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Abstract. Based on reasonable assumptions and mathematical
approximations a one dimensional, analytical model for solar
quiescent prominences is constructed, which is in both magneto-
hydrostatic and thermal equilibrium. Thermal equilibrium here
is a balance among thermal conduction, radiation and wave heat-
ing. The wave heating(H) is assumed to be equal to a constant
(EH ) times the product of pressure (p) and density (ρ). We find
the limit on the value ofEH for existence of prominence type
solution. For given values ofEH , temperature at the center of
prominence(T0), gas pressure at the center of prominence(p0)
and the temperature at the edge of prominence(T∗), we found
the following limits on the variables for the existence of the
equilibrium: (1) the lower limit on the value of gas pressure at
the edge of prominence(p∗), (2) the upper and lower limits on
the length of the magnetic field line from the center to the edge
of the prominence and (3) the upper limit[W0secφ0]max on the
value ofW0 sec φ0 whereW0 is the width of the prominence
andφ0 is the shear angle.

For specified values ofT0, T∗, p0, EH and forW0secφ0 <
[W0secφ0]max there exist, in general, two types of solutions.
In Type 1 solution, equilibrium is nearly isobaric and the mag-
netic field is strong and nearly horizontal. This type of solution
is physically inadmissible when the value ofW0 sec φ0 falls
bellow a certain limit defined in the text. Conditions in this
solution approach those in a real prominence asW0secφ0 ap-
proaches[W0secφ0]max. In Type 2 solution, there is a large
variation of gas pressure from the center to the edge, and the
magnetic field is weak and nearly vertical. Conditions in this
solution also approach those in a real prominence asW0secφ0
approaches[W0secφ0]max. The physical characteristics of Type
1 and Type 2 solutions simulate those of ‘normal’ and ‘inverse’
prominences respectively as observed by Bommier et al. (1994).
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1. Introduction

Prominence is a structure in the corona which has a tempera-
ture about hundred times lower and density about hundred times
higher than in the normal corona. Many varieties of structure
fall in this category. Among them the “quiescent prominences”

are long lived and slowly changing prominence which occur
in or near dying active regions or in the quiet regions of the
Sun. The main observed features of quiescent prominences have
been reviewed by Tandberg-Hanssen(1974), Hirayama(1985)
and Zirker(1989). Observed values of plasma and magnetic pa-
rameters in quiescent prominence are listed by Engvold et al.
(1990), Jansen et al. (1990).

The central problem posed by quiescent prominence is to
explain how the quasi steady state of prominence is possible
mechanically and thermally. The earlier works on structure of
quiescent prominences were aimed at the question of mechani-
cal equilibrium. The earliest and the most famous among them is
the model of Kippenhahn-Schlüter(1957). In this model the sup-
port is by magnetic tension and the model assumes an isother-
mal structure for the prominence, so does not link prominence
plasma thermally to the ambient corona (Milne et al. 1979). The
important question of thermal equilibrium has been neglected
in this model. Some other models like Orrall and Zirker (1961),
Chiuderi et al. (1979) have addressed the problem of thermal
equilibrium, but neglected the support mechanism. Attempts to
combine the above two problem has been made by Milne et al.
(1979) and Low et al. (1981).

The object of the present work is to study the limits on the
existence of the magneto-hydrostatics and energy balance in a
simple equilibrium model of a prominence and also to study the
strength of magnetic field and width of the prominence in terms
of plasma parameters at the center and at the edge of promi-
nence. To begin with, simple assumptions are made to get an
analytical solution of the equations describing the system. The
advantage of the analytical solution lies in the fact that bound-
ary conditions can be imposed in a straight forward manner and
physical properties can be illustrated directly. This will be use-
ful in gaining the confidence needed for the future numerical
treatment of the realistic problem.

In Sect. 2, basic assumptions are described, from these and
the basic equations of magneto-hydrostatics, the equations de-
scribing the system are derived. In Sect. 3 we describe the
method of integration of these equations and boundary con-
ditions. In Sect. 4 the conditions for the existence of solutions
are derived. In Sect. 5 the nature of the solutions is discussed.
In Sect. 6 conclusions are summarized.
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2. Basic assumptions
and the equations describing the structure

Quiescent prominences last for 1–300 days. In the quiescence
state flows are observed but with speeds (typically of order of
0.5 km sec−1 to 3 km sec−1) much less than free fall speed (of
about 100 km sec−1). Thus to a first approximation the plasma
is in magneto hydrostatic equilibrium with a rough balance be-
tween the magnetic forces, plasma pressure and gravitational
forces (Priest1989).

The energy equation expresses a balance among thermal
conduction, radiative loss and existing but unidentified heating
processes.

Thermal conduction along the magnetic field is primarily
by electrons and for fully ionized H-plasma, Priest(1982) gives
the equation for finding thermal conductivity along the mag-
netic field (K‖) asK‖ = 1.8×10−10T 2.5/ln Λ, in prominence
conditions we have takenln Λ = 10. The ratio of thermal
conductivity across the magnetic field to that of thermal con-
ductivity along the magnetic field as given by Priest(1982) is
K⊥
K‖

= 2×10−31n2

T 3B2 . In the main body of prominencen≈1016

particlesm−3, T≈6000 K andB≈8×10−4 T using these val-
ues, the value of the fraction (K⊥

K‖
) is of the order of10−4.

Hence thermal conductivity perpendicular to the magnetic field
is neglected. We defineK0 = 1.8×10−11.

