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Abstract. The combined effect of non-parallel propagation and
steady shear-flows on the properties of hydromagnetic surface
waves is examined for two different orderings of physical pa-
rameters that are expected at the edge of a hot and dense coro-
nal loop and an isolated, photospheric magnetic flux-tube. It is
found that a finite angle of inclination of the wavevector with
respect to the magnetic field generally facilitates the propaga-
tion of surface waves by relaxing restrictions imposed on their
phase velocities by the shear-flow. Non-parallel propagation,
along with a shear-flow, can also give rise tobackward prop-
agating surface modesthat may be subject tonegative energy
instabilities. Such a backward surface mode appears when the
magnitude of the shear-flow exceeds a certain critical value.
Such a critical flow is much larger than the magnitudes of the
observed flows in solar coronal loops. Negative energy instabil-
ities of hydromagnetic surface waves may not, therefore, play
an important role in the energetics of the hot solar coronal loops.
For a photospheric magnetic flux-tube, the critical flow for the
appearance of a backward propagating slow surface mode is
found to increase with the increase of the angle of propagation
of the waves. The surface mode that is most prone to negative
energy instabilities, therefore, seems to be the one that propa-
gates parallel to the magnetic field lines.
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1. Introduction

Hydromagnetic surface wavesare believed to play impor-
tant role in transporting mechanical energy from the sub-
photospheric layers of the Sun to the upper solar atmosphere and
finally dissipating that energy into heat in the solar corona; see
reviews by Hollweg (1990a,b), Roberts (1991) and Goossens
(1991). Properties of these hydromagnetic surface waves are
known to change considerably in the presence of steady
shear-flows (see, Nakariakov & Roberts 1995; see also Satya
Narayanan & Somasundaram 1985; Somasundaram & Satya
Narayanan 1987; Satya Narayanan 1991; Nakariakov, Roberts
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& Mann et al. 1996). Particularly interesting in these studies
is the appearance ofbackward propagating wavesthat are also
the ‘negative energy waves (NEW)’ (Joarder et al. 1997). Such
waves may be subject todissipative instabilitiesin the pres-
ence of viscous, thermal or resistive diffusion or by resonant
absorption process (cf. Ryutova 1988; Ruderman & Goossens
1995; Ruderman et al. 1996; Tirry et al. 1998; Andries et al.
2000). Most of these previous studies were confined to cases
where all the magnetic fields, directions of the flows and the
wavevector are parallel to each other and are also parallel to the
interface of discontinuity in the plasma and the field parameters.
In this paper, we remove one of these limitations by studying
the important effect of non-parallel propagation of hydromag-
netic surface waves in the presence of shear-flows. The effect
of non-parallel propagation on hydromagnetic waves in the ab-
sence of shear-flows has already been analysed in detail in the
literature (e.g. Somasundaram & Uberoi 1982; Uberoi 1982;
Rae & Roberts 1983; Jain & Roberts 1991; Joarder & Roberts
1992; Satya Narayanan 1997). We extend these earlier analyses
by including a steady shear-flow. We here note that Tirry et al.
(1998) and Andries et al. (2000) have recently incorporated non-
parallel propagation in their analysis of resonant instability of
hydromagnetic surface waves in a thin, non-uniform transition
layer of a zero -β plasma. In this paper, we confine ourselves
to a single interface of discontinuity between two finite plasma
- β media.

2. The dispersion relation

Let x=0 be the interface of discontinuity separating two com-
pressible, magnetic media (denoted by the suffix “e” in the re-
gion x < 0 and the suffix “0” in the regionx > 0) that are in-
finitely extended in the y- and the z- directions with their Alfven
speeds and the acoustic speeds beingvAe, vA0 andcse, cs0, re-
spectively. Both the magnetic fields (Be,B0) and the steady
flows (Ue,U0) in the two media are directed along the z-axis,
which is in the plane of the interface. The equilibrium densities
ρe andρ0 of the two media are connected by the condition of
total pressure balance, namely,

ρe

ρ0
=

2c2
s0 + γv2

A0

2c2
se + γv2

Ae

, (1)
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whereγ is the ratio of specific heats in both the media. We
considerγ = 5/3 in our numerical examples in Sect. 3.

