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Relativistic magnetic quadrupole transitions in Be-like ions
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The multiconfiguration Dirac-Fock method, based on the extended optimal level approximation, is used to
calculate magnetic quadrupole transitiohs2) from 2s2p(3P,) to 2s?(1S,) states in berylliumlike ions. The
calculation of this transition fo£>6 uses the Dirac-Fock Hamiltonian which is necessary for highly ionized
atoms. The Breit interaction is treated as a first-order perturbation, and its non-negligible contributions to the
excitation energies for heavier ions are highlighted. Some ofBetransition probabilities results presented
in this paper are calculated for the first time, to our knowledge.

PACS numbdss): 31.15—p

[. INTRODUCTION are included using first-order perturbation theory.
Jonsson and Froese FiscHdi performed calculations for

The possibility that magnetic quadrupole radiation mightdoubly ionized carbon with the MCDF-EOL method fol-
have astrophysical significance for atomic transitions, whicHowed by the relativistic-configuration-interacti¢RCI) cal-
satisfy the selection ruldS=1, was first pointed out by culation. They used a different set of orbitals for the initial
Mizushima[1]. Transitions from low-lying excited states to and final states. There were a few other calculations for these
the ground state of berylliumlike ions are of interest in as-transitions/5—8]; the majority of these used the intermediate
trophysics because of their abundant identifications in th&€oupling approach. Garstang showed that in the nonrelativ-
Sun, planetary nebulaéPN), and quasistellar objectL]. istic limit the magnetic quadrupole transition probabilities
They are useful in the spectral diagnostics of those astrcdre approximately proportional to the square of the electric
nomical objectsfor example, the ratio of C/O for most of dipole matrix elemenf5]. However, it was shown by Lin
the PN can be safely approximated byn@ i [3]). The €t al.[9] that this approximation is not quite accurate. They
abundance of carbon and oxygen also determines the type @ﬁlculated this line for a few ions of the Be isoelectronic
chemistry in the PN precursor’'s envelope, whether carbogequence using a semiempirical model potential. The
rich or oxygen rich. Because of the lack of data about theZ-€xpansion method used by Laughlit0] appears to be a
properties of the forbidden lines of highly ionized atoms,rough estimate, and its accuracy is uncertain. In the present
insufficient attention was given to their applications to astroWork we used a fully relativistic one-electron Hamiltonian,
nomical objects, like hot stars or nebulae, etc. A comprehem@nd supplemented it with two-electron Coulomb and Breit
sive modeling of a star's internal structure needs a precisterms. To ensure the convergence for each of the applied
estimate of its radiative transitions. The evolution of thesemodels and to estimate the error, the calculation is performed
ions on the stellar surface could have an influence on thétepwise. The stron@ dependence(approximately o<Z®
evolution of the star. PN and low-density interstellar medium[11]) of M2 transitions is known, and its relativistic nature
(ISM) exhibit many of the forbidden lines in emission, which becomes important nea=17 [5]. We have used the rela-
infer the abundance of these ioff. In dense ISM, these tivistic expression for the magnetic quadrupole moment and
forbidden lines are seen for highly ionized atoms. In a waythe general relativistic atomic structure packag| for our
these lines describe the abundance of these elements in g&Pmputations.
axies, which helps in the study of galactic chemical evolu-
tion. M2 transitions in highly ionized systems occur in ul-
traviolet and visible emission bands. Therefore, high- Il. THEORY
resolution spectrographs of satellites can observe these lines
and require that these data be as precise as possible.

Since the strengths of forbidden transitions are rathe
weak, it is difficult to determine their rates accurately. The
accuracies of the computed excitation energies and transition
rates depend largely on a balanced treatment of the correla- N
tion effects, an adequate size of the orbital basis, and the H=2 H. + i 2.
quality of the valence orbitals. The multiconfiguration Dirac- = ey
Fock (MCDF) method is the relativistic counterpart of the
multiconfiguration Hartree-FockMICHF) theory. Our calcu-
lations of the magnetic quadrupole transition probabilities ofwherer;;=|r;—r;|, r;'s are the positions of thith particle.
the berylliumlike ions are calculated with the MCDF method H; is the Dirac Hamiltonian of théth particle, defined as
based on the extended optimal le&IOL) approximation
described in the Sec. Il. In those calculations, the corrections
of the energies of the atomic states due to the Breit interation Hi=ca-pi+(B—1)c®+ V1), (2.2