Expression for radiative loss given by Cox and Tucker
(1969), Hildner(1974) are valid for temperatures greater than
20,000 K. In the central region of prominence where the tem-
perature is in the range of 4400–8000 K, whereas at the edge of
the prominence temperature is in the range of 8000–12,000 K
(Jansen et al. 1990). For this range of temperature Peres et al.
(1982), expresses the radiative loss in the formLν = χρ2Tα

whereχ andα are step wise continuous functions of T for dif-
ferent ranges of T the value ofχ andα are given bellow.

T(K) χ α
4400≤T≤8000 4.49×10−30 11.7
8000≤T≤20000 1.76×10−8 6.15

To get an analytical solution, we chooseα as 11.0 instead
of 11.7 in the temperature range of 4400–8000 K and as 6.0
instead of 6.15 in the temperature range of 8000–20,000 K.
Using the condition of continuity of radiative loss at T =
8000 K, χ in the range of 8000–20,000 K is calculated as
χ = 4.49×10−30×80005 = 1.47×10−10 the new values of
χ andα are given bellow.

T(K) χ α
4400≤T≤8000 4.49×10−30 11.0
8000≤T≤20000 1.47×10−10 6.0

The exact form of wave heating is not known. Generally
it is assumed as a constant times density. This assumption is
ad hoc and justification is in mathematical simplicity. On the
same ground, we assume that heating H is proportional to the
product of density and pressure, i.e.H = EHpρ, whereEH is
a constant.

A rectangular Cartesian coordinate system is used with x-
axis along the length of the prominence, y-axis perpendicular to
the length in the horizontal plane and z-axis is in vertical direc-
tion. We assume that all the plasma parameters and the magnetic
field components vary in the direction of y only. Based on the
above assumptions, the basic equations of magneto-hydrostatics
reduce to the following set of equations.

B = [C1, C2, BZ ], (1)

dBZ

dy
=

µ0ρg

C2
, (2)

p + Bz
2/2µ0 = constant = p0, (3)

p =
R̃ρT

µ̃
, (4)

d

dy

[(
K0C2

2T 2.5

C1
2 + C2

2 + Bz
2

)
dT

dy

]
= χρ2Tα − EHpρ, (5)

whereµ̃ is the mean molecular weight,µ0 is the magnetic per-
meability of free space and all other symbols have their usual
meanings.

Thus we have four equations for four unknownsBz, p,ρ
and T. In order to solve the above set of equations we have to
specify constantsC1,C2 and four boundary conditions. Sym-
metry demands that both the temperature gradient and the ver-
tical component of the magnetic field vanish at the center of the
prominence, so that

Bz =
dT

dy
= 0, T = T0, p = p0 at y = 0. (6)

For the remaining conditions ifW0 is the width of the promi-
nence then,

T = T∗ at y = W0/2. (7)

The above set of equations reduce to a system of two equa-
tions for two unknownsBz, T in the form

dBz

dy
=

µ0g

C2

(
µ̃

R̃T

)[
p0 − B2

z/2µ0
]

, (8)

d

dy

[(
K0C2

2T 2.5

C1
2 + C2

2 + Bz
2

)
dT

dy

]

=
(

µ̃

R̃

)2 (p0 − Bz
2/2µ0)2

T

[
χTα−1 − EHR̃/µ̃

]
. (9)

To obtain the relation between T andBz, we use the formula

d

dy
=

dBz

dy

d

dBz
=

µ0g

C2

(
µ̃

R̃T

)
[p0 − Bz

2/2µ0]
d

dBz
. (10)

Using the above relation and Eq. (9), we get the following
differential equation relating f andBz wheref = T 2.5.

d

dBz

[(
p0 − Bz

2/2µ0

C1
2 + C2

2 + Bz
2

)
df

dBz

]

=
2.5(p0 − Bz

2/2µ0)
(µ0g)2K0

[
χf

α−1
2.5 − EHR̃/µ̃

]
. (11)



B.S. Nagabhushana: One dimensional prominence model 1045

By integrating the above equation, we can derive the relation
between f andBz.

3. Method of integration

Eq. (11) can be written in the form

d

dBz

[(
p0 − Bz

2/2µ0

C1
2 + C2

2 + Bz
2

)
df

dBz

]2

=
5(p0 − Bz

2/2µ0)2

(µ0g)2K0(C1
2 + C2

2 + Bz
2)

× d

dBz

[
χ2.5

α + 1.5
f

α+1
2.5 − EHR̃f/µ̃ + K1

]
,

whereK1 is a constant of integration. The quantity

Q =
(p0 − Bz

2/2µ0)2

C1
2 + C2

2 + Bz
2 ,

is a continuous and smoothly varying function ofBz, so by using
the mean value theorem, the above equation can be integrated
to get the following differential equation.

df

dBz
=

√
5[Q]

K0(µ0g)2

(
C1

2 + C2
2 + Bz

2

p0 − Bz
2/2µ0

)

×
√

χ2.5
α + 1.5

f

(
α + 1.5

2.5

)
− EHR̃f/µ̃ + K1, (12)

where[Q] represents the mean value ofQ in the range of value
of Bz. Using Eqs. (10) and (12) we get

df

dy
=

µ̃

C2R̃

√
5[Q]
K0

(
C1

2 + C2
2 + Bz

2

f0.4

)

×
√

χ2.5
α + 1.5

f ( α + 1.5
2.5

) − EHR̃f/µ̃ + K1. (13)

Eqs. (12) and (13) are elliptical. For integration, the values of
α andK1 are needed. By making use of the boundary conditions,
the value ofα andK1 can be calculated.

