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A B S T R A C T
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron
stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc
luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star
substantially modifies these quantities as compared with the static limit. For a neutron star
rotating close to the centrifugal mass shed limit, the total luminosity has contribution only
from the extended disc. For such maximal rotation rates, we find that well before the maximum
stable gravitational mass configuration is reached, there exists a limiting central density, for
which particles in the innermost stable orbit will be more tightly bound than those at the
surface of the neutron star. We also calculate the angular velocity profiles of particles in
Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a
representative set of equation of state models of neutron star matter.
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1 I N T RO D U C T I O N

For accreting neutron stars in old binary systems, also known as
low-mass X-ray binaries (LMXBs), a narrow boundary layer
girdling the neutron star will form next to the neutron star surface.
The importance of the boundary layer derives from the possibility
that this could be the site for the emission of a variable isothermal
blackbody radiation component observed in the spectra of LMXBs
characterized by very high X-ray luminosity (Mitsuda et al. 1984).
For weak magnetic field neutron stars, the boundary layer is
expected to be substantially more X-ray luminous than the entire
extended accretion disc on general theoretical grounds (Sunyaev &
Shakura 1986; King 1995). An important feature of disc accretion
on to a weakly magnetized neutron star is that the neutron star will
get spun up to its equilibrium period (, milliseconds), over a time-
scale of hundreds of millions of years (see Bhattacharya & van den
Heuvel 1991 and references therein). A rapid spin of the neutron
star will enhance its equatorial radius and also relocate the inner
boundary of the accretion disc closer to the neutron star surface. In
effect, this would imply a narrowing down of the boundary layer
separation. Consequently, the boundary layer luminosity is
expected to be much smaller in comparison to the static or slowly
rotating neutron star case, and this can alter the X-ray emission
spectra of LMXBs.

The effect of rotation of the neutron star on the accretion
luminosities was considered by Datta, Thampan & Wiita (1995),
using the ‘slow’ rotation (but general relativistic) formalism of

Hartle & Thorne (1968). These authors found that rotation always
increases the disc luminosity, usually decreases the boundary layer
luminosity and reduces the rate of angular momentum evolution,
and gave quantitative estimates corresponding to realistic neutron
star models. An important parameter in this connection is the radius
of the innermost stable circular orbit (rorb). This quantity plays a
central role in deciding the magnitude of the gravitational energy
release, and hence the accretion luminosities. The relevance of rorb

was emphasized by Kluźniak & Wagoner (1985) who pointed out
that for non-magnetic accreting neutron stars, it is incorrect to make
the general assumption that the accretion disc will be separated
from the neutron star surface by a thin boundary layer. The
boundary layer separation will depend on whether the equation of
state (EOS) of neutron star matter is stiff or soft. For rapidly rotating
neutron stars, Cook, Shapiro & Teukolsky (1994) calculated the
marginally stable circular orbits for application to angular momen-
tum evolution of isolated neutron stars.

Accretion onto a rapidly rotating neutron star can bring in several
interesting features. LMXBs are likely to accrete material, the total
mass of which can be a substantial fraction of the neutron star mass
(* 0:1 M(). This can severely reduce the magnitude of the bound-
ary layer luminosity (King 1995). Another important question is
whether or not the accreting neutron star will be disrupted once it
reaches equilibrium rotation rate with further arrival of the accreted
plasma. Recently, Bisnovatyi-Kogan (1993) has given a self-
consistent analytical solution for an accretion disc structure
around a rapidly rotating non-magnetized neutron star, using a
rigidly rotating polytropic model. This work also gives a simple
recipe for estimating the accretion luminosities based on an
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accreting black hole analogy. In the present paper, we do not
address the question of the disc structure or instability at equi-
librium rotation rates, but examine how a rapid rotation rate of the
neutron star will affect the boundary layer separation and reorder
the contribution to the total accretion luminosity owing to the disc
and the boundary layer. The structure of rotating neutron stars in
general relativity are calculated using a numerical code developed
by us. This code is based on the Komatsu, Eriguchi & Hachisu
(1989) formalism, as modified by Cook et al. (1994) to incorporate
realistic neutron star equations of state. This formalism is fully
general relativistic and is amenable to a self-consistent numerical
treatment, employing a Newton–Raphson-type iterative scheme.
We find that rotation increases the disc luminosity and decreases the
boundary layer luminosity, and for rotation rates near the centri-
fugal mass shed limit, the total luminosity has contribution only
from the extended disc. Furthermore, for such maximal rotation
rates, we find that much before the maximum stable gravitational
mass configuration is reached, there exists a limiting central density
of the neutron star for which particles in the innermost stable
circular orbit will be more tightly bound than those at the surface
of the rotating neutron star. We also examine the possible modifi-
cations in the angular velocity profile of the accreted material in
Keplerian orbit brought on by rapid rotation of the neutron star.