" The MCDF method uses the relativistic, no-pair Hamil-
Ponian. The Hamiltonian for aN-electron atom is written in
atomic units as
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whereV, . is the potential due to the nucleus. Expression 5
(2.2) is also called theDirac-Coulomb Hamiltonian The Eopr=2> d?H, + 2;& disHys, (2.10
atomic wave function for thé&l electron is obtained by solv- ' TS

ing th ti — . . .
ing the equation WhereqazErdfqa(r) is the generalized occupation number

HW(I1,J,M)=EW(II,J,M), (2.3  for orbitala, andd, (r=1, ... n), the real coefficients, de-
pend on the configuration mixing coefficients and are chosen
wherell is the parity,J is the total angular momentum ei- SO thatS,d?= 1. The Lagrange multipliers, ande,, ensure
genvalue, andM is the eigenvalue of its projection on tlze the normalization and orthogonality conditions, respectively.
axis. The EOL approximation of the MCDF approach is an
In the MCDF method, the trial wave function is taken to extension of the well known optimal level versiph3]. For
be a linear combination of configuration state functionsthe latter case,E,,=E, Yyields d,=c,(a) and d
(CSF's: =c,(a)cs(a), so that the wave function and mixing coeffi-
cients are optimum for the state. In the EOL approach,

" optimization is done on a sum of energi&SE(q;), i

|‘P(H,J,M))=21 ¢, @ (I1,J,M)). (24 =1,...n_, wheren <n, and for that case
n
The CSF's are eigenfunctions of the parity, total angular E :i EL E . 2.11)
momentumJ?, andJ,. The CSF’s are expressed as a linear Pt & '

combination of Slater determinants of Dirac spinors,

" so that
Y
@((1,9,M))= 2, di[D), (2.5 1]

= di=| - 2 chla) (2.12
where |D;) is a determinantal wave function built from
single-particle states, and its coefficietsare obtained by 1
requiring that the CSF’s are eigenstates)dfand its projec- d,s=n— 21 C(aj)cq(@j). (2.13

L=

tion J,. The variational principle is used to determine the
radial wave functions and the mixing coefficierds self-
consistently. The energy functional that is minimized is
given by

The relativistic two-electron operator cannot be written
down in closed form. In QED, the interaction between two
electrons can be expressed as a series expansion. The first
term is the Coulomb interaction, and the leading correction
Ea:j WIHWY dr=> c*(a)H,scs(@)=clHc, to it is known as the Breit interactidii4—16. It is linear in

r.s the fine-structure constant. In the present work, we consider

(26)  the Breit interaction as a first-order perturbation. We have

used the expressions given by Grant and McKenzie to evalu-
ate the Breit contributionfl7]. The Hamiltonian matrix is

constructed and diagonalized to obtain estimates of the mix-

H,o=(®,|H| D). 2.7 ing cpeffiqients for the required gtpmic sta_l[é_‘sq. (2.9)].
© ' s Starting with these values of the mixing coefficients, the SCF
Keeping the orbitals fixed, the variation of the energy func-equations are solved to obtain new estimates for the orbitals.

tional E, with respect to the mixing coefficients with the This process is repeatec_l until se_lf-consist_ency is achieved.
normalization conditioq¥ | ,)=1 yields The eigenvalues and orbitals obtained in this way are used to

calculate different atomic properties. The magnetic quadru-

in matrix notation, where the Hamiltonian matrix element is
defined by

(H—E_l)c,=0, (2.8  pole emission coefficient is given by the expresdib8]
:.Ee., ¢, is an eigenvector of the Hamiltonian with eigenvalue A”:m MEM 27 |(W|M2| W) |2 (2.14
a iVt

Self-consistent fieldSCH equations are obtained by re-
quiring that the energy functional should be stationary wherwhere [j]=2j+1. The matrix element of the magnetic
subject to variations in the radial function®4,Q,), such  quadrupole operatoM?2, with respect to initial |(’;)) and
that the orbitals form an orthonormal set. Consider the enfinal (|¥)) wave functions, can be written in terms of the
ergy functional CSF as

E=E0pt+§ aaeaN(aa)—l-abZaib eapN(ab), (2.9 (PM2| W)=, ciici( P, IM2|DS),  (2.15
foN rs

with where
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. TABLE Il. Contributions of the Breit interaction to the excita-
<(Dr||M2||q)s>:% dis(ab)(¢p||M2|| o). (2.16  tion energiegin cm ™ Y).

