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Abstract. Based on reasonable assumptions and mathematera long lived and slowly changing prominence which occur
approximations a one dimensional, analytical model for sol@r or near dying active regions or in the quiet regions of the
quiescent prominences is constructed, whichis in both magnebam. The main observed features of quiescent prominences have
hydrostatic and thermal equilibrium. Thermal equilibrium hergeen reviewed by Tandberg-Hanssen(1974), Hirayama(1985)
is a balance among thermal conduction, radiation and wave heate Zirker(1989). Observed values of plasma and magnetic pa-
ing. The wave heatingH ) is assumed to be equal to a constamameters in quiescent prominence are listed by Engvold et al.
(Fy) times the product of pressure (p) and densily (Ve find (1990), Jansen et al. (1990).

the limit on the value ofFy for existence of prominence type  The central problem posed by quiescent prominence is to
solution. For given values df'y, temperature at the center ofexplain how the quasi steady state of prominence is possible
prominencgT}), gas pressure at the center of prominefieg mechanically and thermally. The earlier works on structure of
and the temperature at the edge of prominéficg we found quiescent prominences were aimed at the question of mechani-
the following limits on the variables for the existence of theal equilibrium. The earliestand the most famous among themis
equilibrium: (1) the lower limit on the value of gas pressure #ie model of Kippenhahn-Sditker(1957). In this model the sup-
the edge of prominendg.), (2) the upper and lower limits on port is by magnetic tension and the model assumes an isother-
the length of the magnetic field line from the center to the edgeal structure for the prominence, so does not link prominence
of the prominence and (3) the upper liffitpsecdo]ma. ONthe plasmathermally to the ambient corona (Milne etal. 1979). The
value of Wy sec ¢ whereW, is the width of the prominence important question of thermal equilibrium has been neglected
andg, is the shear angle. in this model. Some other models like Orrall and Zirker (1961),

For specified values dfy, T, po, Eg and foriWysecgy <  Chiuderi et al. (1979) have addressed the problem of thermal
[Wosecdo|maz there exist, in general, two types of solutionsequilibrium, but neglected the support mechanism. Attempts to
In Type 1 solution, equilibrium is nearly isobaric and the magombine the above two problem has been made by Milne et al.
netic field is strong and nearly horizontal. This type of solutiof1979) and Low et al. (1981).
is physically inadmissible when the value W@fj sec ¢, falls The object of the present work is to study the limits on the
bellow a certain limit defined in the text. Conditions in thigxistence of the magneto-hydrostatics and energy balance in a
solution approach those in a real prominencéi@secgg ap- simple equilibrium model of a prominence and also to study the
proachegWysecdo)maz- IN Type 2 solution, there is a largestrength of magnetic field and width of the prominence in terms
variation of gas pressure from the center to the edge, and tigplasma parameters at the center and at the edge of promi-
magnetic field is weak and nearly vertical. Conditions in thisence. To begin with, simple assumptions are made to get an
solution also approach those in a real prominencd/gs:c¢y analytical solution of the equations describing the system. The
approacheBVysecoo|maz- The physical characteristics of Typeadvantage of the analytical solution lies in the fact that bound-
1 and Type 2 solutions simulate those of ‘normal’ and ‘inversary conditions can be imposed in a straight forward manner and
prominences respectively as observed by Bommier et al. (199#)ysical properties can be illustrated directly. This will be use-

ful in gaining the confidence needed for the future numerical
Key words: Sun: prominences — Sun: corona treatment of the realistic problem.

In Sect. 2, basic assumptions are described, from these and
the basic equations of magneto-hydrostatics, the equations de-
scribing the system are derived. In Sect.3 we describe the
method of integration of these equations and boundary con-
Prominence iS a structure in the corona Wh|Ch has a tempéig_u)ns In Sect. 4 the conditions for the existence of solutions
ture about hundred times lower and density about hundred tin8§ derived. In Sect. 5 the nature of the solutions is discussed.
higher than in the normal corona. Many varieties of structutd Sect. 6 conclusions are summarized.
fall in this category. Among them the “quiescent prominences”

1. Introduction
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2. Basic assumptions A rectangular Cartesian coordinate system is used with x-
and the equations describing the structure axis along the length of the prominence, y-axis perpendicular to

Quiescent prominences last for 1-300 days. In the uiescethe length in the horizontal plane and z-axis is in vertical direc-
P yS. d ﬂ%ﬁ. We assume that all the plasma parameters and the magnetic

state flows are observed but with speeds (typically of Orderﬁeld components vary in the direction of y only. Based on the

1 1
0.5kmsec " to 3kmsec ) much less than_ freg fall speed (o above assumptions, the basic equations of magneto-hydrostatics
about 100 km sec!). Thus to a first approximation the plasma}
e

is in magneto hydrostatic equilibrium with a rough balance educe to the following set of equations.
tween the magnetic forces, plasma pressure and gravitatioRat= [C1, C2, Bz], 1)
forces (Priest1989).