The format of this paper is arranged as follows. Section 2 gives
the formalism and the basic equations to be solved. Section 3
outlines the calculation of rotating neutron star models. The
Keplerian angular velocity profiles are described in Section 4.
The results of our calculations are summarized in Section 5 and a
discussion given in Section 6.

2 AC C R E T I O N L U M I N O S I T I E S F O R A
ROTAT I N G S PAC E – T I M E

The space–time around a rotating neutron star can be described in
quasi-isotropic coordinates, as a generalization of Bardeen’s metric
(Bardeen 1970)

ds2 ¼ ¹egþrdt2 þ e2aðdr2 þ r2dv2Þ þ eg¹rr2 sin2 vðdf ¹ qdtÞ2

ð1Þ

where the metric potentials g, r, a, and the angular velocity of the
stellar fluid relative to the local inertial frame (q) are all functions of
the quasi-isotropic radial coordinate (r) and the polar angle (v). We
use here geometric units: c ¼ 1 ¼ G. Since the metric is stationary
and axisymmetric, the energy and angular momentum are constants
of motion. Therefore, the specific energy Ẽ (in units of the rest
energy m0c2, where m0 is the rest mass of the accreted particle) and
the specific angular momentum l (in units of m0c) can be identified
as ¹p0 and p3 respectively, where, pm (m ¼ 0; 1; 2; 3), stands for the
four-momentum of the particle. From the condition pmpm ¼ ¹1, we
have the equations of motion of the particle (confined to the
equatorial plane) in this gravitational field as

ṫ ¼
dt
dt

¼ p0 ¼ e¹ðgþrÞðẼ ¹ qlÞ ð2Þ

ḟ ¼
df

dt
¼ p3 ¼ Qp0 ¼ e¹ðgþrÞqðẼ ¹ qlÞ þ

l

r2eðg¹rÞ
ð3Þ

ṙ2 ; e2aþgþr dr
dt

� �2

¼ Ẽ2 ¹ Ṽ2
: ð4Þ

Here Q is the angular velocity of the star as seen by a distant
observer, dt is the proper time and Ṽ is the effective potential

given by

Ṽ2 ¼ egþr 1 þ
l2
=r2

eg¹r

� �
þ 2qẼl ¹ q2l2: ð5Þ

The conditions for circular orbits, extremum of energy and mini-
mum of energy are respectively

Ẽ2 ¼ Ṽ2 ð6Þ

Ṽ
;r ¼ 0 ð7Þ

Ṽ
;rr > 0: ð8Þ

For marginally stable orbits,

Ṽ
;rr ¼ 0: ð9Þ

In our notation, a comma followed by one ‘r’ represents a first-order
partial derivative with respect to r and so on, and a tilde over a
variable represents the corresponding dimensionless quantity.

From the expression for the effective potential and the conditions
(6), (7) and (9), one obtains three equations in three unknowns,
namely, r, Ẽ and l. In principle, if analytical expressions for egþr,
e2a, eg¹r and q are known, it would be a straightforward exercise to
solve these equations to obtain r, Ẽ and l. In practice, however, this
is not so, and the solutions for the metric coefficients egþr, e2a, eg¹r

and q have to be obtained as arrays of numbers for various values of
r and v using a numerical treatment. Furthermore, the condition (9)
will introduce second-order derivatives of g, r and q, which means
that care has to be exercised in ensuring the numerical accuracies of
the quantities calculated. For this purpose, it is convenient to
express Ẽ and l in terms of the physical velocity ṽ

ṽ ¼ ðQ ¹ qÞre¹r sin v ð10Þ

of the stellar matter with respect to a locally nonrotating observer
(see Bardeen 1972).

