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ABSTRACT
We study the e†ect of cooling Ñows in galaxy clusters on the Sunyaev-Zeldovich (SZ) distortion and

the possible cosmological implications. The SZ e†ect, along with X-ray observations of clusters, is used
to determine the Hubble constant, Blank-sky surveys of SZ e†ect are being planned to constrain theH0.geometry of the universe through cluster counts. It is also known that a signiÐcant fraction of clusters
have cooling Ñows in them, which change the pressure proÐle of intracluster gas. Since the SZ decrement
depends essentially on the pressure proÐle, it is important to study possible changes in the determination
of cosmological parameters in the presence of a cooling Ñow. We build several representative models of
cooling Ñows and compare the results with the corresponding case of gas in hydrostatic equilibrium. We
Ðnd that cooling Ñows can lead to an overestimation of the Hubble constant. SpeciÐcally, we Ðnd that
for realistic models of cooling Ñow with mass deposition (varying with radius), there is of the order ofm5
D10% deviation in the estimated value of the Hubble constant (from that for gas without a cooling
Ñow) even after excluding D80% of the cooling-Ñow region from the analysis. We also discuss the impli-
cations of using cluster counts from SZ observations to constrain other cosmological parameters in the
presence of clusters with cooling Ñows.
Subject headings : cooling Ñows È cosmic microwave background È distance scale È

galaxies : clusters : general È large-scale structure of universe

1. INTRODUCTION

Galaxy clusters have been extensively observed in optical,
X-ray, and radio bands. In the radio band, a cluster can be
observed on the Rayleigh-Jeans (RJ) side of the cosmic
microwave background spectrum as a dip in the brightness
temperature, due to the Sunyaev-Zeldovich (SZ) e†ect
(Sunyaev & Zeldovich 1972 ; for a comprehensive review,
see Birkinshaw 1999). The SZ distortion appears as a decre-
ment for wavelengths º1.44 mm (frequencies ¹218 GHz),
and as an increment for wavelengths ¹1.44 mm. The SZ
e†ect has the advantage that the SZ intensity, unlike the
X-ray, does not su†er from the (1 ] z)~4 cosmological
dimming. As discussed by numerous authors (Birkinshaw &
Hughes 1994 ; Silverberg et al. 1997), one can combine the
X-ray and radio observations for clusters to determine
cosmological parameters. This has been done in the recent
years to determine the Hubble constant, (BirkinshawH01999). The SZ signal, however, is weak and difficult to
detect. Recent high signal-to-noise ratio detections have
been made over a wide range of wavelengths using single-
dish observations at radio wavelengths (Herbig et al. 1995 ;
Hughes & Birkinshaw 1998), millimeter wavelengths
(Holzapfel et al. 1997 ; Pointecouteau et al. 1999), and sub-
millimeter wavelengths (Komatsu et al. 1999). Interferomet-
ric observations have also been carried out to image the SZ
e†ect (Jones et al. 1993 ; Saunders et al. 1999 ; Reese et al.
2000 ; Grego et al. 2000). In addition to estimating byH0combining SZ and X-ray data, the SZ e†ect alone can also
be used to determine the cosmological mass density of the
universe, (Bartlett & Silk 1994 ; Oukbir & Blanchard)0
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1992, 1997 ; Blanchard & Bartlett 1998). However, these
procedures generally assume that the cluster gas is spher-
ical, unclumped, and isothermal. Almost all clusters,
however, show departures from these assumptions, some to
a large extent.