The expressions for this single matrix element are z Contributions toAE
6 19.84
IM2)| _(i) v 12— 1)@at =12\ | 7 35.93
<¢b ¢a>_ mc [Jb] ( ) ab 8 59.11
. Lo 9 91.28
Ib la 10 131.67
X1, 1 (2.17) 11 185.67
2 2 12 253.70
13 340.02
and 14 443.40
5 15 570.07
v 17 895.77
Maﬁ—\/g(/(a-i— kp)l (o) (2.18 18 1090.02
19 1322.64
and 20 1593.19
22 2247.92
% wr
(@)= (PaQb+Qan>JL(7)dr. (219 o ftiptd
30 6903.70
P and Q are the large and small components of the wave 35 12047.52
function, respectively, andl is the spherical Bessel function 40 19560.90
of orderL. 45 30095.86
50 44362.98
Ill. RESULTS AND DISCUSSION 55 63024.75

We have employed the MCDF approach in the EOL ap-

proximation to calculate excitation energies and the magnetigeatment of the relativistic effects in their approaches. Our
quadrupole transition rates for selected ions of the berryliunggjculated excitation energies are in better agreement with
sequence. The advantage of this approach is that it is capakige experimental valueavherever availablethan the other
of taking into account a large class of electron correlationcg|culations. The superiority of the MCDF-EOL method
effects with a relatively small number of virtual orbitals. The (with the Breit interaction over the MCHF+BP method is
intermediate coupling method was used to calculate magypyious from Table (MCHF+BP excitation energies data
netic quadrupole transition probabilities for a few Be-like 3re taken from Froese Fischer's web page : http:/
ions[6—8]. In this method, different basis sets are used foryww.vuse.vanderbilt.edu/ cff/ctf.htmi This table shows the
the diagonalization of the different parts of the Hamiltonian.percentage of the differences of the calculated excitation en-
The Coulomb part is diagonalized with respect to tf®  grgjes from the experimental values. The accuracy is much
coupled basis, and the spin-orbital part with respect to thgetter in the case of the MCDF-EOL method, and it steadily
JJ-coupled basis. FaE< 12 Tachiev and Froese Fiscl&g] improves for higheZ values.
used this approach in the framework of the multiconfigura-  our computations consist of several steps. We start with
tion Hartree-Fock method supplemented by the the Breitthe Dirac-Fock calculation, and then optimize the two
Pauli c_orrections(the MCHFBP approach There is_ a  2s2(1s;) and X2p(3P,) states(levelg with respect to sta-
small difference between those results and ours, mainly bQ'ronary criteriasee Eq(2.9)]. In each of the following steps,
cause of the choice of the orbital basis and the incompletgne new orbitalto avoid the problem of computational con-

. , vergenceis added to the old set and optimization is done on
o e o e e P eI S o th tte eneries usingthat basi. n o

o : OL calculations we have optimized the lowest five energy

MCHF+BP and MCDF+Breit (first-order correctionmethods. statedi.e., n, =5 in Eq. (2.1D)].

Since we are interested in optimizing the?¢'S,) and

z MCHF+BP MCDF Breit 2s2p(®P,) states, we have chosen CSF’s which contribute
6 0.287 0.119 to these two states. As the states are of opposite parities, only
7 0.231 0.075 those CSF’s will contribute which have the same parity and
8 0.187 0.057 total angular momentum as either one of the above two
9 0.219 0.057 states. Our orbital basis is constructed fros) 2s, 3s, 4s,