This gives the following expressions

Ẽ ¹ ql ¼
eðgþrÞ=2�������������

1 ¹ ṽ2
p ð11Þ

l ¼
ṽreðg¹rÞ=2�������������

1 ¹ ṽ2
p : ð12Þ

Equations (11) and (12) can be recognized as the condition for
circular orbits. Conditions (7) and (9) yield respectively,

ṽ ¼
e¹rr2q

;r 6 ½e¹2rr4q2
;r þ 2rðg

;r þ r
;rÞ þ r2ðg2

;r ¹ r2
;rÞÿ

1=2

2 þ rðg
;r ¹ r

;rÞ
ð13Þ

Ṽ
;rr; 2

r
4
ðr2

;r ¹ g2
;rÞ ¹

1
2

e¹2rq2
;rr

3 ¹ r
;r þ

1
r

� �
ṽ2

þ ½2 þ rðg
;r ¹ r

;rÞÿṽṽ
;r ¹ e¹rq

;rrṽ

þ
r
2

ðg2
;r ¹ r2

;rÞ ¹ e¹rr2q
;rṽ;r ¼ 0 ð14Þ

where we have made use of equation (13) and its derivative with
respect to r in order to eliminate the second-order derivatives in
equation (14). The zero of V

;rr will give the innermost stable
circular orbit radius (rorb) and the corresponding ṽ will yield Ẽ
and l. In equation (13), the positive sign refers to the co-rotating
particles and the negative sign to the counter-rotating particles. In
this study we have considered only the co-rotation case.

Depending on the EOS and the central density, neutron stars can
have radii greater than or less than rorb (Datta, Thampan & Wiita
1995). The accretion luminosities will, of course, be different for
these two cases (Kluźniak & Wagoner 1985; Sunyaev & Shakura
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1986; Datta et al. 1995). These quantities can be calculated as
follows.

Case (a): Radius of the star (R) greater than rorb.
If an accretion disc were to form around a relatively large neutron

star, the ingress of a particle of rest mass m0 from infinity to the disc
boundary (which will be at the stellar surface) will release an
amount of energy given by

ED ¼ m0f1 ¹ ẼKðr ¼ RÞg ð15Þ

where ẼKðr ¼ RÞ is the specific energy of the particle in Keplerian
orbit at the surface obtained by solving equation (13) to obtain
ṽK ¼ ṽ and solving equations (11) and (12) with r ¼ R and ṽ ¼ ṽK

to obtain lK and ẼKðr ¼ RÞ.
The energy loss in the boundary layer (a very narrow gap near the

neutron star surface) will be

EBL ¼ m0fẼKðr ¼ RÞ ¹ Ẽ0g ð16Þ

where Ẽ0 is the energy of the particle ‘at rest’ on the stellar surface
[the particle will be moving with the velocity ṽ ¼ ṽ* of the stellar
fluid at the surface, where ṽ* is obtained by substituting into
equation (10) all the relevant parameters for r ¼ R] and is calcu-
lated by solving equations (11) and (12) for Ẽ at r ¼ R and ṽ ¼ ṽ*.

Case (b): Radius of the star (R) smaller than radius of rorb.
In this case, the accretion disc will extend inward to a radius

corresponding to r ¼ rorb. The energy released in the disc as the
particle comes in from infinity to the innermost stable circular orbit
will be

ED ¼ m0f1 ¹ Ẽorbg: ð17Þ

The energy released in the boundary layer will be

EBL ¼ m0fẼorb ¹ Ẽ0g ð18Þ

where Ẽorb is the energy of the particle in innermost stable circular
orbit, calculated by finding the r ¼ rorb at which equation (14) is
satisfied and then solving equations (11), (12) and (13) for this r to
yield Ẽorb. The energy Ẽ0 of the particle on the stellar surface is
calculated as described in the previous case.

3 A N G U L A R V E L O C I T Y P R O F I L E S

For slow rotation of the neutron star, the angular velocity of the
accreted material in Keplerian orbit around it, QðrÞ, will have a
profile that has a maximum that is located outside the neutron star
surface. For rapid rotation rates of the star (corresponding to angular
velocity close to the Keplerian value at the surface), a second type of
profile for QðrÞ is also possible, in which QðrÞ exhibits no maximum
but increases monotonically all the way to the surface of the neutron
star. In such a situation, the accretion torque on the neutron star will
not be purely advective. It will become possible for the viscous
torque to transport angular momentum outwards at all radii. This
can lead to interesting accretion scenarios.

The Keplerian angular velocity QK of a particle in an orbit around
the rotating neutron star is defined as

QKðrÞ ¼ erðrÞ ṽðrÞ
r

þ qðrÞ ð19Þ

where ṽ is as given in equation (12). The Keplerian angular velocity
of the particle in an orbit at the surface of the neutron star puts a firm
upper bound on the angular velocity the star can attain (Friedman,
Ipser & Parker 1986) and hence the boundary layer luminosity
when the star attains this maximum Q should be zero (Sunyaev &
Shakura 1986).