The energy equation expresses a balance among therffdr _ Horg 2)
conduction, radiative loss and existing but unidentified heatingV Cy’
processes. )

Thermal conduction along the magnetic field is primaril§) + B="/2t0 = constant = po, (3)
by electrons and for fully ionized H-plasma, Priest(1982) gives -
the equation for finding thermal conductivity along the magy — RL’ (4)
netic field () asK || = 1.8x10~'°72% /In A, in prominence f
conditions we have takem A = 10. The ratio of thermal

i i d KoCy*T? dT

conductivity across the magnetic field to that of thermal con=. K - 02 , 2) } = vp°T* — Enpp, (5)
ductivity along the magnetic field as given by Priest(1982) & [\ C1”° + Co" + B,/ dy
KL 2x10°n° | the main body of prominence~10¢ wherej is the mean molecular weight, is the magnetic per-
particlesm 3, Ta~6000 K and B~8x 10~ T using these val- Meability of free space and all other symbols have their usual

K| T5B?
ues, the value of the fractior%) is of the order ofl0—4, Meanings.

Hence thermal conductivity perpendicular to the magnetic field dT_lf_luls WZ ha;/e folur ?rc]}uatlbons fortfofur unkpong, p,hp ¢
is neglected. We defink, — 1.8x 1011, and T. In order to solve the above set of equations we have to

Expression for radiative loss given by Cox and Tuck&PECify constants’;, C; and four boundary conditions. Sym-
(1969), Hildner(1974) are valid for temperatures greater thHhetry demands that both the temperature gradient and the ver-

20,000K. In the central region of prominence where the terpn‘-:al component of the magnetic field vanish at the center of the
perature is in the range of 4400-8000 K, whereas at the edg@{)qmmence, so that
the prominence temperature is in the range of 8000-12,00QK  dT )

. =—=0, T=T = t y=0.
(Jansen et al. 1990). For this range of temperature Peres et al. dy ’ 0, P=Pbo abt y

(1982), expresses the radiative loss in the fdim= xp*T"* For the remaining conditions i, is the width of the promi-
wherey anda are step wise continuous functions of T for difyence then,

ferent ranges of T the value gfanda are given bellow.

T=T, at y=Wy/2. @)

The above set of equations reduce to a system of two equa-
tions for two unknowns3,,, T in the form

T(K) X «
4400<T<8000 4.49x1073%° 11.7
8000<7T'<20000 1.76x10~% 6.15

dB,  pog [ f 2
To get an analytical solution, we chooseas 11.0 instead —7,~ ~ ¢, (RT [po — B2 /2u0] (8)
of 11.7 in the temperature range of 4400-8000K and as 6.0
instead of 6.15 in the temperature range of 8000-20,000 Ig. K KoC2T25 ) dT}

Using the condition of continuity of radiative loss at T =, 2 2 2 | 1.
8000K, x in the range of 8000-20,000K is calculated agly Cl~+202 + 5 5 & )
X = 4.49x10-%x8000° = 1.47x10~1 the new values of ~ _ (/f> (Po — B:"/2h0) (ot = Bayi] . @
x anda are given bellow. R T
To obtain the relation between T afy, we use the formula
) X N d dB, d [0 d
4400<T<8000  4.49x10730 11.0 2 pog (i 2
8000<T'<20000 1.47x10-° 6.0 dy  dy dB. <RT) po = B:"/ 2ol g (10)

Using the above relation and Eq. (9), we get the following

The exact form of wave heating is not known. Generally. > X .
g ifferential equation relating f an8. wheref = T35,

it is assumed as a constant times density. This assumptio
ad hoc and justification is in mathematical simplicity. On thed po — B.%/2u0 df
same ground, we assume that heating H is proportional to thg, ch 02+ Bz2> dBJ
product of density and pressure, ilf.= Eypp, whereEy is 2
_25(po — B.?/2p10)

a constant.
(109)*Ko

X5 — Enl/f]. (12)
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By integrating the above equation, we can derive the relatiba less than the radiative loss. To get an analytical solution, we