Departures from these simple assumptions can lead to
systematic errors in the determination of the di†erent
cosmological parameters (Inagaki, Suginohara, & Suto
1995) ; in particular, it has been shown that nonisother-
mality of the cluster can lead to a substantial error in the
values of the cosmological parameters. Temperature struc-
ture in a cluster can be the result of the shape of the gravita-
tional potential (Navarro, Frenk, & White 1997 ; Makino,
Sasaki, & Suto 1998), or it can arise from the fact that the
initial falling gas in the cluster potential is less shock heated
than the later falling gas (Evrard 1990). In fact, hydrody-
namical simulations of isolated clusters also show a deÐnite
temperature structure and can introduce error in the value
of compared to the traditional isothermal b-modelsH0(Yoshikawa, Itoh, & Suto 1998). Roettiger, Stone, & Mush-
otzky (1997) have shown that cluster mergers can result in
deviations from both sphericity and isothermality. Obser-
vationally, the main handicap arises from the fact that the
thermal structures of clusters are difficult to measure, and
the temperatures generally taken in analyses are the X-ray
emission weighted temperature, usually measured over a
few core radii. Thus, in general an isothermal description of
the cluster is taken (or sometimes a phenomenological tem-
perature model based on the Coma cluster ; see, e.g.,
eq. [73] of Birkinshaw 1999).

In this paper, we study another important phenomenon
that can substantially change the temperature structure,
viz., a cooling Ñow. The existence of cooling Ñows in clusters
of galaxies (for an introduction, see Fabian, Nulsen, &
Canizares 1984) is a well-established fact by now, and it is
apparent that around 60%È90% of clusters exhibit cooling
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Ñows in their core, with B40% of them having cooling
Ñows of more than 100 yr~1 (Markevitch et al. 1998 ;M

_Peres et al. 1998 ; Allen et al. 1999). In the largest systems,
the mass deposition rate can be as high as 1000 yr~1M

_(Allen 2000). The idealized picture of a cooling Ñow is as
follows. Initially, when the cluster forms, the infalling gas is
heated from gravitational collapse. With time this gas cools
slowly, and a quasi-hydrostatic state emerges. However, in
the central region, where energy is lost due to radiation
faster than elsewhere, an inward ““ cooling Ñow ÏÏ initially
arises as a result of the pressure gradient (Fabian 1994).
This can modify the SZ decrement and act as a systematic
source of error in the determination of the cosmological
parameters.

Schlickeiser (1991) has shown that free-free emission from
cold gas in the cooling Ñow can actually lead to an apparent
decrease of the SZ e†ect at the center. Since the central
cooling Ñow region is generally very small, the isothermal
b-model of cluster gas can still be used for the majority of
the cluster region even for a cooling Ñow cluster, with the
extra precaution of excluding the central X-ray spike from
the X-ray Ðt, and a corresponding change made in the
Ðtting of the SZ decrement. However, this is only possible
for nearby clusters with well-resolved cluster cores.

Naively, the change in the central SZ decrement y(0) can
be seen as follows. For a nonÈcooling-Ñow cluster, the
central decrement is given by the line-of-sight integral of the
electron pressure through the cluster center along the full
extent of the cluster. If the cluster has a maximum radius rcl,then the central SZ decrement at RJ wavelengths can be
written as For a cluster withy(0)\ [4[pT/(me

c2)]/0rcl p
e
dl.

a cooling Ñow, let us suppose that the electron pressure, p
e
,

falls drastically below a certain radius which is typicallyr
s
,

well inside the core of the cluster. The resulting central
decrement is then Depend-y(0)B [4[pT/(me

c2)]/
rs
rcl p

e
dl.

ing on the distance of from the cluster centerr
s

[r
s
B

there will be a change in the value of y(0) by(0.1È0.3)rcore],B5%È25%. However, this simplistic view may not be true.
This estimate assumes that the pressure proÐle remains a b
proÐle outside the radius The pressure proÐle, however,r

s
.

need not follow the b proÐle once the cooling Ñow starts,
and it can deviate from it substantially even for radii much
larger than As a matter of fact, there can actually be anr

s
.

increase in the pressure for a large region inside the cooling
Ñow, before a sudden drop inside Since the usual pro-r

s
.