4 R A P I D LY RO TAT I N G N E U T RO N S TA R
M O D E L S I N G E N E R A L R E L AT I V I T Y

Rapidly rotating neutron star structure in general relativity for
realistic neutron star EOS have been reported by Friedman et al.
(1986). Their numerical code is based on the programmes devel-
oped by Butterworth & Ipser (1976). Previous models of rapidly
rotating neutron stars have been based on incompressible fluids and
polytropic models (Bonazzola & Schneider 1974; Butterworth
1976). Komatsu et al. (1989) have generalized the Newtonian
self-consistent field method to a general relativistic case to obtain
structures of rapidly rotating stars, again using the polytropic
model. This technique was modified by Cook et al. (1994) for
realistic neutron star EOS for the purpose of studying quasi-
stationary evolution of isolated neutron stars. A variant of this
approach based on spectral methods was developed by Bonazzola et
al. (1993).

In this investigation, we have calculated the structure of rapidly
rotating neutron stars in general relativity using a numerical code
developed by the present authors, which is based on the method of
Komatsu et al. (1989), as modified by Cook et al. (1994) so as to
incorporate realistic neutron star EOS. The results of our code agree
with the published results of Friedman et al. (1986), and results
using the code of Stergioulas & Friedman (1995) to less than 1 per
cent. Also, wherever a comparison was possible, our results agreed
with those reported in Cook et al. (1994) to a similar degree of
accuracy. For non-rotating equilibrium models, we found our
results to be within 0.3 per cent of the published results of Arnett
& Bowers (1977). We have constructed numerically various
sequences of neutron stars, starting from the static limit all the
way up to the rotation rate corresponding to the centrifugal mass
shed limit. The latter limit corresponds to the maximum Q for which
centrifugal forces are able to balance the inward gravitational force.
Any further increase in Q will lead to disruption of the star. The
general relativistic expression for this limit can be found in Cook et
al. (1994).

The structure of neutron stars depends sensitively on the EOS at
high densities. Although the main composition of degenerate matter
at densities higher than nuclear matter density is expected to be
dominated by neutrons, significant admixtures of other elementary
particles (such as pions, kaons and hyperons) are not ruled out. A
persistent problem in determining the EOS for neutron star interior
is what to choose for the interaction potential among the constituent
particles, for which reliable experimental data are not available. All
calculations involve either extrapolations from known nuclear
matter properties or plausible field theoretical approaches using
the mean-field approximation. Another related but unresolved
problem is: what is an adequate many-body technique to estimate
the higher order correlation terms in expressions for the pressure. In
this paper we do not address these problems, but choose, for
illustrating the results of the present study, six EOS models based
on representative neutron star matter interaction models. This is
expected to provide a broad realistic set of conclusions. A brief
description of the EOS models used here is given below.

(A) Pandharipande (1971) (hyperonic matter). One of the early
attempts to derive nuclear EOS with admixture of hyperons is due to
Pandharipande (1971), who assumed the hyperonic potentials to be
similar to the nucleon–nucleon potentials, but altered suitably to
represent the different isospin states. The many-body method
adopted is based on the variational approach of Jastrow (1955).
The two-body wave function was taken as satisfying a simplified
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form of the Bethe–Goldstone equation, in which terms representing
the Pauli exclusion principle were omitted but simulated by
imposing a ‘healing’ constraint on the wave function.

(B) Bethe-Johnson. Bethe & Johnson (1974) devised phenom-
enological potentials for nucleon–nucleon interaction that have
realistic short-range behaviour. These authors then used the lowest
order constrained variational method to calculate the EOS of
neutron star matter. The work of Bethe & Johnson (1974) consists
of two different parts: (a) the determination of the EOS for pure
neutron gas and (b) the derivation of a hyperonic equation of state.
For the purpose of illustration here, we have chosen their EOS
model V (neutron matter).

(C) Walecka (1974) (neutrons). The EOS model of Walecka
(1974) corresponds to pure neutron matter, and is based on a mean-
field theory with exchange of scalar and (isoscalar) vector mesons
representing the nuclear interaction.

(D) Wiringa, Fiks & Fabrocini (1988) (UV14 + UVII). These
authors gave a model of EOS for dense nuclear and neutron matter
which includes three-nucleon interactions. This is a non-relativistic
approach based on the variational method. The three-body potential
includes long-range repulsive parts that are adjusted to give light
nuclei binding energies and nuclear matter saturation properties.
The authors have given three models. We consider here their model
UV14+UVII for the beta-stable case: neutrons, protons, electrons
and muons.