Following Roberts(1981a), we now linearize the ideal MHD
equations about the above equilibrium. Elimination from the
linearized equations of all variables exceptvx, the amplitude of
the x-component of velocity, yields the following second order
ordinary differential equation:

d2vx

dx2 − k2
zM2

(e,0)vx = 0, (2)

where,

M2
(e,0) =

(
v+2

c(e,0)−Ω2
(e,0)

)(
v−2

c(e,0)−Ω2
(e,0)

)
(

v2
A(e,0)+c2

s(e,0)

)(
c2

T (e,0)−Ω2
(e,0)

)
,

(3)

and Ω(e,0) = ω/kz − U(e,0) are the Doppler-shifted, field-
aligned phase-speeds in the two media. The speeds

cT (e,0) = cs(e,0)vA(e,0)/
(
c2
s(e,0) + v2

A(e,0)

)1/2
(4)

are the magnetoacoustic “cusp speeds” (e.g. Roberts 1981a) in
the media “e” and “0”, respectively. The quantitiesv±

c(e,0) are
given by (Rae & Roberts 1983; Joarder & Roberts 1992)

v±
c(e,0)(θ) =

{
1
2

(
v2

A(e,0) + c2
s(e,0)

)
sec2 θ

±1
2

[(
v2

A(e,0) + c2
s(e,0)

)2
sec4 θ

−4v2
A(e,0)c

2
s(e,0) sec2 θ

] 1
2
} 1

2

, (5)

that are simply the magnetoacoustic speeds along the magnetic
fieldsB(e,0), with “+” referring to the fast waves and “-” to the
slow waves. In Eq. (5),θ is the angle of inclination of the wave
vectork with the z-axis.

In the following, we restrict ourselves only to thesurface
modes(cf. Roberts 1981a) of the above equilibrium. This re-
quires, that the amplitudesvx(x) evanescent away from the
interface in either of the two media, thus implying that both
M0 andMe are real and positive. Such assumption, of course,
excludesbody waves, for whichM2

0 < 0 (cf. Roberts 1981b),
from our analysis.

Considering further that both the normal component of dis-
placement and the perturbation in the total (gas + magnetic)
pressure are continuous across the interface x = 0, wefinally
arrive at the dispersion relation for the hydromagnetic surface
waves at the interface. This dispersion relation reads:

ρe

(
v2

Ae − Ω2
e

)
M0 + ρ0

(
v2

A0 − Ω2
0

)
Me = 0. (6)

The dispersion relation reduces to the dispersion relation derived
by Nakariakov & Roberts (1995) forθ = 0. In the absence
of shear flows(U(e,0) = 0), Eq. (6) reduces to the dispersion
relation derived by Joarder & Roberts (1992) in a limit, where
the wavelengths of perturbations are sufficiently small(kya →
∞, M0 > 0) compared to the half width “a” of their model
prominence slab.

3. Properties of the surface modes

The properties of the surface modes, that are revealed by the
solutions of the dispersion relation (6), depend on the ordering
of various physical speeds in the two media “e” and “0”, respec-
tively. For briefly explaining the nature of these surface modes,
we consider two specific examples of such orderings of speeds
that were earlier considered by Edwin & Roberts (1982). These
two cases are described in the following.

3.1. vAe > vA0 > cs0 > cT0 > cse > cTe

This case is representative of situations found in dense solar
coronal loop structures embedded in a rarer magnetic medium
with a higher Alfven speed. We note that, for a purely parallel
(θ = 0) propagation, no surface wave solutions of Eq. (6) exists
in this case with or without steady shear-flows (Edwin & Roberts
1982, 1983; Nakariakov & Roberts 1995). For non-parallel (θ /=
0) propagation, surface wave solutions may, however, exist even
in the absence of steady flows (Uberoi 1982; Somasundaram
& Uberoi 1982). The properties of such surface waves in the
presence of steady shear-flows are discussed below.