cedure for estimating the Hubble constant depends on
Ðtting b proÐles to the SZ and X-ray proÐles, to estimate

this change in the pressure proÐle due to a cooling Ñowrcore,can distort the estimation of and hence the value ofrcore,in a nontrivial way. We study this e†ect in detail in laterH0,sections.
In this paper, we have investigated the problem of

cooling-ÑowÈinduced changes in the temperature and
density proÐle, its e†ect on the SZ e†ect, and its subsequent
e†ect on the determination of cosmological parameters. In
° 2 we brieÑy review the physics of the SZ e†ect ; ° 3 is
devoted to the physics of cooling Ñows and discussing the
cooling-Ñow solutions ; in ° 4 we look at the e†ect of
cooling-Ñow solutions on the SZ e†ect in the determination
of both and we conclude in ° 5 with a brief commentH0 )0 ;
on how this work di†ers from other works and the rele-
vance of this paper. For the SZ e†ect, our notation and
approach mainly follows that described in Barbosa et al.
(1996b).

2. DETERMINING THE HUBBLE CONSTANT WITH THE

SUNYAEV-ZELDOVICH EFFECT

2.1. T he Sunyaev-Zeldovich E†ect
The integral of the electron pressure along any line of

sight through the cluster determines the magnitude of the
distortion of the apparent brightness temperature of the
cosmic microwave background (CMB) due to the SZ e†ect.
This is quantiÐed in terms of the Compton y-parameter,

y \
P

dl
kB T

e
m

e
c2 n

e
pT , (1)

where is the Boltzman constant, is the gas tem-kB T
eperature, is the electron rest mass, is the electronm

e
n
enumber density, c is the velocity of light, and is thepTThomson scattering cross section. This occurs through the

inverse Compton scattering, by the hot intracluster gas, of
the CMB photons propagating through the cluster medium,
and the energy transfer in this interaction between hot elec-
trons and CMB photons, resulting in a distortion to the
CMB spectrum. The SZ surface brightness at a position h of
the cluster with respect to the mean CMB intensity is given
by

dil(h) \ y(h) jl(x) , (2)

where x is a dimensionless frequency parameter,

x \ hl
kT0

, (3)

where h is the Planck constant, l is the observing frequency,
and is the CMB temperature at the present epoch :T0 K. The function describes the spectral shapeT0D 2.73 jl(x)
of the e†ect,

jl(x) \ 2(kT0)3
(hc)2

x4ex
(ex [ 1)2

C x
tanh (x/2)

[ 4
D

. (4)

Since the total photon number is conserved in the inverse
Compton scattering process (upscattering of the photons),
the spectral dependence gets a unique shape through a dec-
rement in the brightness temperature at lower frequencies,
while an increase is observed at higher frequencies.

The Sunyaev-Zeldovich e†ect provides a unique observ-
ing approach to traditional methods, which use X-ray tem-
perature and X-ray luminosity. The X-ray studies have a
major disadvantage because of ““ cosmological dimming ÏÏ :
the surface brightness of distant X-ray sources falls o† as
(1] z)~4, and for this reason, obtaining samples of clusters
at cosmological distances is challenging. The SZ e†ect has
the distinct advantage of being independent of the distance
to the cluster. The SZ Ñux density from a cluster will dimin-
ish with distance to the cluster as the square of the angular-
size distance, in contrast to X-ray Ñux densities from
clusters, which diminish as the square of the luminosity
distance to the cluster. If the observations resolve clusters,
particularly at lower redshifts, the observed sky SZ tem-
perature distribution will be sensitive to the thermal elec-
tron temperature structure within the clusters ; once again,
this can be contrasted with X-ray emission images of cluster
gas distributions, which are mainly sensitive to the gas
density distribution.

2.2. Determination of the Hubble Constant
The method for determining the Hubble constant using

the Sunyaev-Zeldovich e†ect uses two observable quan-
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tities : (1) *T /T of the CMB due to the SZ e†ect, and (2) the
X-ray surface brightness, of the cluster. These can beSX,
written as

*TSZ
T

(r)\ [2
P
lmin

lmax kB T
e

m
e
c2 pT n

e
dl , (5)