(E) Sahu, Basu & Datta (1993). gave a field theoretical EOS for
neutron-rich matter in beta equilibrium based on the chiral sigma
model. The model includes an isoscalar vector field generated
dynamically and reproduces the empirical values of the nuclear
matter saturation density and binding energy and also the isospin
symmetry coefficient for asymmetric nuclear matter. The energy
per nucleon of nuclear matter according to Sahu et al. (1993) is in
very good agreement, up to about four times the equilibrium nuclear
matter density, with estimates inferred from heavy-ion collison
experimental data.

(F) Baldo, Bombaci & Burgio (1997): have recently given a
microscopic EOS for asymmetric nuclear matter, derived from the
Brueckner–Bethe–Goldstone many-body theory with explicit

three-body terms. The three-body force parameters are adjusted
to give a reasonable saturation point for nuclear matter.

The pressure–density relationship of these above EOS models is
illustrated in Fig. 1. Of the above EOS, model (A) is a relatively soft
EOS, models (B), (D) and (F) are roughly intermediate in stiffness,
whereas models (C) and (E) are rather stiff EOS. It may be recalled
that a stiffer EOS will give a higher value for the non-rotating
neutron star maximum mass and also a higher value for the
corresponding radius. The composite EOS for the entire span of
neutron star densities was constructed by joining the selected high
density EOS to that of Negele & Vautherin (1973) for the density
range (1014 ¹ 5 × 1010) g cm¹3 , Baym, Pethick & Sutherland
(1971) for densities down to ,103 g cm¹3 and Feynman, Metro-
polis & Teller (1949) for densities less than 103 g cm¹3 .

We found that while the results for EOSs (B), (C), (E) and (F)
were straightforward, EOS models (A) and (D) presented the
peculiarity of having the maximum Q model as the maximum
stable mass model (in agreement with the result of Cook et al.
1994) suggesting that EOSs (A) and (D) belong to the Class I EOS
and EOS models (B), (C), (E) and (F) to Class II as classified in
Stergioulas & Friedman (1995).

5 R E S U LT S

All the calculated parameters depend on the central density (rc) and
rotation rate (Q) of the neutron star. In Table 1 we have summarized
the functional dependences on rc of some important parameters in
the calculation of luminosities. In order to illustrate this depen-
dence, we choose two limits of Q, namely, the non-rotating or static
limit (Q ¼ 0) and the centrifugal mass shed limit (Q ¼ Qms), which
are the two natural ends of a constant density sequence. As
expected, the functional form of the dependence of structure
parameters on central density for rotation rate at centrifugal mass
shed limit (Q ¼ Qms) is found to be qualitatively similar to that at the
static limit and so are not explicitly displayed here (see, for example
Friedman et al. 1986). The listed quantities in Table 1 are the values
of the neutron star gravitational mass MG, disc luminosity ED,
boundary layer luminosity EBL, the boundary layer separation (i.e.
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the height above stellar surface, where the innermost stable circular
orbit is located) hþ and the corresponding Keplerian angular
velocity QK. Generally speaking, rorb exhibits three characteristics:
(a) rorb is non-existent, (b) rorb < R, and (c) rorb > R. For the first two
cases, the rorb is taken to be the Keplerian orbit radius at the surface
of the star. The cases for which rorb is non-existent are differentiated
in Table 1 by a dashed line under the column for hþ and the cases for
which rorb # R are indicated by the entries for which hþ is zero. The
central density at which rorb exactly equals R in the rotating case (we
call this the radius cross-over density), is indicated by an asterisk
over the corresponding central density. For each EOS model, we
choose five central densities corresponding to: (i) MG ¼ 1:4 M( at
Q ¼ Qms, (ii) MG ¼ 1:4 M( at Q ¼ 0, (iii) the radius cross-over
density, at which rorb ¼ R for Q ¼ Qms, (iv) MG ¼ maximum mass
at Q ¼ Qms and (v) MG ¼ maximum mass at Q ¼ 0. For neutron
stars corresponding to the EOS models (A) and (D), we find that
before the maximum stable mass is attained, the sequences become
unstable to radial perturbations, and hence the corresponding
maximum Q model can be taken as the maximum mass stable
model. Therefore, in Table 1 we have listed, for these EOS,
parameters corresponding to the maximum Q model instead of
the maximum mass model.

From Table 1, it can be seen that typical increases in mass (to

maintain the central density constant) from the static limit is 14–35
per cent, with the larger changes corresponding to the lower
densities in the stiffer EOS. The corresponding increase in radius
(see Fig. 4, later) lie in the range 28–44 per cent.