Consider first the case where there is no flow in region “e”
external to the loop (Ue = 0) and the material in region “0”
inside the loop flows in the negative z - direction, i.e.,U0 < 0.
In this paper, we mostly confine ourselves to the discussion of
waves propagating in the positive z - direction (kz > 0). With
U0 < 0, we then consider a coronal flow in a direction opposite
to the direction of the field- aligned phase propagation of the
waves. In this case, a surface wave solution of Eq. (6) must
satisfy the condition

vA0 − |U0| < c < vAe, (7)

along with the conditionsM(e,0) > 0. It is evident that theslow
surface waves, requiringc < cT0 − |U0|, cannot exist in such a
situation.Fast surface waves, requiringv−

c0 < Ω0 < v+
c0, may,

however, exist. Depending on the strength of the flow|U0| =
−U0, there may be two such fast surface modes, namely, (i) the
(externally fast) fast surface modeand (ii) the(externally slow)
fast surface mode; see Joarder & Roberts (1992) for a discussion
of such fast surface waves in a somewhat different context.
(i) (Externally fast) Fast surface mode: The field aligned phase
speedc ≡ ω/kz for these waves satisfies the condition

max(v−
ce(θ), vA0 − |U0|) < c < min(v+

c0(θ) − |U0|, vAe). (8)

Such waves ‘disappear’ when the strength of the flow-speed is
large enough so that

|U0| ≥ (v+
c0(θ) − v−

ce(θ)). (9)

The mode that ‘disappears’ become radiative and their energy
‘leaks’ at a large distance|x| → ∞ from the interface (Roberts
& Webb, 1979).

Fig. 1a depicts the variation of phase speed c with the magni-
tude of the flow speed|U0| for the (externally fast) fast surface
mode propagating at a particular angleθ = 10◦ with respect
to the direction of the magnetic fieldB0,e. For the particular
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a b

Fig. 1a and b.Field aligned phase-speed c vs. magnitude of the flow speed|U0| = −U0 for a the(externally fast) fast surface modeandb the
(externally slow) fast surface modein a case, wherevAe > vA0 > cs0 > cT0 > cse > cTe, U0 < 0, and for an arbitrarily chosen angle of
inclinationθ = 10◦. The numerical values chosen for various physical parameters are:vA0 = 1.0, vAe = 2.5, cs0 = 0.3, cse = 0.2, ρe/ρ0 =
0.175 andUe = 0.0. Note that, ina, the (externally fast) fast surface mode ‘disappears’ when|U0| ≈ 0.8165vA0 = v+

c0(θ = 10◦) − v−
ce(θ =

10◦). Note also the upper cut-offc = cTe in the phase speed c of the (externally slow) fast surface modeb. This mode can propagate only when
the magnitude of the flow speed exceeds a value|U0| = vA0 − cTe ≈ 0.8006vA0.

choice of parameters considered in this diagram (see the figure
caption below), the fast surface wave disappears for a flow speed
U0 ≤ −0.8165 satisfying Eq. (9). The phase speed of the mode
at this ‘lower cut-off’ is given byc = v−

ce(θ = 10◦).
(ii) (Externally slow) Fast surface mode: This mode appears
when the strength of the flow satisfies the condition:(vA0 −
|U0|) < cTe, with its phase speed c lying in a domain

(vA0 − |U0|) < c < min(v+
c0(θ) − |U0|, cTe). (10)

Fig. 1b demonstrates the variation of the phase - speed c for this
fast surface mode with the magnitude of the flow speed|U0|,
again for a particular angle of propagationθ = 10◦. Eq. (10)
shows that the field-aligned phase - speed c of this mode be-
comes negative as|U0| exceeds the Alfven speedvA0; i.e., the
mode becomes abackward propagating fast surface modethat
changes its direction of propagation to be carried along with a
strong oppositely directed flow. Such a super-Alfvenic down-
flow speed is excluded in our present analysis as they are rarely
met in the solar coronal situation (Nakariakov & Roberts 1995;
see also a summary of recent TRACE observations of coronal
flows by Schrijver et al. 1999).