between f ands,. have takerE gy = “Xlgo i.e. heating at the center to be one-fifth
of the rate of the radiative loss at the center. Substituting this
3. Method of integration the values oy and K Egs. (12) and (13) take the forms
Eg. (11) can be written in the form | xaldl {012 +C% + BZQ:| [#5 _ r14 (14
de KO(MOQ)Z Do — BZQ/2H0 f ffO ) ( )
d [( po — B." /20 ) df]
2 2 2
WG b 5 df i [xalQ] (G + G + B 5 (ol (15)
- 5(po — B.*/2u0)? dy — C.R fo4 0
- 2 2 2
(10g)2Ko(C1” + Co” + B.7) Egs. (14) and (15) are valid fan00K < Ty < T < T, <
d X2.5 Lot 8000 K. Equations for" > 8000 K will be discussed later in
25 — F K . .
X dB, [a + 1. 5f R [+ 1} ’ the Sect. (3.3). Thus we can integrate the Eqgs. (14) and (15) in

whereK is a constant of integration. The quantity the above mentioned temperature range for T.

2
Q= (o= B:"/2p0)" 3.2. Integration for400K < Ty < T < T, < 8000K

C1? + Cy* + B,*
e Eqg. (14) can be written as
isacontinuous and smoothly varying function®f, sobyusing ~,

the mean value theorem, the above equation can be integra edL
to get the following differential equation.
2 2 2
af 5[Q] Ci° +Cy® + B.? = K G+ G t B,"|dB.
dB. \| Ko(pog)? \ po — B.*/2u0 0(09)* Jo Po — B="/2u0
2.5 atls - let] = ffo \/7 andu = +. It can verified that
x ! —EuRf/i+ K1, (12)
a+1.5 2.5 s 1 Florla) F((ﬁz\al)]
= =, 15 1e1) = —7—=1
where[Q] represents the mean value®@fin the range of value V2fo 3421
of B.. Using Egs. (10) and (12) we get where F'(¢1|a1) and F(¢po|ay) are elliptical integrals of first

kind, ¢1, ¢ andc; are defined bellow
a _ B 5(Q)] (Cl2+c22+3z2> (u—l—l)/ﬂ—&-ﬁ/(u-ﬁ-l)—%
WGl il (wt D)/VZ+ V2 (u+1) -2
x\/ X25_ @t 1Sy g Rt K, (13) (ut+1)/V2+V2/(u+1) - 5

a+1.5 2.5 sin?(¢ho)= YNNG TG
+ + +1) -
Egs. (12) and (13) are elliptical. For integration, the values of ;u 21?5/ /lut)
aandK; are needed. By making use of the boundary conditiong 2 (Oll)eri15
the value ofoe and K'; can be calculated. 3+2%
It can also be verified that

B- [012 + 022 + Bzz}dBZ

sin?(¢1)=

3.1. Conditions at the center of the prominence

. 0 po — B2 /2u0
Let T}, be the temperature at the center of the prominence. From 24 o2 49
observations it is found thdf is in the range of 4400-8000K  — _2,,/B, + [C1” + Co” + 2posiol /o
(Engvold et al. 1990, Jansen et al. 1990). For this range of tem- V2po
peratureac = o; = 11 andy = y; = 4.49x1073°, From n V/Po + B:/\/2p0
Egs. (6) and (13) we get VPo — B2/\V2u0 ]’
P _leOS N EuRfo Thus we get
! 5 i F(¢p2|ar)
F(¢1|ar) — /3o

Atthe center of the prominen# = 0. From observation it

is cleartemperature should be minimum atthe center. Hence one 2x1£0°[Q] w(—ou . + [C1? + Co2® + 2popo]/Tho
must have(d 2)1, o > 0. Applying this condition in the above  \| Kg[uog)? HoZz V2po
equation, we get; fo* > EyR/ii.e.Ey < lego . This tells I VPo + B2/ 210 16
us that at the center of the prominence, the rate of heating should VPo — B. /2o (16)
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This equation defines a relation amofig, 7', B, and From Eqgs. (12) and (13) after substituting the same earlier
other constants, which is valid for both,,T" in the range value of By anda we get the following equations.
of 4400-8000K. AtT = T, = 8000K we defineu =

us = (8000/Tp)*° and B, = B.s. Applying this condition df 5(Q] 0,2+ 02+ B.2
in Eq. (16) we get the following relation. dB. \| Ko(109)? \ po — B.2/2u0
F(¢xz]an) 1
Flovton - T2 Xaps Xl g, (19)