SX(r)\ 1
4n(1] z)4

P
lmin

lmax dL X
dV

dl , (6)

where r is the distance to the line of sight from the cluster
center, and give the extension of the cluster alonglmax lminthe line of sight, is the X-ray emissivity, and dl is thedL X/dV
line element along the line of sight. The X-ray emissivity in
the frequency band can be written asl\ l1[ l2

dL X
dV

\ n
e
2 a(T

e
; l1, l2, z) , (7)

where

a(T
e
; l1, l2, z)\ 2

1 ] X
A 2n
3m

e
c2
B1@2

]
16e6

3+m
e
c2 A(T

e
; l1, l2, z) , (8)

where

A(T
e
; l1, l2, z)\

P
u1(1`z)

u2(1`z)
(kB T

e
)1@2e~u

][Xgff(Te
, u,1)] (1[ X)gff(Te

, u,2)] du . (9)

In the above equations we have assumed a primordial
abundance of hydrogen and helium, and have set X \ 0.76 ;
e is the electron charge, + \ h/(2n), andu 4 2n+l/kB t

e
,

is the velocity-averaged Gaunt factor for the iongff(Te
, u, Z)

of charge Ze (Kellog, Baldwin, & Koch 1975). Traditionally,
to model the cluster gas distribution one takes the following
density and temperature proÐles (Cavaliere & Fusco-
Femiano 1978) :

n
e
(r)\ n

e0
C
1 ]

A r
rcore

B2D~3b@2
, (10)

T
e
(r)\ Tiso \ const , (11)

where is the central electron density and is the coren
e0 rcoreradius of the cluster. The above expressions are used as an

empirical Ðtting model, and the parameter b is regarded as
the Ðtting parameter. The equation holds for 0 \ r \ Rcl,where is the maximum ““ e†ective ÏÏ extension of theRclcluster. Conventionally, and then from equationsRcl\ O,
(5), (6), (10), and (11) we get

*TSZ
T

(h)\ [ 2JnpT kB Tiso
m

e
c2 n

e0 rcore

]
!(3b/2 [ 1/2)

!(3b/2)
C
1 ]

Ad
A

h
rcore

B2D1@2~3b@2
, (12)

SX(h)\ Jn
4n(1] z)4 an

e02 rcore

]
!(3b [ 1/2)

!(3b)
C
1 ]

Ad
A

h
rcore

B2D1@2~3b
, (13)

where !(x) is the gamma function. Since both the central
CMB decrement and the X-ray surface brightness are
observed, one can then combine equations (12) and (13) to
estimate the core radius as

r
c,est\

[*T (h)/T ]obs2
SX(h)obs

!(3b [ 1/2)!(3b/2)2
!(3b/2 [ 1/2)2!(3b)

]
m

e
2 c4a

16n3@2(1] z)4pT kB T
e,fit2

]
C
1 ]

A h
hX,core

B2D~1@2
. (14)

In the above equation, is the angular core radiushX,coreobserved in the X-ray, and is the X-ray ÑuxÈaveragedT
e,fittemperature (obtained from Ðtting the observed X-ray spec-

trum to the theoretical spectrum expected from isothermal
case). This X-ray emissionÈweighted temperature is given
by

Tiso4
/0rvir T

e
(r)an

e
2 r2 dr

/0rvir an
e
2 r2 dr

. (15)

The point to be noted is that is the virial radius of thervircluster, and its choice depends on the observer. If the tem-
perature has a spatial structure, then the inferred fromTisosuch a procedure may give di†erent values depending on
how much of the cluster is taken in making the above
average. It has been shown (Yoshikawa et al. 1998) that this
can lead to a substantial change in the SZ e†ect inferred,
and thus to the value of H0.The angular-diameter distance, can be approximatedd

A
,

for nearby (z> 1) clusters as

d
A

\ cz
H0

C
1 ] 2"[ )0[ 6

4
z] O(z2)

D
. (16)

Thus, we Ðnally have an estimate of as Ifd
A
(z) r

c,est/hX,core.from other observations we know the cosmological param-
eters and ", then we can estimate the Hubble constant.)0As can be seen from the above equations, the value of H0depends crucially on the many assumptions of the isother-
mality and b-model density distribution of the cluster.
Cooling Ñows change both of these, and so can signiÐcantly
a†ect the value of the Hubble constant.