10 0.284 0.029 2p, 3p, 4p,3d, 4d, and 4f orbitals. The CSF's are con-

structed by taking all the possible excitations from the 1
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L T T T T T T T T ] TABLE lIl. Excitation energies(in cm 1) from the ground
- state.
1.0_—
g 2s2p(°P,)
aosl WITHOUT BREIT Z NIST EOL
I L
L 6 52447.11 52509.6
S o8 . 7 67416.3 67467.1
% T 8 82385.3 82432.7
2 oal- ] 9 97437 97493.2
§ L i 10 112704 112736.7
ozb ] 11 128218 128247.4
i WITH BREIT ] 12 144091 144117.4
0ol \\ N A 13 160429 160439.9
s 10 Z valluses of ionizedeaotoms % % 14 177318 177320.6
15 194856 194861.8
FIG. 1. The effect of Breit interaction on the excitation energies. 17 232660 232410.5
18 252683 252688.1
and 2 orbitals to the other virtual orbitals apart from quad- 19 274090 274143.4
rupole excitations to thedtand 4f orbitals. 20 296950 296933.5
The convergence of the MCDF orbitals is significantly 22 347240 347200.8
improved as the value @ increases. In Table Il, we give the 26 471780 471784.7
contributions of the Breit interaction to the excitation ener- 28 549500 549579.8
gies. As expected, they increase withThis leads to a sig- 30 640470 640263.8
nificant change in thé12 transition rates as they are propor- 35 938933.4
tional to the fifth power of the excitation energies. The effect 40 1373896.5
of Breit interaction on the excitation energies is plotted for 45 1995158.4
various ionized atoms in Fig. 1. This figure shows that the 50 2864042.8
calculation gives very good agreement with the NIST tabu- 55 4054174.1
Iate_d v_alues for_ the eXC|t_at|on energies when the Breit interag; Kelly’s unpublished work(http://physics.nist.gov/cgi-bin/
action is taken into consideration. AtData/main-asj

In Table Ill, we present the excitation energies of the
2s2p 3P, state from the ground states for differéhvalues. . I
The standard values are taken from NIST online databas.\éalue of Z. This contribution decreases as the valueZof
and, in a few cases, where there are some differences b _clrea?_esb.l Vot it d ¢ . f
tween our calculated excitation energies and the standard 2” 3Pa eV ra;]n5| on decay ra: es alre glr\]/en "rorr]n
values, we compare our results with the unpublished data c%s P2 state t_o t € groun state. It is clear that a the
Kelly (indicated as t). FaZ values of 35, 40, 45, 50, and 55 calc_ulatlons are in fairly good ggreemgnt..The small discrep-
there are no data available in the literature. Table IlI show?lnc'fs arif dlie to the way Itn drellatlt\;:sng.ﬁand 'f[he rphar:jy—
excellent agreement between our calculations and the NISF,Ectron €fiects are incorporated in the difrerent methods.

data. For IowZ ons, e iference between e siandard 1 & 1 0% Acelons have s et o
values and our calculated values is on averad® cm !,

which is well within the limit of the former. We can improve obtain the magnetic quadrupole moment operator. For dou-

these calculations if we consider some more orbitals in thfalileéjo?rgzeeiaﬁgbﬁg’ngi?sr?n fcl)rl])iblzilri?e?/:ztr']: Itsrfg%l] CCS:SUE oL
active space, but that is computationally expensive an P y

can create convergence problems. In our calculation therjeLRCI method(with the Breit interaction and biorthogonal

is a change in the ordering of s12p?'S,) and
1522s,,,2p35(3P,) states for highly ionized Be-like atoms ~ TABLE IV. (15253s3py(°P,)|M2|15253py,3paa( 'Sp)) ma-
(z=45, 50, and 55 This is because of the rather large con-trix element values for differerd’s.

traction of the 2,,, orbital for ions with largezZ.

Unlike the allowed electric dipole transition between Z Value
15225%(1Sy) and 1s?2s2p(iP,) states, the most important 6 1.15736(—2)2
contributions to theéM 2 transition between£2s%(*S;) and 16 4.12406(—3)
1522s2p(®P,) do not come from the Hartree-Fock configu- 28 2.23929—3)
rations. In the latter case one of the dominant contributions 40 1:50165(73)
come from the matrix element 50 1.17056(—3)

(15253s3p1/5(3P,)|M2|15253p/3paa(1Sy)) for all the
ions. Table IV shows how this contribution changes with the®The notationa(8) implies a X 10°.
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TABLE V. Transition rate(in sec %) from 2s2p(®P,) to the ground state.