Table 1 also shows that the disc luminosity ED increases for
Q ¼ Qms with central density whereas, in the non-rotating case, it
remains constant (except in the low central density regime for the
stiff EOS for which the rorb is located at the surface of the star). On
the other hand, EBL is substantially higher (almost by a factor of 2)
than ED in the static limit but becomes almost zero at the centrifugal
mass shed limit (because of the fact that rotation rate at this limit is
very nearly equal to the Kepler frequency of a particle in the
innermost stable circular orbit at the surface). Interestingly, EBL

is negative for densities higher than the radius cross-over density.
In Fig. 2, we display the dependence of Qms with rc. Qms varies

monotonically with rc. Furthermore, Qms seems to possess a marked
dependence on the EOS; the softer the EOS, the larger the value of
Qms. All curve labels in Figs 2, 3, 5 and 7 are as indicated in Fig. 1.

The variation of the gravitational mass MG, baryonic mass M0,
stellar radius R, and the radius rorb of the innermost stable circular
orbit with respect to Q for the radius cross-over density is illustrated
in Fig. 3. From Fig. 3, it can be seen that until Q , 0:5Qms, the
structure parameters change slowly but for higher rotation rates
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Table 1. The values of the neutron star gravitational mass MG, disc luminosity ED, boundary layer luminosity EBL, the boundary layer separation
(i.e, the height above stellar surface, where the innermost stable circular orbit is located) hþ and the corresponding Keplerian angular velocity QK

for two values of neutron star rotation rates Q ¼ 0 and Q ¼ Qms and chosen values of central density rc – see text for details. The numbers
following the letter E in column 9 stand for powers of ten. rc is in units of 1014 g cm¹3 ; Qms and QK are in units of 104 rad s¹1.

EOS rc Qms M ED EBL hþ QK

(M( ) (m0c2) (m0c2) (km)

Q ¼ 0 Q ¼ Qms Q ¼ 0 Q ¼ Qms Q ¼ 0 Q ¼ Qms Q ¼ 0 Q ¼ Qms Q ¼ 0 Q ¼ Qms

(A) 26.630 1.105 1.183 1.400 0.057 0.073 0.177 1.578E ¹ 4 2.052 0.000 1.167 1.106
*39.121 1.370 1.357 1.585 0.057 0.084 0.246 1.141E ¹ 4 4.239 0.000 1.018 1.370
43.000 1.434 1.381 1.608 0.057 0.085 0.261 ¹9.000E ¹ 6 4.616 0.223 1.000 1.387

(B) 10.670 0.718 1.133 1.400 0.056 0.058 0.110 4.970E ¹ 5 — — 1.065 0.718
13.730 0.847 1.400 1.723 0.057 0.071 0.160 6.780E ¹ 5 1.719 0.000 0.986 0.847

*22.600 1.062 1.694 2.034 0.057 0.084 0.237 1.866E ¹ 4 5.057 0.000 0.815 1.063
26.000 1.119 1.730 2.060 0.057 0.086 0.254 1.160E ¹ 5 5.619 0.286 0.798 1.082
35.270 1.240 1.757 2.060 0.057 0.088 0.284 ¹9.098E ¹ 4 6.403 0.721 0.786 1.133

(C) 6.363 0.609 1.088 1.400 0.053 0.053 0.090 3.880E ¹ 5 — — 0.900 0.609
7.413 0.689 1.400 1.818 0.057 0.065 0.128 1.058E ¹ 4 0.137 — 0.985 0.689

*10.610 0.845 1.961 2.493 0.057 0.084 0.217 2.199E ¹ 4 5.140 0.000 0.704 0.845
19.500 1.042 2.279 2.769 0.057 0.094 0.303 ¹3.196E ¹ 3 8.799 1.408 0.606 0.905
21.750 1.070 2.284 2.757 0.057 0.094 0.311 ¹3.877E ¹ 3 9.020 1.508 0.605 0.918

(D) 8.757 0.700 1.106 1.400 0.056 0.057 0.104 5.593E ¹ 5 — — 1.033 0.700
10.430 0.803 1.400 1.780 0.057 0.070 0.150 7.670E ¹ 5 1.297 0.000 0.986 0.803

*13.530 0.953 1.788 2.239 0.057 0.084 0.223 1.055E ¹ 4 4.896 0.000 0.772 0.954
22.270 1.217 2.160 2.604 0.057 0.097 0.331 ¹6.517E ¹ 3 8.946 1.640 0.640 1.013