As θ approachesπ/2, v−
ce(θ) approachescTe andv+

c0(θ) ap-
proaches infinity. Both the (externally fast and slow) fast surface
modes still exist with their phase propagation windows given
by:

max(cTe, vA0 − |U0|) < c < vAe, (11)

for the(externally fast) fast surface modeand

(vA0 − |U0|) < c < cTe, (12)

for the (externally slow) fast surface mode. Note that, unlike
in the case of a finite propagation angleθ, the lower cut-off
for the (externally fast) fast surface wave is now removed. The

mode can now propagate for a much larger flow speed|U0|
unless the flow becomes so large (≈ 2vA0; see Nakariakov &
Roberts 1995) so that the Kelvin-Helmholtz instability (e.g.,
Chandrasekhar 1961) sets in. We exclude a discussion of such
instability in the present paper and confine ourselves to much
smaller magnitudes of the flow - speedU0.

In this limit of θ → π/2, the phase - speed c of the (externally
fast) fast surface wave assumes the form

ca = −
[

ρ0

ρ0 + ρe

]
|U0| +

{[
ρ0v

2
A0 + ρev

2
Ae

ρ0 + ρe

]

−
[

ρ0ρe

(ρ0 + ρe)2

]
|U0|2

}1/2

. (13)

With Ue = 0, Eq. (13) coincides with the expression given by
Chandrasekhar (1961) for the phase speed of anincompressible
surface wavepropagating along the direction of the magnetic
field in the presence of shear-flows. Such asymptotic behaviour
of certain compressible surface waves was pointed out earlier
by Roberts (1981a), Somasundaram & Uberoi (1982), Joarder
& Roberts (1992).

Consider now the case where the coronal flow is in the di-
rection of the field- aligned phase propagation of the waves,
i.e., U0 > 0. Only one hydromagnetic surface mode, namely,
the (externally fast) fast surface mode is of some interest. The
phase speed c of the mode satisfies the condition

(vA0 + U0) < c < min[(v+
c0(θ) + U0), vAe]. (14)

Fig. 2 depicts the variation of the longitudinal phase - speed
c with the increase of the flow speedU0 for these fast surface
waves for a particular angle of propagationθ = 10◦. This figure
shows, that the mode can propagate as long as the flow - speed
satisfies the conditionU0 < (vAe −vA0). Asθ approachesπ/2,
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Fig. 2.Field-aligned phase-speed c vs flow-speedU0 for the (externally
fast) fast surface mode in a case, where,vAe > vA0 > cs0 > cT0 >
cse > cTe andU0 > 0. The angle of propagation is arbitrarily chosen
to beθ = 10◦. The numerical values of various other parameters are
the same as in Fig. 1. Note, that the (externally fast) fast surface mode
can only propagate whenU0 < (vAe − vA0) = 1.5vA0.

the limiting value for the phase speed c of this (externally fast)
fast surface wave is again given by Eq. (13), but with|U0| = U0.

We also note that, there isbackward surface modepropa-
gating in the direction of the flow as the flow speed exceeds the
Alfven speedvA0 of the internal plasma. We identify this mode
as the backward propagating part of the (externally slow) fast
surface mode discussed in the case ofU0 < 0.

3.2. vAe = 0, vA0 > cse > cs0 > cT0

This case is similar to the situation observed in an isolated, cool,
photospheric flux-tube embedded in a field-free photospheric
surrounding. As in Nakariakov & Roberts (1995), there is no
flow in the regionx > 0 so thatU0 = 0. The field-free medium
at x < 0, however, has a downflowUe < 0. If we assume the
z-axis to point towards the upper atmosphere of the Sun, the
negative flow in region “e” may then represent the granular/ su-
pergranular downdraught motion surrounding the photospheric
flux tube.