3.1. Conditions at the center of the prominence

LetT0 be the temperature at the center of the prominence. From
observations it is found thatT0 is in the range of 4400–8000 K
(Engvold et al. 1990, Jansen et al. 1990). For this range of tem-
peratureα = α1 = 11 andχ = χ1 = 4.49×10−30. From
Eqs. (6) and (13) we get

K1 = −χ1f0
5

5
+

EHR̃f0

µ̃
.

At the center of the prominencedfdy = 0. From observation it
is clear temperature should be minimum at the center. Hence one
must have(d2f

dy2 )y=0 > 0. Applying this condition in the above

equation, we getχ1f0
4 > EHR̃/µ̃ i.e.EH < χ1µ̃f0

4

R̃
. This tells

us that at the center of the prominence, the rate of heating should

be less than the radiative loss. To get an analytical solution, we
have takenEH = µ̃χ1f0

4

5R̃
i.e. heating at the center to be one-fifth

of the rate of the radiative loss at the center. Substituting this
the values ofEH andK1 Eqs. (12) and (13) take the forms

df

dBz
=

√
χ1[Q]

K0(µ0g)2

[
C1

2 + C2
2 + Bz

2

p0 − Bz
2/2µ0

]√
f5 − ff0

4, (14)

df

dy
=

µ̃

C2R̃

√
χ1[Q]
K0

(
C1

2 + C2
2 + Bz

2

f0.4

)√
f5 − ff0

4.(15)

Eqs. (14) and (15) are valid for4400 K ≤ T0 ≤ T ≤ T∗ ≤
8000 K. Equations forT > 8000 K will be discussed later in
the Sect. (3.3). Thus we can integrate the Eqs. (14) and (15) in
the above mentioned temperature range for T.

3.2. Integration for4400K ≤ T0 ≤ T ≤ T∗ ≤ 8000 K

Eq. (14) can be written as∫ f

f0

df√
f5 − ff0

4

=

√
χ1[Q]

K0(µ0g)2

∫ Bz

0

[C1
2 + C2

2 + Bz
2]dBz

p0 − Bz
2/2µ0

let I =
∫ f

f0

df√
f5−ff0

4
andu = f

f0
. It can verified that

I =
1√

2f0
1.5 [F (φ1|α1) − F (φ2|α1)√

3 + 21.5
],

whereF (φ1|α1) andF (φ2|α1) are elliptical integrals of first
kind, φ1, φ2 andα1 are defined bellow

sin2(φ1)=
(u + 1)/

√
2 +

√
2/(u + 1) − 3√

2

(u + 1)/
√

2 +
√

2/(u + 1) − 2

sin2(φ2)=
(u + 1)/

√
2 +

√
2/(u + 1) − 3√

2

(u + 1)/
√

2 +
√

2/(u + 1) − √
2

sin2(α1)=
2 + 21.5

3 + 21.5 .

It can also be verified that∫ Bz

0

[C1
2 + C2

2 + Bz
2]dBz

p0 − Bz
2/2µ0

= −2µ0Bz +
[C1

2 + C2
2 + 2p0µ0]

√
µ0√

2p0

×ln
[√

p0 + Bz/
√

2µ0√
p0 − Bz/

√
2µ0

]
.

Thus we get[
F (φ1|α1) − F (φ2|α1)√

3 + 21.5

]

=

√
2χ1f0

3[Q]
K0[µ0g]2

×
(
−2µ0Bz +

[C1
2 + C2

2 + 2p0µ0]
√

µ0√
2p0

×ln
[√

p0 + Bz/
√

2µ0√
p0 − Bz/

√
2µ0

])
. (16)
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This equation defines a relation amongT0, T , Bz and
other constants, which is valid for bothT0, T in the range
of 4400–8000 K. AtT = T∗ = 8000 K we defineu =
u8 = (8000/T0)2.5 andBz = Bz8. Applying this condition
in Eq. (16) we get the following relation.[
F (φ1∗|α1) − F (φ∗2|α1)√

3 + 21.5

]

=

√
2χ1f0

3[Q]
K0[µ0g]2

×
(

−2µ0Bz8 +
[C1

2 + C2
2 + 2p0µ0]

√
µ0√

2p0

×ln
[√

p0 + Bz8/
√

2µ0√
p0 − Bz8/

√
2µ0

])
, (17)

whereφ1∗ andφ2∗ are the values ofφ1 andφ2 when the value
of u is replaced byu8. From Eq. (16) it is found that it is not
possible to expressBz in terms ofu or vice versa. Hence we
again use the mean value theorem to integrate Eq. (15). From
Eq. (15) we have∫ f

f0

f0.4df√
f5 − ff0

4
=

µ̃

C2R̃

√
χ1[Q]/K0[B2]y ,

where[B2] is the mean value ofB2 in the range of value ofBz.
It can be verified that

I=
∫ f

f0

f0.4df√
f5 − ff0

4

=
1

f0
1.1

∫ u

1

du

u0.1
√

u4 − 1
=

F (φ3|α2)√
2f0

1.1[u0.1]
,

whereF (φ3|α2) is an elliptical integral of first kind,cos(φ3) =
1/u: andα2 = 450, [u0.1] is the mean value of u in the range
[1, u8]. This relation amongT0, T , Bz andy is valid for bothT0
and T in the range of 4400–8000 K. AtT = 8000 K, we have
Bz = Bz8 andy = y8, we get following relation.

F (φ3∗|α2) =
µ̃f0

1.1

C2R̃

√
2χ1[Q]/K0[u0.1][B2]y8 , (18)

wherecos(φ3∗) = 1/u8 andα2 = 450.