(E) 3.556 0.465 1.059 1.400 0.047 0.047 0.069 1.412E ¹ 4 — — 0.692 0.466
4.064 0.520 1.400 1.887 0.055 0.057 0.097 7.938E ¹ 5 — — 0.761 0.520

*6.996 0.674 2.338 3.043 0.057 0.083 0.207 1.836E ¹ 4 5.641 0.000 0.591 0.674
11.000 0.762 2.572 3.221 0.057 0.089 0.254 ¹4.476E ¹ 4 8.341 0.865 0.537 0.711
13.394 0.794 2.589 3.200 0.057 0.089 0.266 ¹8.943E ¹ 4 8.841 1.038 0.534 0.730

(F) 9.136 0.697 1.106 1.400 0.056 0.057 0.104 1.149E ¹ 4 — — 1.030 0.697
11.900 0.812 1.398 1.760 0.057 0.070 0.152 1.012E ¹ 4 1.382 0.000 0.988 0.812

*20.493 1.019 1.732 2.109 0.057 0.084 0.233 9.228E ¹ 5 5.031 0.000 0.797 1.019
26.000 1.100 1.780 2.135 0.057 0.086 0.257 ¹1.487E ¹ 4 5.837 0.380 0.776 1.053
30.890 1.155 1.788 2.126 0.057 0.087 0.270 ¹5.163E ¹ 4 6.199 0.568 0.772 1.080



(Q * 0:6Qms), the rate of change is more pronounced. These
changes are EOS dependent, being more substantial for stiffer EOS.

To illustrate how the boundary layer separation varies with rc, Q

and also with the EOS, we give in Fig. 4, plots of rorb and R versus rc

for two cases of Q. In Fig. 4, the six graphs corresponding to the
different EOS models, display RðQ ¼ 0Þ (curve 1), RðQ ¼ Qms)
(curve 2), rorbðQ ¼ 0Þ (curve 3) and rorbðQ ¼ QmsÞ (curve 4). It is
immediately apparent from the plots that as Q increases from 0 to

Qms for a fixed rc, R (curves 1 and 2) increases and rorb (curves 3 and
4) decreases. Furthermore, it can be seen that in the static case rorb is
generally greater than R for the whole range of central densities, the
exception being for the stiff EOS (C) and (E) (in these latter cases,
rorb is less than R for a few lower central density values), whereas at
the centrifugal mass shed limit, rorb is greater than R only for very
high densities. The intersection of curve (2) with curve (4) repre-
sents the cross-over density rc for which rorb ¼ R at the centrifugal
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Figure 2. The neutron star rotation rate at the centrifugal mass shed limit as a function of central density for various EOS models. The labels in Figs 2, 3, 5 and 7
are as in Fig. 1.

Figure 3. Neutron star gravitational mass (MG), baryonic mass (M0), radius (R), and the radius (rorb) of the innermost stable circular orbit as a function of the
star’s rotation rate for various EOS. The graphs correspond to the radius cross over central density for each EOS.



576 A. V. Thampan and B. Datta

q 1998 RAS, MNRAS 297, 570–578

Figure 4. Neutron star radius (R) and radius (rorb) of the innermost stable circular orbit as functions of central density for two values of stellar rotation rate (Q).
See text for the details.

Figure 5. The accretion luminosities in units of the rest mass of the accreted particle as functions of neutron star rotation rate. The graphs correspond to the radius
cross-over central density for each EOS.



mass shed limit. Since at the mass shed limit, the stellar rotation rate
is almost equal to the angular velocity of a particle in Keplerian
orbit at the surface of the star, the radius cross-over density
represents the point at which the particle in the innermost stable
circular orbit will start becoming more bound than a particle at the
surface of the star. In other words, EBL will tend to zero at this

central density and will become negative at some central density
greater than this. This is indicated by the vertical line in the graph.

In Fig. 5, we plot ED, EBL, the total luminosity (ED þ EBL) and
the ratio of EBL to ED, all as functions of Q=Qms. All these plots are
for radius cross-over density for the various EOS. Among the
various EOS, ED differs most when Q is large. In contrast, EBL
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Figure 6. The Keplerian angular velocity of a particle in the innermost stable circular orbit as a function of the neutron star rotation rate. Curve 1 refers to the
central density corresponding to a gravitational mass of 1.4 M( in the static limit, and curve 2 corresponds to that at the radius cross-over central density.