For purely parallel (θ = 0) phase-propagation, we get two
surface modes, namely, ahydromagnetic fast surface mode and
a hydromagnetic slow surface mode. The propagation band for
the fast surface mode is given by

cs0 < c < (cse − |Ue|). (15)

The fast surface waves ‘disappear’ for|Ue| ≥ (cse −cs0) in this
particular case of purely parallel propagation of the waves. For
a non-parallel propagationθ /= 0, Eq. (15) for the propagation
band of these waves modifies to

v−
c0 < c < min(csesecθ − |Ue|, vA0). (16)

This property of the fast surface mode is shown in Fig. 3a, where,
the magnitude of the steady downdraught is chosen such that

|Ue| = csesec(θ = 10◦) − v−
c0(θ = 10◦). We see, in Fig. 3a,

that the fast surface mode is absent for a propagation angle
θ < 10◦, but can propagate freely forθ > 10◦. Asθ approaches
π/2, v−

c0(θ) approachescT0 andcsesecθ approaches infinity, so
that, the mode now propagates irrespective of the value of the
downdraught speed in the non-magnetic region (x < 0).

Apart from thefast surface mode, we also get aslow surface
modefor the above ordering of the physical speeds, even in the
case of a purely parallel propagation (θ = 0). The phase speed
of this slow surface mode changes its sign from positive to neg-
ative values as the absolute value of the downdraught speed in
the non-magnetic region increases through a critical speedUec.
Beyond this critical downdraught speedUec, the slow surface
mode becomes abackward propagating modeor anegative en-
ergy modethat may be subject to various dissipative instabilities
(e.g. Joarder et al. 1997). The effect of a non-parallel propaga-
tion θ /= 0 is to suppress such negative energy instabilities of
the slow surface mode by increasing the magnitude of the crit-
ical velocity threshold. For a small angle of propagationθ, this
effect can be expressed by a simple formula:

U2
ec(θ) ≈ 2c2

sev
4
A0

(2c2
s0 + γv2

A0)2

[{1 + (2c2
s0 + γv2

A0)
2sec2θ/v4

A0}1/2 − 1]. (17)

Fig. 3b demonstrates this particular effect of the angle of prop-
agationθ on the appearance of the backward propagating slow
surface wave for a particular value of the downdraught velocity
|Ue| = 0.55vA0, which is also the magnitude of the critical ve-
locity for an angle of propagationθ = 10◦; see Eq. (17). This
figure shows that the waves that propagate withθ > 10◦ are
no longer the backward propagating waves. For nearly normal
(θ → π/2) propagation, the asymptotic value of the phase speed
c of suchforward propagating slow surface wavesis given by

ca ≈ −
[

ρe

ρ0 + ρe

]
|Ue| +

{[
ρ0

ρ0 + ρe

]
v2

A0

−
[

ρ0ρe

(ρ0 + ρe)2

]
|Ue|2

}1/2

, (18)

which coincides with the expression for the phase - speed of an
incompressible surface wave (Chandrasekhar 1961) withU0 =
0 andvAe = 0. This asymptote is shown in Fig. 3b.

4. Conclusions

We have examined the combined effect of non-parallel propaga-
tion and steady shear-flows on the properties of hydromagnetic
surface waves. Two different cases are considered to study this
effect. The first case is similar to the situations found in a hot
coronal loop. The steady flow in the loop may be either anti -
parallel or parallel to the direction of the longitudinal phase-
propagation of the waves. We have examined both the possibil-
ities in Sect. 3.1. The second case (in Sect. 3.2) is similar to the
situation found in an isolated photospheric flux-tube surrounded
by a granular/supergranular downdraught.
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a b