X
_ [2af’lQ) df i [5lQ] (Ci2+ G + B.2
Ko[nog]? dy~ R\ Ko ( fo4 )

[C12 + C” + 2popo] /o
X —2,LL()B 8 + 4
( ’ v2po G- Léfo + K, (20)
XlH |:\/1T0+Bz8/\/2u0:|> (17)
VPo — Bzs/\2m0] )’ where K is the constant of integration, which can be deter-

mined by assuming the continuity of temperature gradient at
where¢:, andg,, are the values ap; andg, when the value T = 8000 K. Thus we that we gek; = —2x2800073 /15.
of u is replaced byg. From Eg. (16) it is found that it is not Eq. (19) can be written as ‘

possible to expresB, in terms ofu or vice versa. Hence we
again use the mean value theorem to integrate Eq. (15). FrO/n df
fs \/f?’ —

Eq. (15) we have

3fotf _ 2(80007-5)
5(8000%) 5
S e i :
- 7= o V0 QUEB 5[Qx2 [P [C1? + C2* + B.dB,
Jfo VP = ffo 2 =\/3K 2 2 '
3Ko(109)* Jp.s  (po— B."/2p0)
where[B?] is the mean value aB? in the range of value aB,.
It can be verified that f
f 0.4 Let I= 4
I— : foedf fs \/f3 _ 3ff04r —2(80007-5)
f 7%]05 = ff04 , . 5(8000 )d 5
1 [* du F(¢s]az) = Y .
= = 5 el u m 3
f01~1 1 ud et —1 ﬁfol-l[uo.l] fo us \/u?’ — % — X 58 )
whereF (¢3]az) is an elliptical integral of first kindcos(¢3) =  Let 3 be the real root of the equation

1/u: andasy = 45°, [u°1] is the mean value of u in the range

[1, us]. This relation amongy, ' B. andy is valid for bothTy — p(, ) s _ 3u_ 2ug”
and T in the range of 4400-8000 K. At = 8000 K, we have 5(ug?) 5
B, = B.g andy = yg, we get following relation.

3
:O7

it can be verified that3 is the only real root of the equation

i fot! P(u) = 0 andf < ug. Following Abramowitz and Stegun
F(¢aa]as) = ’gOR V2x1[Q]/ Ko[u*][B?]ys , (18) (1970),
2
wherecos(¢s.) = 1/ug andag = 45°. /z du _ F(Xﬂa)
u 2(ug? <
o\t~ s - 2 ’

3.3. Integration forT, < 8000 K . L ) .
and for8000 < T < T, < 20.000K whereF'(¢|«) is an elliptical integral of first kind, o« andAs
- are defined as follows.
From observations it has been found that the temperature at the

edge of the prominence is in the range of 8000-12,000K Ep- dP 0 . A® — (- B)
gvold et al. (1990). The calculation done in Sect. 3.2 is valid® ™ (du)u—ﬁ cos(¢) = AZ+(z—f6)
here also up td" = 8000 K. To continue the calculation fur- )

ther for higher temperature, we assume that there is no sudden- <dp> . sin(a) = 0.5 — G ]
change in the values of density, pressure, magnetic field compo- du? u=g4 8A5>
nents, wave heating and radiative los§'at 8000 K. Thus we
have to use the same value Bf; which we have used earlier.

In the above mentioned temperature range fat & as = 6 1
X=X2= 1.47)(10710. - W[F(¢4‘a3) - F(¢5|O/3)] 5

Therefore by using the above formula we get
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whereg, and¢s are defined as follows:

As® —(u—p) As® — (us — )
cos = — - —_—.
b(¢4) A32 +( ﬁ) (9255) A32 + (ug — ﬁ)

Thus we get the following equation
1
W[F(%la?)) — F(¢slaz)]

_C (—QMOB n [C1? + Co2® + 2popuo] /o

o[z
V% — B2/
—Cs (—QMOst +

[C1? + C2® + 2popo) /o
V2po
{\F o + B éwﬂ] >
Vo — B8/
whereCs =

5[Q]x2 PT—
TR Grod)? Substituting for the last term from

1047

wherem = M. Also we have

inff( < supf(z) =

m/ ¢dm</¢fdx<M/ pdz .

We have applied the above formula, while we are integrating
Eq. (11), withf = @ where Q is defined as

(pO - Bz2/2PJO)2
012 + 022 + Bz2 :

It can be verified thaf)(B.) is a monotonically decreasing
function, with M = po?/[C1? + C5?] andm = p.?/B,>.