3.3. Integration forT0 < 8000 K
and for8000 < T ≤ T∗ ≤ 20, 000 K

From observations it has been found that the temperature at the
edge of the prominence is in the range of 8000–12,000 K En-
gvold et al. (1990). The calculation done in Sect. 3.2 is valid
here also up toT = 8000 K. To continue the calculation fur-
ther for higher temperature, we assume that there is no sudden
change in the values of density, pressure, magnetic field compo-
nents, wave heating and radiative loss atT = 8000 K. Thus we
have to use the same value ofEH which we have used earlier.
In the above mentioned temperature range for T,α = α2 = 6
χ = χ2 = 1.47×10−10.

From Eqs. (12) and (13) after substituting the same earlier
value ofEH andα we get the following equations.

df

dBz
=

√
5[Q]

K0(µ0g)2

(
C1

2 + C2
2 + Bz

2

p0 − Bz
2/2µ0

)

×
√

χ2

3
f3 − χ1ff0

4

5
+ K1, (19)

df

dy
=

µ̃

C2R̃

√
5[Q]
K0

(
C1

2 + C2
2 + Bz

2

f0.4

)

×
√

χ2

3
f3 − χ1ff0

4

5
+ K1 , (20)

whereK1 is the constant of integration, which can be deter-
mined by assuming the continuity of temperature gradient at
T = 8000K. Thus we that we getK1 = −2χ280007.5/15.
Eq. (19) can be written as∫ f

f8

df√
f3 − 3f0

4f
5(80005) − 2(80007.5)

5

=

√
5[Q]χ2

3K0(µ0g)2

∫ Bz

Bz8

[C1
2 + C2

2 + Bz
2]dBz

(p0 − Bz
2/2µ0)

.

Let I=
∫ f

f8

df√
f3 − 3ff0

4

5(80005) − 2(80007.5)
5

=
1

f0
0.5

∫ u

u8

du√
u3 − 3u

5(u82) − 2(u83)
5

.

Let β be the real root of the equation

P (u) = u3 − 3u

5(u8
2)

− 2u8
3

5
= 0 ,

it can be verified thatβ is the only real root of the equation
P (u) = 0 and β < u8. Following Abramowitz and Stegun
(1970),∫ x

β

du√
u3 − 3u

5(u82) − 2(u83)
5

=
F (φ|α)

Λ3
,

whereF (φ|α) is an elliptical integral of first kindφ, α andΛ3
are defined as follows.

Λ3=

[(
dP

du

)
u=β

]0.25

: cos(φ) =
Λ3

2 − (x − β)
Λ3

2 + (x − β)
:

G=
(

d2P

du2

)
u=β

: sin2(α) = 0.5 − G

8Λ3
2 .

Therefore by using the above formula we get

I =
1

Λ3f0.5
0

[F (φ4|α3) − F (φ5|α3)] ,
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whereφ4 andφ5 are defined as follows:

cos(φ4) =
Λ3

2 − (u − β)
Λ3

2 + (u − β)
: cos(φ5) =

Λ3
2 − (u8 − β)

Λ3
2 + (u8 − β)

.

Thus we get the following equation

1
Λ3f0.5

0
[F (φ4|α3) − F (φ5|α3)]

= C5

(
−2µ0Bz +

[C1
2 + C2

2 + 2p0µ0]
√

µ0√
2p0

×ln
[√

p0 + Bz/
√

2µ0√
p0 − Bz/

√
2µ0

])

−C5

(
−2µ0Bz8 +

[C1
2 + C2

2 + 2p0µ0]
√

µ0√
2p0

×ln
[√

p0 + Bz8/
√

2µ0√
p0 − Bz8/

√
2µ0

])

whereC5 =
√

5[Q]χ2
3K0(µ0g)2 . Substituting for the last term from

the Eq. (17), the above equation after simplification reduces to

F (φ1∗|α1) − F (φ∗2|α1)√
3 + 21.5

+
√

1.2
Λ3u8

[F (φ4|α3) − F (φ5|α3)]

=

√
2χ1f0

3[Q]
K0[µ0g]2

(
−2µ0Bz +

[C1
2 + C2

2 + 2p0µ0]
√

µ0√
2p0

×ln
[√

p0 + Bz/
√

2µ0√
p0 − Bz/

√
2µ0

])
.

This equation defines a relation amongT0, T , Bz and other
constants, which is valid forT0 < 8000K andT0 < T∗ <
20, 000 K. At the edge of the prominence we haveT = T∗, u =
u∗ = (T∗

T0
)2.5, Bz = Bz∗. Then the above equations reduce to

F (φ1∗|α1) − F (φ∗2|α1)√
3 + 21.5

+
√

1.2
Λ3u8

[F (φ4∗|α3) − F (φ5|α3)]

=

√
2χ1f0

3[Q]
K0[µ0g]2

(
−2µ0Bz∗ +

[C1
2 + C2

2 + 2p0µ0]
√

µ0√
2p0

× ln
[√

p0 + Bz∗/
√

2µ0√
p0 − Bz∗/

√
2µ0

])
, (21)

whereφ4∗ is the value ofφ4 whenu is replaced byu∗. Similarly
from Eq. (20) we get

F (φ3∗|α2)
[u0.1]

+
√

1.2[u0.4]
Λ3u8

[F (φ4∗|α3) − F (φ5|α3)]

=
µ̃f0

1.1

C2R̃

√
χ1[Q]
2K0

[B2]W0 , (22)

whereW0 is the width of the prominence and[u0.4] represents
the mean value ofu0.4 in the rangeu8 ≤ u ≤ u∗.