Fig. 3a and b.Field-aligned phase speed c vs. angle of propagationθ for a the fast surface modeandb the slow surface modein a case where
vAe = 0, vA0 > cse > ss0 > cT0 andUe < 0. Numerical values of various parameters chosen to draw this diagram arevA0 = 1.0, cs0 =
0.666666, cse = 0.75, ρe/ρ0 = 2.27 andU0 = 0.0. a is drawn for an arbitrarily chosen downdraught velocityUe = v−

c0(θ = 10◦) − v+
ce(θ =

10◦) ≈ −0.1025vA0. Note that, the fast surface wave propagates only whenθ > 10◦. For θ approaching90◦, the phase speed c of the fast
surface mode asymptotically approachescT0 = 0.5547. b is drawn for a particular downdraught velocityUe = Uec(θ = 10◦) = −0.5513.
The slow surface wave is a ‘backward propagating wave’ forθ < 10◦. For θ > 10◦, the mode becomes forward propagating with its phase
speed c asymptotically approachingca ≈ 0.108, in agreement with Eq. (18) of the main text.

In both the cases we studied, we have considered only sur-
face waves, thus ignoring the body waves in magnetic structures.
We also ignored the dispersion effects of finite thickness of such
structures. These limitations of our study do not allow us to di-
rectly compare our results to the observations of solar magnetic
flux-tubes. Some important conclusions regarding the physical
properties of hydromagnetic surface waves can, nevertheless,
be drawn from our study.

One such finding is that, a non-parallel propagation vector
facilitates the propagation of surface waves either by introducing
new surface modes in a situation where none were available to
propagate in a direction purely parallel to the magnetic field, or,
by widening the propagation window for an already existing sur-
face mode. The (externally fast) fast surface mode in Sect. 3.1,
for example, owes its existence solely to a non-zero angle of
propagationθ of the waves. An increasing steady flow in a di-
rection opposite to the direction of the field-aligned propagation
of the waves tends to suppress this mode by narrowing down its
propagation band; see Eq. (9). An increasing angle of propaga-
tion, on the other hand, widens the propagation window of this
(externally fast) fast surface mode. The mode can only be fully
suppressed by a super-Alfvenic flow in the loop in the direction
of the longitudinal propagation of the waves; see Fig. 2. Such an
extremely large flow of Alfvenic or super-Alfvenic magnitude
has not, so far, been observed in solar coronal loops (Schrijver
et al. 1999).

A non-parallel propagation also widens the propagation
window for the fast surface mode at the edge of an isolated pho-
tospheric flux-tube (see Sect. 3.2), while the effect of a steady
downdraught motion surrounding the flux-tube is to reduce the
size of this propagation band.

The (externally slow) fast surface mode (Fig. 1b) in a coro-
nal loop and the hydromagnetic slow surface mode (Fig. 3b)
in an isolated photospheric flux-tube are of particular interest.
Both these surface modes change into backward propagating
(or, negative energy) surface modes as the magnitude of the
steady flow, directed opposite to the direction of wave propaga-
tion, exceeds a certain critical value. For the (externally slow)
fast surface mode (Sect. 3.1), this critical speed is always given
by the Alfven speedvA0 inside the loop. Such an unusually
large magnitude of the critical velocity of the fast surface mode,
together with the absence of a backward slow surface mode (for
which the critical velocity is expected to be of the order of the
acoustic speed in the loop), may suggest that the negative energy
instabilities of MHD surface waves may not play an important
role in the heating and the wave propagation in solar coronal
loops.

For the backward slow surface mode at the interface of a
photospheric flux- tube and its non - magnetic environment,
the critical speed of the steady downdraught motion is sensi-
tive to the angle of propagationθ of the waves. Our result in
Sect. 3.2 (see Eq. (17) and Fig. 3b) suggests that a non-parallel
propagation, in this particular case, tends to suppress the back-
ward surface mode by increasing its critical velocity threshold.
The mode that is most prone to negative energy instabilities is
then the backward slow surface mode propagating parallel to the
magnetic field, that has already been investigated by Nakariakov
& Roberts (1995) and Joarder et al. (1997). Detailed calcula-
tions, involving more realistic flux-tube geometries, is needed to
examine the consequences of such negative energy instabilities
of the longitudinally propagating backward slow surface mode
in solar photospheric flux-tubes.
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