z MA) EOL MCHF+BP Glass Others
6 1906.7 5.176-3) 5.193-3) 5.261—3) 5.139?‘,5.213—3)b
7 1483.3 1.1472) 8.7724—3) 1.161—2) 1.13-2)°
8 1213.8 2.15¢-2) 1.602—-2) 2.171—2) 2.171-2)°
9 1025.7 3.636-2) 2.891—2) 3.700—-2)
10 887.0 5.720-2) 5.235—-2) 5.838§—-2) 5.76—2)°¢
11 779.7 8.57¢-2) 7.991—-2)
12 693.9 1.230-1) 1.177-1) 1.269-1) 1.25-1)°
13 623.3 1.746-1)
14 563.9 2.410-1) 2.460—1) 4.8 2.38-1)°
15 513.2 3.28(-1)
16 466.5 4.460-1) 4.55—-1)°
17 430.3 5.906-1)
18 395.7 7.856-1) 7.993-1)
19 364.8 1.0423
20 336.8 1.3804 1.405 1.91
22 288.0 2.4234
24 244.8 4.433
26 211.9 7.6459 7.930 7.690.2j
28 181.9 1.3824) 13.¢
30 156.2 2.5284)
35 106.5 1.189@)
40 72.8 5.874Q)
45 50.1 2.87888)
50 34.9 1.3676})
55 24.7 6.2006}
3Referencd4]. ‘Referencd7].
bReferencd8]. dReferencd 10].

basis set There is very good agreement between our resultike ions. The accuracy of the computed excitation energies
and theirs. Our result agrees with their regthiey also have is in excellent agreement with the NIST database. This work
calculated transition probability using the observed transitiorhighlights a number of unique and desirable features of the
energy if we use the standard excitation energy value for theMCDF-EOL method for highly ionized atoms. For instance,
M2 transition probability calculation. Thus the small dis- the MCDF-EOL calculations yield results with reasonable
crepancy is mainly due to the details of the optimization ofaccuracy using a fewer number of virtual orbitals than some

the orbitals. As expected for lo&-ions, our results are not of the other atomic many-body approaches. Also, the impor-
different from all the other results obtained using relativisticiance of the Breit interaction has been highlighted.

corrections. But for heavier ions the discrepancies are larger.
M2 transition probabilities are not available in the literature

for many of the highly ionized atoms. ACKNOWLEDGMENTS

IV. CONCLUSION We are grateful to Professor M. Parsarathy for suggesting
to work on this problem, and Rajat K. Chaudhuri, Holger

The MCDF-EOL method was applied to compute the ex ) : )
Merlitz, and Geetha K. P. for valuable discussions.

citation energies and thel2 transition probabilities of Be-

[1] M. Mizushima, Phys. Rev. A 34, A883(1964. [5] R.H. Garstang, Astrophys. 148 579 (1967).

[2] A.F. Kholtygin, Astron. Astrophys329 691 (1998. [6] R. Glass, Astrophys. Space S8, 41 (1982.

[3]C. Rola and G. Stasinska, Astron. Astrophyz32 199 [7] H.P. Mthlethaler and H. Nussbaumer, Astron. Astroph4g.
(1994. 109 (1976.

[4] P. Jmsson and C. Froese Fischer, Phys. Rev5A 4967 [8] H. Nussbaumer and P.J. Storey, Astron. Astroplfs.139
(1998. (1978.

042508-5



SONJOY MAJUMDER AND B. P. DAS

[9] C.D. Lin, C. Laughlin, and G.A. Victor, Astrophys. 220
734 (1978.

[10] C. Laughlin, J. Phys. B, 842(1975.

[11] R. Marrus and P.J. Mohr, Adv. At. Mol. Phy$4, 181(1978.

[12] K.G. Dyall et al, Comput. Phys. Commu5, 425(1989.

[13] I. P. Grantet al, Comput. Phys. Commur21, 207 (1980.

PHYSICAL REVIEW 462 042508

[14] G. Breit, Phys. Rev34, 553(1929.

[15] G. Breit, Phys. Rev36, 383(1930.

[16] G. Breit, Phys. Rev39, 616(1932.

[17] I.P. Grant and B.J. McKenzie, J. Phys.1B, 2671(1980.
[18] I.P. Grant, J. Phys. B, 1458(1974).

[19] G. Tachiev and C. Froese Fischer, J. Phy82B5805(1999.

042508-6