3. COOLING FLOWS IN CLUSTERS

3.1. Preliminaries
From X-ray spectra of clusters, it is known that the con-

tinuum emission is thermal Bremsstrahlung in nature and
originates from di†use intracluster gas with densities of
10~2È10~4 cm~3 and temperatures around 107È108 K. The
gas is usually believed to be in hydrostatic equilibrium. If,
however, the density in the inner region is large enough that
the cooling time is less than the age of the cluster, then there
is a ““ cooling Ñow ÏÏ (Fabian et al. 1984 and references
therein). Of course, there would be a Ñow only when the
dynamical time is also shorter than the cooling timescale
(tage [ tcool [ tdyn).The basic equations of cooling Ñow are :

du
dr

\ [ u
o
b

do
b

dr
[ 2u

r
[ o5

b
o
b

,
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u
du
dr

] 1
o
b

d(o
b
h)

dr
\ [GM

t
(r)

r2 ,

u
d
dr
A3h

2
B

[ hu
o
b

do
b

dr
\ o"(h)

(km
p
)2 , (17)

where k is the mean molecular weight, andh \ 2kB T /km
p
,

is the proton mass. For steady Ñows with constant massm
pÑux, This implies for steady Ñows. (Noteo5 \ 0. u \ m5 /4nor2

that in cooling Ñows both u and are negative. The sub-m5
scripts b denotes baryons, and t denotes total, i.e.,
baryons ] dark matter. However, we assume that the bary-
onic contribution to the total mass is negligible with respect
to the dark matter contribution.)

The term M(r) describes the distribution of the total mass
and depends on the details of dark matter density proÐles
(see below), and "(h) is the cooling function, deÐned so that

is the rate of cooling per unit volume. We use ann
e
n
p
"(h)

analytical Ðt to the optically thin cooling function as given
by Sarazin & White (1987),

"(h)
10~22 ergs cm3 s~1 \ 4.7] exp

C
[(

T
3.5] 105 K

)4.5
D

]0.313] T 0.08 exp
C
[
A T
3.0] 106 K

B4.4D

]6.42] T ~0.2 exp
C
[
A T
2.1] 107 K

B4.0D

]0.000439] T 0.35 . (18)

This Ðt is accurate to within 4% for a plasma with solar
metallicity within 105¹ T ¹ 108 K. For 108¹ T \ 109 K,
it underestimates cooling by a factor of order unity
(compared to the exact cooling function, as in, e.g., Sch-
mutzler & Tscharnuter 1993), and therefore is a conserva-
tive Ðt as far as the e†ect of cooling is concerned.

For nonsteady Ñows, we adopt the formalism of White &
Sarazin (1987), who characterize the mass deposition rate, o5 ,
by a ““ gas-loss efficiency ÏÏ parameter, q. One writes o5 \

where is the local isobaric cooling rateq(o/tcool), tcool (tcool\It has been found that q D 3 models can5kB T km
p
/o").

reproduce the observed variation of mass Ñux (m5 P r ;
Sarazin & Graney 1991). Fabian (1994) has noted that these
models of White & Sarazin (1987) yield good approx-
imations to the emission-weighted mean temperature and
density proÐles for cooling-Ñow clusters. We also note that
Rizza et al. (2000) have used the steady-Ñow models of
White & Sarazin (1987) to simulate cooling Ñows.

We Ðrst discuss cooling Ñows with Withm5 \ const.
q \ 0, one can eliminate the density from equation (17) to
get two di†erential equations :

du
dr

\ u
[r2(5h [ 3u2)]

C
3GM[ 10rh ] m5

2n
"(h)
uM2

D
,

dh
dr

\ 2
[r2(5h [ 3u2)]

]
C
h(2u2r [ GM)[ (u2 [ h)

m5
4n

"(h)
uM2

D
. (19)

These equations have singularities at the sonic radius r
s
,

where A necessary condition of singularity is that5h
s
\ 3u

s
.

the numerators of equation (19) vanish at the sonic radius.