From the1st mean value theorem we have: If f andφ are
integrable on[a, b] andφ(x) ≥ 0 then∫ b

a

fφdx = Λ
∫ b

a

φdx ,

wherem = inff(x) ≤ Λ ≤ supf(x) = M . Also we have

m

∫ b

a

φdx ≤
∫ b

a

φfdx ≤ M

∫ b

a

φdx .

We have applied the above formula, while we are integrating
Eq. (11), withf = Q where Q is defined as

Q =
(p0 − Bz

2/2µ0)2

C1
2 + C2

2 + Bz
2 .

It can be verified thatQ(Bz) is a monotonically decreasing
function, withM = p0

2/[C1
2 + C2

2] andm = p∗2/B∗2.
Here we defined mean value of Q as[Q] = (M + m)/2

= (p0
2/[C1

2 +C2
2]+p∗2/B∗2)/2 similarly mean value ofB2

is defined as[B2] = (C1
2 + C2

2 + B2)/2.

3.4. Specifying the boundary conditions

The components of magnetic fieldC1, C2 andBz can also be
represented in terms of the strength of the magnetic field (B),
dip angle (θ) and the shear angle (φ) which is defined as the
angle between y-axis and the direction of the magnetic field. The
relation among these quantities at the edge of the prominence
is

B∗2=C1
2 + C2

2 + Bz∗2 ,

tan θ∗=Bz∗/
√

C1
2 + C2

2, tanφ0 = C1/C2 ,

the inverse relation is

C1=B∗ cos θ∗ sinφ0, C2 = B∗ cos θ∗ cos φ0,

Bz∗=B∗ sin θ∗ ,

where the suffix∗ indicates the value at the edge of the promi-
nence.

The problem in hand is to find out the relations among the
following quantitiesp0, ρ0, T0 p∗, ρ∗, T∗, B∗, θ∗, φ0 andW0.
By making use of equation of stateρ = µ̃p

R̃T
and the relation

p∗ = p0 − (B∗ sin θ∗)2

2µ0
, the set of unknown parameters to be

determined reduce top0, T0, T∗, B∗, θ∗, φ0 andW0. Defining
the parameter

ξ =
(B∗ sin θ)2

2µ0p∗
,

so thatp0/p∗ = 1 + ξ or

B2
∗ =

2µ0p0ξcsc2θ∗
[1 + ξ]

,

the unknowns to be determined becomep0, T0, T∗, ξ, θ∗, W0
andφ0.

Substituting the expressions for[Q], [B2] and B∗ the
Eqs. (21) and (22) become

√
(1 + ξ)2sec2θ∗ + 1

(
−1 +

(ξcsc2θ∗ + 1)√
ξ(ξ + 1)

× log
[√

1 + ξ +
√

ξ
])

=
K1

∗(1 + ξ) csc θ∗
p0

, (23)
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where

K1
∗=

g

2T0
3.75

√
K0

χ1
×
([

F (φ1∗|α1) − F (φ∗2|α1)√
3 + 21.5

]

+
√

1.2
Λ3u8

[F (φ4∗|α3) − F (φ5|α3)]
)

. (24)

W0 sec φ0 =
K2

∗(1 + ξ) cos θ∗
p0(1 + cos2θ∗)

√
(1 + ξ)2sec2θ∗ + 1

(25)

where

K2
∗=

4R̃

µ̃T0
2.75

√
K0

χ1
×
(

F (φ3∗|α2)
[u0.1]

+
√

1.2[u(0.4)]
Λ3u8

× [F (φ4∗|α3) − F (φ5|α3)]) . (26)

The parametersK∗
1 andK∗

2 are the functions ofT0 andT∗.
Thus we can find the values ofξ andθ∗ from the Eq. (23) and
(25) if we specify the values ofp0, T0, T∗, φ0 andW0. Since
W0 sec φ0 appears as a single term, it is enough to specify the
values ofp0, T0, T∗ andW0secφ0 to solve the above problem.
For arbitrarily chosen values of all these parameters the exis-
tence of the solution cannot be assured.

4. Condition for the existence of solution

In order to solve the above Eqs. (23) and (25) forξ andθ∗ we
have to specify the values ofp0, T0, T∗ and W0secφ0. The
observed values ofp0, T0 andT∗ for prominences can be chosen
from the table given by Engvold et al. (1990) or Jansen et al.
(1990).

Now we reverse the problem as follows: For a given values
of p0 T0 andT∗ what will be the extremum values ofW0 sec φ0,
for which Eqs. (23) and (25) are satisfied. Thus we have to find
the extremum ofW0 sec φ0 subject to the condition G = 0,where

G=−K1
∗(1 + ξ) csc θ∗

p0
+
√

(1 + ξ)2sec2θ∗ + 1

×
(

−1 +
(ξcsc2θ∗ + 1)√

ξ(ξ + 1)
log
[√

1 + ξ +
√

ξ
])

. (27)

For this the condition to be satisfied is,

∂W0 sec φ0

∂ξ

∂G

∂θ∗
− ∂W0 sec φ0

∂θ∗
∂G

∂ξ
= 0 .

Substituting forW0 sec φ0 and G from Eqs. (25) and (27)
respectively, the following relation betweenξ and θ∗ can be
obtained.