Figure 7. Keplerian angular velocity (QK) profiles for various EOS. The vertical lines indicate the location of the surface of the star. The horizontal axis
corresponds to the logarithm of the radial coordinate r taken in cm.



differs (among the various EOS), most for slow rotation rates. There-
fore, the total luminosity follows a variation similar to that of EBL.

The dependence of QK on Q is shown in Fig. 6. For convenience
of display and comparison, these are taken in units of Qms, and two
chosen values of rc. In Fig. 6 curve 1 refers to rc corresponding to
MG ¼ 1:4 M( at the static limit and curve 2 refers to rc for the
radius cross-over density. The qualitative differences in the beha-
viour of curve 1 for all the graphs is quite noticeable. These
differences arise entirely from the differences in the location of
the innermost stable circular orbit with repect to the stellar surface.

In Fig. 7 we give plots of the angular velocity profiles for the
radius cross over densities for each of the EOS.

6 D I S C U S S I O N

In this paper we have investigated in a general relativistic
manner, the effect of rapid rotation on the boundary layer and
disc luminosity for an accreting, old neutron star. The assumption
made is that the magnetic field of the neutron star is too small to
affect the accretion flow. It is relevant to ask if a quantitative
estimate is possible of how low the magnetic field should be for
the validity of our calculations. The Alfvén radius (rA) is defined by
the relationship (see Lamb, Pethick & Pines 1973)

B2ðrAÞ

8p
¼ rðrAÞv2ðrAÞ ð20Þ

where r and v are respectively the density and radial velocity in the
accretion disc. The Alfvén radius determines the location at which
magnetic pressure channels the flow from a disc into an accretion
column structure above the magnetic poles. Lamb et al. (1973)
show that

rA & 2:6 × 108 m4=7
30 ðM=M(Þ1=7

L2=7
37 R2=7

6

� �
cm ð21Þ

where m30 ¼ B0R3
=1030G cm3, L37 is the total luminosity in units of

1037 ergs s¹1, R6 ¼ R=106 cm and B0 is the magnetic field on the
surface of the neutron star in gauss. The condition that rA < R
implies that (for the reasonable choice of M ¼ 1:4 M( and R6 ¼ 1)

B0 < 5:5 × 107L1=2
37 ð22Þ

and is necessary for the scenario we have considered to be fully self-
consistent. In our notation, L ¼ ðED þ EBLÞṀc2, with Ṁ the mass
accretion rate.

The main conclusions of this paper are that rotational effects of
general relativity increase the disc luminosity and more importantly
from the point of observations, decrease the boundary layer
luminosity. These effects are small in magnitude for small values
of Q but become substantial for rapid rotation rates of the neutron
star. The boundary layer luminosity becomes inconsequential for
rotation rates near the centrifugal mass shed limit. For such cases,
the role of radiation pressure on the accretion flow (see Miller &
Lamb 1996) must be re-examined. Also for such cases, accretion
induced changes in the surface properties of the neutron star is an
important question to investigate. The vanishing of the boundary
layer luminosity for rapid rotation rates as found in this study is not
apparent in a similar calculation using the ‘slow’ rotation approxi-
mation based on the Hartle & Thorne (1968) metric (see Datta et al.
1995). The total luminosity remains fairly constant up to a rotation
rate of about 0:6Qms, but declines rapidly to the value of the disc
luminosity for higher rotation rates. We have not considered here
the angular momentum evolution of the accreting neutron star, but
have calculated the accretion luminosities for chosen fixed values of

Q. So, the boundary layer luminosity values listed in Table 1 do not
include corrections for the energy that may go into the spinning up
of the neutron star. We have not considered the effect of viscosity
on the accretion luminosity. The viscosity effects require a full hydro-
dynamic treatment and also the radiative transfer phenomenon.

An interesting conclusion of the present study (see Fig. 4) is that
neutron star configurations with high central densities have their
innermost stable circular orbit located exterior to the star. For such
configurations that are rotating at the centrifugal mass shed limit,
particles in the innermost stable circular orbit are more bound than
particles at the surface of the star. This could lead to the formation of
an inner disc torus. The idea of an inner disc torus has been invoked as
a possible explanation of flaring branch phenomena observed in
certain quasi-periodic oscillators (Kuulkers & van der Klis 1995),
with radiation pressure playing a key dynamical role. Our study seems
to suggest that an inner disc torus can be formed in the absence of a
substantial radiation pressure, purely as a consequence of general
relativistic rotational space–time in situations where the rotation rate
of the accreting neutron star is close to the centrifugal mass shed limit.
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