Here we defined mean value of Q @ = (M + m)/2
= (po?/[C1* + C?] +p.2/B.?)/2 similarly mean value oB>
is defined a§B?| = (C,? + Cy* + B?)/2.

x) <A

Q=

3.4. Specifying the boundary conditions

The components of magnetic field , C; and B, can also be
represented in terms of the strength of the magnetic fiB)d (

the Eq. (17), the above equation after simplification reduces diip angle §) and the shear angle) which is defined as the

For.fon) - 22y V12 gufos) — Flgslas)
2x1/o’[Q) ( [C1? + Co® + 2popuo) /10
KMMQ(QM&+ V2po

[ L))
Vo~ B./\%

This equation defines a relation amdhg 7', B, and other
constants, which is valid fof, < 8000K andTy < T, <
20,000 K. Atthe edge of the prominence we h&ve= T, u =

Uy = (% )25, B, = B... Then the above equations reduce tq
Fioulan) - S22 - 215 o) — F(grfas)
) &

wheregy, is the value ofhy whenu is replaced bys,.. Similarly
from Eq. (20) we get

0.4
afot [xal@l, s
= 0R \ 2K, B0 )

whereW is the width of the prominence arnd’*] represents
the mean value 0f% in the rangeus < u < u,.

From thel** mean value theorem we have: If f andare
integrable orja, b] and¢(x) > 0 then

/abfgbdxA/aquda:,

angle between y-axis and the direction of the magnetic field. The
relation among these quantities at the edge of the prominence
is

B.*=Cy* + Cy* + B..?
C12 + C52, tan ¢y

tan6,=DB../ =C1/Cy,

the inverse relation is

C1=B, cosf,sin ¢g, Cs
B,.,=B,sin#, ,

= B, cos b, cos ¢,

where the suffix: indicates the value at the edge of the promi-
hence.

The problem in hand is to find out the relations among the
following quantitiespo, po, To P+, p«» T, Bx, bx, ¢o andWy.
By making use of equation of stafe= ~ and the relation

IjP
Dsx = Po — (Bsﬁ the set of unknown parameters to be

determined reduce toy, To, Ty, Bx, 0., g andW,. Defining
the parameter

_ (B.sin6)?
ZNOP*
so thatpg/p. =1+ £ or

2popoesc®d

L+¢ 7
the unknowns to be determined become Ty, T, &, 0., Wy
andgy.

Substituting the expressions fd€@], [B?] and B, the
Egs. (21) and (22) become

B} =

*

(€csc?0, + 1)
5(5 +1)

xlog{\/ﬁﬁ-\/]) "1+ &) csch )

Po

V(1 +€)2sec?d, +1 (—1 +

(23)
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where Table 1.Values ofew = KrWosecéslman ﬁié*]"“”‘ ,€,0. Be = B*;ff B =
2 1
Koo 9 Ko " ([F(fﬁ o) — F(mwl)} Fohek0— for various values of< /po.
o3\ 3T ot
K 0 Be 8
V1.2 o ew 3 «
T hats [F(91s|0xs) = Fgs|as)] | (24) 10 49 859 985 277 0.19
9 439 769 1058 271 021
Ko™ (1+ &) cos b, 8 389 678 1144 264 023
Wo sec o = 5 — (25) 7 338 587 1247 257 025
po(1 + cos?0) /(1 +)?sec?0. + 1 6 287 494 1371 249 0.28
where 5 237 401 1525 241 0.33
N 4 1.86 3.08 17.19 233  0.39
Ko AR Ko (F(daas)  v12u0.4)] 3 135 214 19061 225 0.49
T ARV [u0-1] Asusg 2 085 1.23 2232 219 0.69

1.32 0.529 0.651 23.228 2.1957 1
X [F(fax|az) = F(ds]as)]) - (26) 1321 0528 065 23227 21958 1
The parameter&’; andK3 are the functions ofy and7,. ~ 0-9853  0.38 040 2230 225  1.33
Thus we can find the values ¢fandd, from the Eg. (23) and 06721 025 020 19.36 239 198
(25) if we specify the values qfy, Ty, Tk, ¢o andW,. Since 02904 010 004 1081 311 4.70
. . . 0.1555 0.05 0.01 6.14 4.09 9.03
Wy sec ¢pg appears as a single term, it is enough to specify the
values ofpg, Ty, T, andWysecg to solve the above problem.
For arbitrarily chosen values of all these parameters the exis-
tence of the solution cannot be assured.

