB2. Fig.7. Mc - R variation for BBB2.

figure that the maximum mass rotating model (representedﬁa'sgay the corresponding figures for the former EOS models

the plus sign) has a lower angular velocity than the maxinium- In Table 5 we list the values of the various parameters for

model (represented by the intersection of the line represent'L .
the instability to quasi-radial modes with that of the centrifug E'% cpnstanﬂ sequences for thg four EOS models gopsudered
in this work. In generaly,,;, exhibits three characteristics: (a)

mass shed limi) rorp 1S NON-existent (b),,, < R, and (¢)r,, > R. For the
first two casesy,,;, is taken to be the Keplerian orbit radius at

5.3. EOS model BBB2 the surface of the star. From Table 5 it can be seen that for low
central densities, stable orbits can exist all the way up to the

The equilibrim sequences for BBB2 are displayed on Figs. 658 t4ce of the neutron star but for high enough central densities,

for the same representative set of parameters as for EOS meglgly o ndary layer (the separation between the surface of the
BBB1 ) _ neutron star and its innermost stable orbit) can be substantial
For this EOS, the supramassive sequences have rest magseskm for the maximum value of the listed central densities).

between2.261 M and 2.653 M and the maximum massThese results will have applications in modeling accretion flows
at mass shed limit i2.272 M, with an equatorial radius of j, | MXBs.

12.519 km. We now make a brief reference to other similar work. For
equilibrium Keplerian angular velocity corresponding to the pe-
5.4. EOS model BPAL32 riod of millisecond pulsar PSR 1937+21 and an assumed mass

of 1.4 M, for the neutron star, Friedman et al. (1986) suggest
This EOS model being the stiffest out of the four models that weat stiff EOS for neutron star interior are favoured. A similar
consider here, has the highest value for the maximum rotatiegnclusion but based on a pulsar glitch model and the crustal
gravitational mass(3 Mg, ). The rest masses of supramassiviioment of inertia considerations has been reported by Datta
sequences lie in the ran@e263 M., < My < 2.655 M, . & Alpar (1993). The work of Friedman et al. (1986) show that
Since the behaviour af/ with ¢, and R and that of with for a given EOS, the models with maximum gravitational mass
cJ/GM¢ for EOS models BPAL21 and BPAL32 are more oalso have the greatest frequency of rotation. Cook et al. (1994)
less similar to those for EOS models BBB1 and BBB2, we do nfatund that while models with maximum gravitational mass also
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Fig.8. Q - ¢J/GM§ variation for BBB2.

(due to stability conditions defined by Friedman et al. 198
have the maximum rotation rafe, the models for maximum

gravitational mass and maximughéo not in general coincide. 22:;;136%‘ B;gﬁaiéo?;ga %;)Llj?;jdlﬁgi él6|’-|;2£zse| P 19942 ASA
In particular, for EOS models that display causality violation 201, 155 N v ” ’
near or before the maximum stable mass non-rotating config- 1994b, A&AS 108, 455

uration, the maximun§2 model occurs before (in central denchjavilla R., Pandharipande V. R., Wiringa R. B., 1986, Nucl. Phys.
sity and{2) the maximum mass model at the mass shed limit. aA449, 219

The EOS models that we have considered here do not violgtgrme T. H. R., 1956, Philos. Mag. 1, 1043

the causality condition until well beyond the maximum stabl&ylor J. H., Weisberg J. M., 1989, ApJ 345, 434

mass non-rotating configuration. Our computations show tidtampan A. V., Datta B., 1998, MNRAS (in press)

the maximum gravitational mass rotating models for these E®&inga R. B., Smith R. A., Ainsworth T. L., 1984, Phys. Rev. C29,
occur (in central density and) before the maximung mod- 1207 , .

els. In view of absence of correlation between QPO frequenf{finga R. B., Fiks V., Fabrocini A., 1988, Phys. Rev. C38, 1010

and source count rate (as suggested by recent observations,Z aed W., Lapidus I., White N. E., Titarchuk L., 1996, ApJ 469, L17
Berger etal. 1996; Zhang et al. 1996), our results on marginally

stable Keplerian orbits corresponding to realistic EOS will have

application in understanding kilo-Hertz quasi-periodic oscilla-

tions in X-ray binaries in terms of strong-field general relativity,

where rapid rotation of the accreting neutron star is important.
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