Therefore (Mathews & Bregman 1978),

r
s
\ 3

10h
s

C
GM(r) ] m5 "(h

s
)

10nh
s
M2
D

. (20)

We have used two di†erent dark matter proÐles for the
cluster. The Ðrst model (model A) has been discussed earlier
in the literature in the context of cooling Ñows in clusters
(White & Sarazin 1987 ; Wise & Sarazin 1993) with a
density proÐle

o
d
\

4

5

6

0
0

o0
1 ] (r/rcore)2

]
o0,g

1 ] (r/r
c,g)2

if r\237 kpc ,

o0
1 ] (r/rcore)2

if r[237 kpc .
(21)

Here g cm~3 and kpc describeo0\ 1.8] 10~25 rcore \ 250
the proÐle of the cluster mass, and go0,g\ 4.1] 10~22
cm~3 and kpc describe the proÐle of the galaxyr

c,g \ 1.69
in the center of the cluster.

Model B does not have the galaxy in the center, and so it
is described simply by o \ o0/[1 ] (r/rcore)2].With these assumptions, the solutions for steady cooling
Ñows, are fully characterized by (1) the inÑowm5 \ const,
rate, and (2) the temperature of the gas, at the sonicm5 , T

s
,

radius Obviously, the cooling-Ñow solutions are onlyr
s
.

valid within the cooling radius where Wercool, tcool \ tage.assume a value of Gyr for all models. We assumetage \ 10
that outside the cooling radius, gas obeys quasi-hydrostatic
equilibrium (Sarazin 1986). Although this means matching
the cooling-Ñow solutions with nonzero u to u \ 0 solutions
outside, in reality the velocity of gas at the cooling radius is
very small (for yr~1 with o D 10~26 g cm~3,m5 \ 100 M

_r \ 250 kpc implies a velocity of 30 km s~1), which is close
to the limit of turbulence in the cluster gas (Ja†e 1980) and
smaller than the sound velocity (D1.5] 103(T /108 K)1@2
km s~1). The velocity of the Ñow at the cooling radius is
therefore, for all practical purposes, sufficiently small to be
matched to the solution of hydrostatic equilibrium outside.
(In this approach, we avoid the time-consuming search for
the critical value of for which the Ñow solutions behavem5
isothermally at r ] O ; see Sulkanen, Burns, & Norman
1993.)

As in the usual assumptions for the interpretation of the
SZ e†ect, we assume that the gas outside the cooling radius
is isothermal, with a constant temperature proÐle. The
density therefore obeys where b \o P [1] (r/rcore)2]~3b@2,

and is the temperature of the gas at andkm
p
p2/kB Tiso, Tisooutside the cooling radius.

For models with nonzero q (model C has the same mass
proÐles as model A), the solutions are characterized by T

sand the value of at the cooling radius, Since am5 m5 cool.fraction of mass drops out of the Ñow in this case, the inÑow
velocity need not rise rapidly, and so it is possible to Ðnd
completely subsonic solutions.

3.2. Cooling-Flow Solutions
We numerically solved the Ñow equations for the param-

eters listed in Table 1. The density, temperature, and pres-
sure proÐles for three cases are presented in Figures 1, 2,
and 3. We mark the position of in each case, and wercoolmark for the cases of transonic Ñows (whenr

s
m5 \ const).

Beyond we match a hydrostatic solution, as explainedrcool,above, for the respective potentials. We also present, for
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TABLE 1

PARAMETERS FOR COOLING-FLOW SOLUTIONS

Mass m5 (rcool) T
s

r
s

rcool Tiso
Solution Model q (M

_
yr~1) (K) (kpc) (kpc) (K)