For a giverily, T, andpy we can find the values df’; and
K>". The value of andd,. corresponding to the extremum value
of Wy sec ¢ is obtained by solving simultaneously the equa-
In order to solve the above Egs. (23) and (25)d@ndd, we tions G =0 and Eq. (28). The extremum valuelgf sec ¢, is
have to specify the values @, Tp, T\ and Wysecgo. The obtained by substituting the values Bf;, po, £ andé. in the
observed values gk, T, andT, for prominences can be choserfd- (25)- This value ofl/; sec ¢ turns out to be the maximum
from the table given by Engvold et al. (1990) or Jansen et ¥plue ofWy sec ¢ which we denote it byW sec ¢ofimaz- FOT
(1990). various values of; /p, the values of; / K5 [Wy sec ¢o|max

Now we reverse the problem as follows: For a given valu@§d corresponding values §f0. and other parameters are tab-
of po T andT’, what will be the extremum values B sec ¢, ulated in Table 1.
for which Egs. (23) and (25) are satisfied. Thus we have to find
the extremum oW/, sec ¢ subject to the conditinG = 0,where 5 The nature of solution and comparison

4. Condition for the existence of solution

K*(1 sc 0, with observations
oK+ esch. | g, 71
Do There exist two types of equilibrium solutions for the value of
sc? Wy sec ¢ in the range
oY R T S [\/@+ \/5] C@eny ot 9
§E+1) K3
< Wosec ¢g < [Wosec olmaz -
For this the condition to be satisfied is, V8po
OWgsecpg 0G  OWpsec gy OG In the Type 1 solution the values &&indd,. are lower than those
- = - —=0. . . £ W sec ¢ ;
¢ 00, 00, ¢ in Type 2 solution, for the same vaIueﬁf% (Figs. 1,3).

Substituting fori¥, sec ¢ and G from Egs. (25) and (27) Solution of Type 1 does not exist for
respectively, the following relation betweé&nandd, can be

obtained. Wo sec dg < K .
V8o
(2esc?6, — 3) §(€+1)

It can also be seen that in Type 1 solution the strength of

log [v/1

og[VI+E+ Vi the magnetic field is higher compared to that in Type 2 solution

2(1 + £)?sec?0, + sin’0, (Fig. 4). The value of gas pressure at the edge is higher in Type
4£2 1 solution than in Type 2 solution. Type 1 solutions are similar

2 _
26 [fcsc 0. +1

—cot?0,(1 + 2cot?6,) + (

to the conditions in lower regions of the solar atmosphere and
+ (Ecsc?f, — 26 — 1)1 =0. Type 2 solutions are similar to the conditions of higher regions
of solar atmosphere. Both the solutions converge to a single

(28) solution atiVy sec g = [Wo sec ¢omaz -

5 (€csc®O, + 1)\ /E(E+1)
logvVE+1+ €
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Table 2. Values 0ft .. andd. for various values of; /po 6F ' T | '
K* 5 _ _
Tg (g)maz 9* g i
5 11025 50.5 ni 3
4 40.83 516 3
3 14.87 53.08
2 509 55.1 w 3F E

1.322 2.21 57.03
2F
We find from Table 1 that for a given value @} and

T. or equivalently for a given value ok and K the in- 1E E

crease of central pressure results in the decrease in the valu

[Wo sec ¢olmaz @nd§. In the region of lowep,, the magnetic Ot

pressure dominates over plasma pressure. With the increas (.2 0.4 0.6 0.8 1.0
po, the dip angle at the edge of the prominence correspond K"Wosec¢o/K2°

to the maximum value ofi/; sec ¢ increases and the strength . .

of the magnetic field at the edge of the prominence correspoffi- 1. Variation of (= £2 — 1) with mwzigm for 2L = 2.The
ing to maximum value oV, sec ¢ decreases. The maximummaximum value of ~ 5.0.

value of this dip angle at the edge corresponding to the max-

imum value of Wy sec ¢ is 0, =~ 23 and is reached for the 0.50¢ ! i T ]
value of K7 /po = 1.32 where the value of;22— = 1. The 3
minimum value ofB, is also reached close to this point. Witt 4o 3
the further increase of the value gf the dip angle decreases E Type 13
the strength of magnetic field increases and the plasma pres: ]
dominates over the magnetic pressure. The valuea$o de- +_ 0.30

T TTYY
1

creases, angy — p.. The range of values diV, sec ¢ over { E
which Type 1 solution exists is 2 5.20 3 E
K3 : ;
727 [WO sec ¢O]maz . E 3
V8o 0.10F —
Thisrange gradually decreases with the increapg.dfhe value 4
of 6, also gradually decreases. Thus for higher valug,ahe 0.00¢ . ' Type 2 . , 3
Type 2 solution is more likely to exist than Type 1 solution. 0.2 0.4 0.6 0.8 1.0