(2csc2θ∗ − 3)
2ξ

[
ξcsc2θ∗ + 1 −

√
ξ(ξ + 1)

log [
√

1 + ξ +
√

ξ]

]

−cot2θ∗(1 + 2cot2θ∗) +
(

2(1 + ξ)2sec2θ∗ + sin2θ∗
4ξ2

)

×
[

(ξcsc2θ∗ + 1)
√

ξ(ξ + 1)
log

√
ξ + 1 +

√
ξ

+ (ξcsc2θ∗ − 2ξ − 1)

]
= 0 .

(28)

Table 1. Values ofew = K∗
1 [W0 sec φ∗]max

K∗
2

, ξ,θ∗ Be = B∗103√
K∗

1
β =

2µ0p0
B∗2 sin θ∗ for various values ofK∗

1/p0.

K∗
1

p0
ew ξ θ∗ Be β

10 4.9 8.59 9.85 2.77 0.19
9 4.39 7.69 10.58 2.71 0.21
8 3.89 6.78 11.44 2.64 0.23
7 3.38 5.87 12.47 2.57 0.25
6 2.87 4.94 13.71 2.49 0.28
5 2.37 4.01 15.25 2.41 0.33
4 1.86 3.08 17.19 2.33 0.39
3 1.35 2.14 19.61 2.25 0.49
2 0.85 1.23 22.32 2.19 0.69

1.32 0.529 0.651 23.228 2.1957 1
1.321 0.528 0.65 23.227 2.1958 1
0.9853 0.38 0.40 22.30 2.25 1.33
0.6721 0.25 0.20 19.36 2.39 1.98
0.2904 0.10 0.04 10.81 3.11 4.70
0.1555 0.05 0.01 6.14 4.09 9.03

For a givenT0, T∗ andp0 we can find the values ofK∗
1 and

K2
∗. The value ofξ andθ∗ corresponding to the extremum value

of W0 sec φ0 is obtained by solving simultaneously the equa-
tions G = 0 and Eq. (28). The extremum value ofW0 sec φ0 is
obtained by substituting the values ofK∗

2 , p0, ξ andθ∗ in the
Eq. (25). This value ofW0 sec φ0 turns out to be the maximum
value ofW0 sec φ0 which we denote it by[W0 sec φ0]max. For
various values ofK∗

1/p0 the values ofK∗
1/K∗

2 [W0 sec φ0]max

and corresponding values ofξ, θ∗ and other parameters are tab-
ulated in Table 1.

5. The nature of solution and comparison
with observations

There exist two types of equilibrium solutions for the value of
W0 sec φ0 in the range

K∗
2√

8p0
≤ W0 sec φ0 ≤ [W0 sec φ0]max .

In the Type 1 solution the values ofξ andθ∗ are lower than those
in Type 2 solution, for the same value ofK∗

1 W0 sec φ0
K∗

2
(Figs. 1,3).

Solution of Type 1 does not exist for

W0 sec φ0 <
K∗

2√
8p0

.

It can also be seen that in Type 1 solution the strength of
the magnetic field is higher compared to that in Type 2 solution
(Fig. 4). The value of gas pressure at the edge is higher in Type
1 solution than in Type 2 solution. Type 1 solutions are similar
to the conditions in lower regions of the solar atmosphere and
Type 2 solutions are similar to the conditions of higher regions
of solar atmosphere. Both the solutions converge to a single
solution atW0 sec φ0 = [W0 sec φ0]max.
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Table 2.Values ofξmax andθ∗ for various values ofK∗
1/p0

K∗
1

p0
(ξ)max θ∗

5 110.25 50.5
4 40.83 51.6
3 14.87 53.08
2 5.09 55.1

1.322 2.21 57.03

We find from Table 1 that for a given value ofT0 and
T∗ or equivalently for a given value ofK∗

1 and K∗
2 the in-

crease of central pressure results in the decrease in the value of
[W0 sec φ0]max andξ. In the region of lowerp0, the magnetic
pressure dominates over plasma pressure. With the increase of
p0, the dip angle at the edge of the prominence corresponding
to the maximum value ofW0 sec φ0 increases and the strength
of the magnetic field at the edge of the prominence correspond-
ing to maximum value ofW0 sec φ0 decreases. The maximum
value of this dip angle at the edge corresponding to the max-
imum value ofW0 sec φ0 is θ∗ ≈ 23 and is reached for the
value ofK∗

1/p0 = 1.32 where the value of 2µ0p0
B∗2 sin θ∗

= 1. The
minimum value ofB∗ is also reached close to this point. With
the further increase of the value ofp0 the dip angle decreases,
the strength of magnetic field increases and the plasma pressure
dominates over the magnetic pressure. The value ofξ also de-
creases, andp0 → p∗. The range of values ofW0 sec φ0 over
which Type 1 solution exists is[

K∗
2√

8p0
, [W0 sec φ0]max

]
.

This range gradually decreases with the increase ofp0. The value
of θ∗ also gradually decreases. Thus for higher value ofp0 the
Type 2 solution is more likely to exist than Type 1 solution.

5.1. Study of variation ofξ andp∗ with respect
to the variation ofW0 sec φ0 for a given value ofK∗

1/p0

The relation betweenξ and K∗
1 W0 sec φ0

K∗
2

is shown in Fig. 1. The

relation betweenp∗ andK∗
1 W0 sec φ0

K∗
2

is shown in Fig. 2. For given
set of values ofT0, T∗ andp0 the maximum value ofξ is reached
where ∂G

∂θ∗
= 0 (G is defined in eq (27)). This corresponds to

the equation

K∗
1 (1 + ξ)

p0 sin θ∗

[
(1 + ξ)2sec4θ∗ + 1

[(1 + ξ)2sec2θ∗ + 1]1.5

]

= 2ξcsc2θ∗
log
[√

1 + ξ +
√

ξ
]

√
ξ(ξ + 1)

. (29)

The simultaneous solution of the equations G = 0 and(29)
gives the maximum value ofξ and the corresponding value ofθ∗.
For the various values ofK∗

1/p0 we have calculated these values
and are shown in Table 2. It is evident that the maximum value
of ξ for a givenK∗

1/p0 corresponds to the minimum value ofp∗
and the maximum value ofBz∗ for existence of equilibrium.