A1 . . . . . . A 0 100 6.5] 106 0.688 127.5 1.2 ] 108
A2 . . . . . . A 0 200 6.5] 106 0.462 96.1 7.7 ] 108
A3 . . . . . . A 0 300 6.5] 106 0.712 132.2 7.7 ] 108
B1 . . . . . . B 0 100 4.0] 106 0.688 85.7 1.14 ] 109
B2 . . . . . . B 0 200 6.5] 106 0.462 89.6 1.9 ] 109
B3 . . . . . . B 0 300 6.5] 106 0.712 110.3 1.9 ] 109
C1 . . . . . . A 3 200 . . . . . . 111.6 1.1 ] 108
C2 . . . . . . A 3 300 . . . . . . 132.2 1.1 ] 108

comparison, the behavior if the solutions outside arercoolassumed to extend inward (that is, if no cooling Ñow is
assumed). We postpone the discussion of the e†ect of these
proÐles on the SZ decrement to a later section, and only
discuss the qualitative aspects of the solutions here.

The solution A1 is similar to that presented by Wise &
Sarazin (1993 ; their Fig. 1, although they chose to charac-
terize the solutions by the temperature at and not asrcool T

s
,

we have done here). It is also similar (qualitatively) to the
solution for A262 presented by Sulkanen et al. (1989). As the
latter authors have noted, the e†ect of having a galactic
potential in the center is to have a Ñatter temperature

proÐle for than in the case of no galactic potential.r [ r
sThis aspect is clearly seen while comparing our solutions

with and without galactic potentials in the center. Our cal-
culations for the case without the central galaxy are admit-
tedly Ñawed in the very inner regions, where the gas density
is larger than the dark matter density, which results in an
incorrect determination of the gravitational potential in the
inner region. However, this happens only inside a region
D25 kpc from the center, and should not inÑuence our Ðnal
results by a large extent.

A word of explanation regarding the pressure proÐles is
in order here. Naively speaking, it would appear that the

FIG. 1.ÈCooling-Ñow solution A2. Top left panel shows the dark matter density proÐle (dotted line), the gas density proÐle for the cooling Ñow (solid line),
and the corresponding case of gas in hydrostatic equilibrium. The bottom left panel shows the temperature proÐles for the same cases. The position of andr

sare shown. The top right panel shows the pressure proÐles, and the bottom right panel plots the Mach number of the cooling-Ñow gas as a function of thercoolradius.
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FIG. 2.ÈSame as Fig. 1, but for cooling-Ñow solution B2

pressure proÐle inside the cooling radius should have lower
values than the corresponding case of hydrostatic equi-
librium. The fact that it is not always so has been noted in
the literature (e.g., Soker & Sarazin 1988 ; Fig. 1 of Sulka-
nen et al. 1989). The reason for the pressure bump just
outside the sonic radius is that the Ñow in this inner region
is driven not by pressure, but rather by gravity (see also
Soker & Sarazin 1988). This is why the bump in the proÐle
depends on the presence or absence of the galaxy in the
center. This proÐle then leads to the curious result that the
presence of a cooling Ñow can lead to the overestimation of
the Hubble constant, as discussed in the next section.

A model with mass deposition (C1) is shown in Figure 3.
The local mass Ñux is found to be almost proportional to
the radius, consistent with various observations (Fabian et
al. 1984 ; Thomas, Fabian, & Nulsen 1987), and therefore
this is probably a realistic model for cooling-Ñow clusters.
In this case, the temperature drops gradually all the way
through, since the velocity does not rise too rapidly. The
deposited mass is assumed to impart negligible pressure,
and the pressure refers only to the gas taking part in the
Ñow.

4. DETERMINATION OF THE HUBBLE CONSTANT

In this section we discuss the SZ and X-ray proÐles of
clusters with cooling Ñows. We compare these with proÐles
from clusters having gas in hydrostatic equilibrium, and
comment on the reliability of measuring the Hubble con-

stant. The e†ect of cooling Ñows and the subsequent
increased Bremsstrahlung emission is seen in the sudden
increase in the X-ray Ñux in the innermost region of the
cluster (Fig. 4). The signature of the cooling Ñow is seen in
the form of the central spike in the X-ray proÐle. The X-ray
proÐle is only a†ected slightly by the drop in temperature,
and it is the dependence on the gas density that holds. The
temperature dependence becomes important only near the
sonic point. Outside the X-ray proÐle is the same asrcool,that in the hydrostatic cases.