K,"Wosecg, /K,
5.1. Study of variation of andp, with respect

Fig. 2. Variation of 22 with w for I;—E = 2. The maximum

to the variation ofi¥; sec ¢ for a given value oy Ky 2
osec o g i ae of 2= = (.5, minimum value of2s ~ 0.082,
. * . . . . 1 1
The relation betweefiand “1Y2*¢% s shown in Fig. 1. The
2
KWy sec ¢g

relation betweep, and——2=——"isshownin Fig. 2. For given
G . o
setofvalues of}, 7., andp, the maximum value ofis reached 5.2. Study of variation of the magnetic field line length(s)

where 2& = ( (G is defined in eq (27)). This corresponds to with respect to the va*riation a¥o sec ¢
the equation for a given value o} /po

K146 [ (146&)%sectd, +1
posinf, | [(1+ &)2sec?0, + 1]1-°

The value of the magnetic field line length ‘s’ can be calculated
by using the Eq. (30) for the various values1df, sec ¢ the
corresponding value of ‘s’ is shown in Fig. 5.

log [vT+E+ /¢
=2 29, . 29 *
£csc = (29) . Ky(1+¢) (30)

: : . - po[l + cos 0.]1/(1 + €)2sec?0, + 1 '
The simultaneous solution of the equatdd = 0 and29)

gives the maximum value gfand the corresponding valuedaf  We have to find the extremum of ‘s’ for a givety| /po subject
For the various values &€ /p, we have calculated these valueto the conditionZ = 0. Following the procedure similar to that
and are shown in Table 2. It is evident that the maximum valdescribed in Sect. 4 for finding the maximum valu&igfsec ¢

of ¢ for a givenK /p corresponds to the minimum valuef we have calculated the maximum value of ‘s’ for various values
and the maximum value d8.. for existence of equilibrium.  of K} /py. These are tabulated in the Table 3.
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0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
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Fig. 3. Variation of.. with W for % = 2. Fig. 4.Variation of strength of the magnetic fielgl. with w
for X1 —
Po

Table 3.Values of(s)maq. for various values of<y /po

KiSmar  KiWosecon - -
o 13 0. v L ;gew 5.3. Nature of the solution for various values

of Ty, 1%, 6, andpg

10 12.03 10.89 4.94 4.89

9 10.78 11.74 4.37 4.39 In Table 4 we have given values of the strength of the magnetic

8 9.52 1276 3.93 3.88 field at the edge of the prominen¢B, ) and gas pressure at the

7 825 1398 343 3.38 edge of the prominencg..), for various values of, and for

6 6.97 1549 2.93 2.87 various combinations dfy, T andp,. From Table 4 we draw

g g'gg gi? i'jé igg the following conclusions.

> 1:83 27:58 0:90 0:84 With the increase of,., keeping (5, 1%, andp,) fixed, the
121 092 3157 051 0.47 strength of the magnetic field decreases and gas pressure at the
0.95 066 3259  0.39 0.35 edge decreases.

With the increase o, keeping [}, po andé,)fixed, it is
found that the strength of the magnetic field increases and the
gas pressure at the edge decreases.

Itis found that ‘s’ will have a minimum valugs,,,;,,) which With the increase ofy, keeping (., po andé,) fixed, it
is reached when the value of bagrandé.. are 0. For a given is found that the strength of the magnetic field decreagses,

set of Ty, T, andp, the minimum value of ‘s’ is equal te—8 increases.

This situation corresponds to an isobaric plasma of preggure ~ With the increase of,, keeping (o, T and®.) fixed, the

maintained at a central temperat(igand at an edge tempera-trength of the magnetic field increagesalso increases.

ture of T, in the presence of a strong horizontal magnetic field. It is also found that thes,. is sensitively depend ofy, and

Since we have assumed that thermal conduction is only aldhgthanpo andT...

the magnetic field line, the leng#h,;,, /2 is the minimum length

of separation between the temperatufgsandT. required to 5 4. Comparison with observations

maintain the thermal equilibrium of an isobaric plasma of pres-

surepo. In this case due to the absence of vertical compondsgmmier et al. (1994), from their observations concluded the

of magnetic field, the mechanical equilibrium is not possible following properties of the inverse and normal type of promi-
Due to the presence of vertical component of magnetic fie[@gNCES.

the length of the magnetic field line increases, both thermal) For the Inverse prominences

and mechanical equilibrium are maintained. With the increase

of Wy sec ¢y the length of the magnetic field line increases.— the strength of magnetic field ranges from 2.3 G-15.1 G

It reaches its maximum value close to the maximum value of with an average of 7.5 G

Wy sec ¢g. This is the maximum distance over which the tem— the shear anglg, ranges from 6 to 84 degree with an average

perature difference df, to T, can be maintained for existence  of 54°

of both thermal and mechanical equilibrium of plasma main— the dip angle), ranges from 0-45 degree with an average

tained at a central pressuse. of 299
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Table 4. Values 0f¢.., B.. andp.. for various values of..