Fig. 1. Variation ofξ(= p0
p∗ − 1) with

K∗
1 (W0 sec φ0)

k∗
2

for
K∗

1
p0

= 2.The

maximum value ofξ ≈ 5.0.

Fig. 2.Variation of p0
K∗

1
with

K∗
1 (W0 sec φ0)

k∗
2

for
K∗

1
p0

= 2. The maximum

value of p∗
K∗

1
= 0.5, minimum value ofp∗

K∗
1

≈ 0.082,

5.2. Study of variation of the magnetic field line length(s)
with respect to the variation ofW0 sec φ0
for a given value ofK∗

1/p0

The value of the magnetic field line length ‘s’ can be calculated
by using the Eq. (30) for the various values ofW0 sec φ0 the
corresponding value of ‘s’ is shown in Fig. 5.

s =
K∗

1 (1 + ξ)
p0[1 + cos θ∗]

√
(1 + ξ)2sec2θ∗ + 1

. (30)

We have to find the extremum of ‘s’ for a givenK∗
1/p0 subject

to the conditionG = 0. Following the procedure similar to that
described in Sect. 4 for finding the maximum value ofW0 sec φ0
we have calculated the maximum value of ‘s’ for various values
of K∗

1/p0. These are tabulated in the Table 3.
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Fig. 3. Variation ofθ∗ with
K∗

1 (W0 sec φ∗)
k∗
2

for
K∗

1
p0

= 2.

Table 3.Values of(s)max for various values ofK∗
1/p0

K∗
1

p0
ξ θ∗

K∗
1 Smax

K∗
2

K∗
1 W0 sec φ∗

K∗
2

10 12.03 10.89 4.94 4.89
9 10.78 11.74 4.37 4.39
8 9.52 12.76 3.93 3.88
7 8.25 13.98 3.43 3.38
6 6.97 15.49 2.93 2.87
5 5.68 17.39 2.42 2.36
3 3.09 23.17 1.40 1.34
2 1.83 27.58 0.90 0.84

1.21 0.92 31.57 0.51 0.47
0.95 0.66 32.59 0.39 0.35

It is found that ‘s’ will have a minimum value(smin) which
is reached when the value of bothξ andθ∗ are 0. For a given
set ofT0, T∗ andp0 the minimum value of ‘s’ is equal toK∗

2

p0
√

8
.

This situation corresponds to an isobaric plasma of pressurep0,
maintained at a central temperatureT0 and at an edge tempera-
ture ofT∗ in the presence of a strong horizontal magnetic field.
Since we have assumed that thermal conduction is only along
the magnetic field line, the lengthsmin/2 is the minimum length
of separation between the temperaturesT0 andT∗ required to
maintain the thermal equilibrium of an isobaric plasma of pres-
surep0. In this case due to the absence of vertical component
of magnetic field, the mechanical equilibrium is not possible.

Due to the presence of vertical component of magnetic field,
the length of the magnetic field line increases, both thermal
and mechanical equilibrium are maintained. With the increase
of W0 sec φ0 the length of the magnetic field line increases.
It reaches its maximum value close to the maximum value of
W0 sec φ0. This is the maximum distance over which the tem-
perature difference ofT∗ to T0 can be maintained for existence
of both thermal and mechanical equilibrium of plasma main-
tained at a central pressurep0.

Fig. 4.Variation of strength of the magnetic fieldB∗ with
K∗

1 (W0 sec φ0)
k∗
2

for
K∗

1
p0

= 2.

5.3. Nature of the solution for various values
of T0, T∗, θ∗ andp0

In Table 4 we have given values of the strength of the magnetic
field at the edge of the prominence(B∗) and gas pressure at the
edge of the prominence(p∗), for various values ofθ∗ and for
various combinations ofT0, T∗ andp0. From Table 4 we draw
the following conclusions.

With the increase ofθ∗, keeping (T0, T∗, andp0) fixed, the
strength of the magnetic field decreases and gas pressure at the
edge decreases.

With the increase ofT∗, keeping (T0, p0 andθ∗)fixed, it is
found that the strength of the magnetic field increases and the
gas pressure at the edge decreases.

With the increase ofT0, keeping (T∗, p0 andθ∗) fixed, it
is found that the strength of the magnetic field decreases,p∗
increases.

With the increase ofp0, keeping (T0, T∗ andθ∗) fixed, the
strength of the magnetic field increasesp∗ also increases.

It is also found that theB∗ is sensitively depend onT0 and
θ∗ thanp0 andT∗.

5.4. Comparison with observations

Bommier et al. (1994), from their observations concluded the
following properties of the inverse and normal type of promi-
nences.