(T = 4400 KT, = 8000 Kpo = 1.012x 10~ Pascal)

0. 13 B. inGauss p. x 10* in Pascal
5 0.88 3.96 5.38
10 3.80 2.58 211
15 12.69 74 1.88
20 38.72 .25 1.46

(To = 4400 KT, = 12,000 Kpo = 1.012x10~3 Pascal)
0. ¢

B, inGauss p. x 10* in Pascal

5 1.01 4.1 5.04
10 4.65 2.65 1.79
15 16.85 1.89 0.57
20 56.06 1.46 0.17

(Th = 6000 KT, = 8,000 Kpo = 1.012x 10~ Pascal)

0. 13 B. inGauss p. x 10* in Pascal
5 0.1372 2.010 8.90
10 0.32 1.44 7.64
15 0.58 1.18 6.39
20 0.94 1.03 5.23

(To = 4400 KT, = 12,000 Kpy = 2x 102 Pascal)

0. ¢ B.inGauss p. x 10%in Pascal
5 0.35 4.13 1.48
10 1.03 2.91 9.85

— the electron density, ranges from (2.5 to 83)° cm~3 with
an average of 2:410'° cm~3

(2) For Normal Prominences

— the average magnetic field is found to be 13.2 G

— the average) is found to be37°

— the average value @, is zero

— the average electron density is found to bex8.3° cm—3
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Fig. 5. Variation of ‘s’ with W for 1:—5 =9,

from the Egs. (24) and (26).Using these values and the value
of gas pressure at the center of prominepgene have found

the maximum value ot/ sec ¢ (WhereW, is the width of the
prominence and is the shear angle) up to which the solutions
forthe Eqgs. (23) and (25) will exist. For the valug sec ¢g <

pKf/g, there exists only one type of solution. For the value of
0

W sec ¢ in the rangepOK—\z;g < Woysec oo < [Wosec dolmazs
there exist two type of solutions. Both the solutions coincide at
Wo sec o = [Wo sec domaz-

One having lower value gf(which is nothing bupy /p. — 1
wherep, is the plasma pressure at the edge of the prominence)
andd, (dip angle at the edge of the prominence) corresponds to
the lower region of solar atmosphere is called Type 1 solution.
The other solution corresponds to the higher region of solar
atmosphere is called Type 2 solution. In the Type 1 solution an
equilibrium of isobaric plasma in the presence of strong and
horizontal magnetic field can change over to a prominence type
of solution with the increase 6% sec ¢y. Similarly in the Type
2 solution, an equilibrium with a high difference of pressure in
the presence of a weak magnetic field having dominant vertical

Comparing our solution with these observational results we casbmponent can change over to a prominence type of solution

clude the following

Type 1 solution simulates normal prominencézsds high

andd, is small

with the increase ofl sec ¢g.
Itis found that the range of values Bfj sec ¢ over which
Type 1 solution exists decreases with the increagg ot hus

Type 2 solution simulates the inverse prominence resultfas the higher value o, the Type 2 solution is more likely to

B, is low andd, is high

existthan Type 1 solution. Similar conclusions were drawn from

Type 2 solution is exist for the large valued§ correspond- Bommier et al. (1994). This appears to be contradictory with our
ing to high particle density and pressure which is in agreemegarlier conclusion that Type 1 solution is similar to the condition

with our conclusion drawn previously.

6. Conclusions and discussion

in the lower region of solar atmosphere, and Type 2 solution
correspond to the higher regions in solar atmosphere. But this
is not the case for the following reason. From the integration of
eq (2), we have

For given values of temperature at the center of the prominence

(Ty), temperature at the edge of prominengg)(from these
values the values of the paramekéf and K can be found out P =

_ 2B,*(1 4 cos®0,)

pog[K3 (14 €)] VI +€)?sec?0 + Usine,
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from the above equation. In Type 2 solution and in the inversed for the encouragement he has given while carrying out this work. |
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