(1) For the Inverse prominences

– the strength of magnetic field ranges from 2.3 G–15.1 G
with an average of 7.5 G

– the shear angleφ0 ranges from 6 to 84 degree with an average
of 540

– the dip angleθ∗ ranges from 0–45 degree with an average
of 290
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Table 4.Values 0fξ∗, B∗ andp∗ for various values ofθ∗

(T0 = 4400 KT∗ = 8000 Kp0 = 1.012×10−3 Pascal)

θ∗ ξ B∗ in Gauss p∗ × 104 in Pascal

5 0.88 3.96 5.38
10 3.80 2.58 2.11
15 12.69 .74 1.88
20 38.72 .25 1.46

(T0 = 4400 KT∗ = 12,000 Kp0 = 1.012×10−3 Pascal)

θ∗ ξ B∗ in Gauss p∗ × 104 in Pascal

5 1.01 4.1 5.04
10 4.65 2.65 1.79
15 16.85 1.89 0.57
20 56.06 1.46 0.17

(T0 = 6000 KT∗ = 8,000 Kp0 = 1.012×10−3 Pascal)

θ∗ ξ B∗ in Gauss p∗ × 104 in Pascal

5 0.1372 2.010 8.90
10 0.32 1.44 7.64
15 0.58 1.18 6.39
20 0.94 1.03 5.23

(T0 = 4400 KT∗ = 12,000 Kp0 = 2×10−3 Pascal)

θ∗ ξ B∗ in Gauss p∗ × 104 in Pascal

5 0.35 4.13 1.48
10 1.03 2.91 9.85

– the electron density, ranges from (2.5 to 63)×109 cm−3 with
an average of 2.1×1010 cm−3

(2) For Normal Prominences

– the average magnetic field is found to be 13.2 G
– the averageφ0 is found to be370

– the average value ofθ∗ is zero
– the average electron density is found to be 8.7×109 cm−3

Comparing our solution with these observational results we con-
clude the following

Type 1 solution simulates normal prominence asB∗ is high
andθ∗ is small

Type 2 solution simulates the inverse prominence result as
B∗ is low andθ∗ is high

Type 2 solution is exist for the large value ofN0 correspond-
ing to high particle density and pressure which is in agreement
with our conclusion drawn previously.

6. Conclusions and discussion

For given values of temperature at the center of the prominence
(T0), temperature at the edge of prominence (T∗) from these
values the values of the parameterK∗

1 andK∗
2 can be found out

Fig. 5. Variation of ‘s’ with
K∗

1 (W0 sec φ0)
k∗
2

for
K∗

1
p0

= 2.

from the Eqs. (24) and (26).Using these values and the value
of gas pressure at the center of prominencep0, we have found
the maximum value ofW0 sec φ0 (whereW0 is the width of the
prominence andφ0 is the shear angle) up to which the solutions
for the Eqs. (23) and (25) will exist. For the value ofW0 sec φ0 ≤

K∗
2

p0
√

8
, there exists only one type of solution. For the value of

W0 sec φ0 in the range K∗
2

p0
√

8
≤ W0 sec φ0 < [W0 sec φ0]max,

there exist two type of solutions. Both the solutions coincide at
W0 sec φ0 = [W0 sec φ0]max.

One having lower value ofξ (which is nothing butp0/p∗−1
wherep∗ is the plasma pressure at the edge of the prominence)
andθ∗ (dip angle at the edge of the prominence) corresponds to
the lower region of solar atmosphere is called Type 1 solution.
The other solution corresponds to the higher region of solar
atmosphere is called Type 2 solution. In the Type 1 solution an
equilibrium of isobaric plasma in the presence of strong and
horizontal magnetic field can change over to a prominence type
of solution with the increase ofW0 sec φ0. Similarly in the Type
2 solution, an equilibrium with a high difference of pressure in
the presence of a weak magnetic field having dominant vertical
component can change over to a prominence type of solution
with the increase ofW0 sec φ0.

It is found that the range of values ofW0 sec φ0 over which
Type 1 solution exists decreases with the increase ofp0. Thus
for the higher value ofp0 the Type 2 solution is more likely to
exist than Type 1 solution. Similar conclusions were drawn from
Bommier et al. (1994). This appears to be contradictory with our
earlier conclusion that Type 1 solution is similar to the condition
in the lower region of solar atmosphere, and Type 2 solution
correspond to the higher regions in solar atmosphere. But this
is not the case for the following reason. From the integration of
eq (2), we have

[ρ] =
2B∗2(1 + cos2θ∗)
µ0g[K∗

2 (1 + ξ)]

√
[(1 + ξ)2sec2θ + 1]sinθ∗
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where[ρ] represent mean density and is proportional tosin θ∗
from the above equation. In Type 2 solution and in the inverse
type of prominence the value ofθ∗ is large when compared to
Type 1 solution or in normal prominence, that is why the value
of [ρ] in Type 2 solution or in inverse type of prominence is
greater than that of Type 1 solution or of normal prominences.

So far in our study, from the given set of values forT0 and
T∗ we have calculated the values ofK∗

1 andK∗
2 , the value of

K∗
1/p0 in turn determines the nature of the solution,they in turn

determine the other parameters. While calculatingK∗
1 andK∗

2
to get an analytical solution we have assumed that heating at the
center of prominence is equal to one-fifth of the radiation loss
at the center. From the Eq. (24) we can deriveK∗

1 as,

K∗
1 = g

√
K0

10

∫ f∗

f0

df

E

where

E =

√∫ f∗

f0

[χρ2Tα − EHpρ]df
ρ2T

, andf = T 2.5

If we vary the value of heating rate at the center or the value
of EH , within the permissible range as mentioned previously,
the value ofK∗

1 will vary, but the nature of the solution will be
the same. It can be seen that with the increase ofEH the value
of K∗

1 will increase as seen from the above equation. It must
be remembered that these results are only qualitative since it is
based on simplifying assumptions about heating function and
radiative loss. The real situations will be quantitatively different.
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