The SZ distortion is proportional to the line-of-sight inte-
gral of the pressure, and the sudden increase of the gas
density inside the cooling radius is moderated by the
decrease of the gas temperature. As a result, there is a
gradual increase in the gas pressure. Near the sonic point,
the temperature drops drastically by orders of magnitude,
which results in a sudden decrease in pressure. However,
since this change in pressure becomes acute only within
B5% of the core radius, it contributes negligibly to the
line-of-sight integral of the gas pressure, and leads to an
increase in the SZ distortion inside the cooling radius for all
models considered (see Fig. 5). Like the X-ray proÐles, the
SZ proÐle outside is the same as that for the corre-rcoolsponding hydrostatic cases.

The SZ proÐles have been calculated in the Rayleigh-
Jeans limit (x > 1) where of equation (4) goes to [2. Injl(x)
general, however, the proÐles should be calculated using
equation (2). Our results below are independent of the
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FIG. 3.ÈSame as Fig. 1, but for cooling-Ñow solution C1

FIG. 4.ÈUnconvolved X-ray proÐles for the solution types A2 (top left), B2 (top right), C1 (bottom left), and C2 (bottom right), for cooling-Ñow (solid line)
and the corresponding cases of gas in hydrostatic equilibrium (dashed line). X-ray surface brightness in units of ergs s~1 cm~2 sr ~1 is plotted againstr/rcore.Individual plots have been magniÐed to highlight the di†erences between cooling-Ñow and hydrostatic cases.
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FIG. 5.ÈUnconvolved SZ proÐles, for the solution types A2 (top left), B2 (top right), C1 (bottom left), and C2 (bottom right), for cooling-Ñow (solid line) and
the corresponding cases of gas in hydrostatic equilibrium (dashed line). Here is plotted against Individual plots have been magniÐed to*TRJ/TCMB r/rcore.highlight the di†erences between cooling-Ñow and hydrostatic cases.

observational frequency, since the proÐles at di†erent fre-
quencies have similar shapes, with the amplitude of the SZ
distortion scaled either up or down.

Once both proÐles are known, one can determine the
deviation in the value of the Hubble constant using equa-
tions (14) and (16). The deviation from the idealized case can
be parameterized as

f
H

4
rcore,true
rcore,est,fit

\ H0,est
H0,true

. (22)

The above formula has been used to determine the devi-
ation of the estimated value of from the actual value, forH0models listed in Table 1. The e†ects of cooling Ñows on the
determination of the cosmological parameters are sum-
marized in Table 2.

To begin with, one must get best-Ðt values for (orrcore h
c
)

and b from di†erent proÐles. Since the estimation of the

TABLE 2

EFFECT ON CENTRAL DECREMENT AND

FORH0 rmin \ 0.1rcore
*y0

Solution Type Hest/Htrue (% change)

A1 . . . . . . . . . . . . . . 1.91 35
A2 . . . . . . . . . . . . . . 1.18 11.5
A3 . . . . . . . . . . . . . . 2.6 25
B1 . . . . . . . . . . . . . . 1.36 12.0
B2 . . . . . . . . . . . . . . 1.19 9.0
B3 . . . . . . . . . . . . . . 1.13 8.5
C1 . . . . . . . . . . . . . . 2.6 14.0
C2 . . . . . . . . . . . . . . 2.7 11.3

Hubble constant depends on the determination of these
parameters from the proÐles, we look at this issue in more
detail. We must keep in mind that the best-Ðt value of rcore(or and b depend on whether one decides to Ðt the X-rayh

c
)

or the SZ proÐles, and the choice can lead to signiÐcant
di†erences in the estimated value of One of the reasonsH0.for the strong dependence on the nature of the proÐle could
be the nonisothermality of the cluster gas. Recent obser-
vations indicate that intracluster gas has a temperature
structure (see Markevitch et al. 1998). This is because the
y-parameter depends on the integral over while theT

e
,

emissivity of thermal Bremsstrahlung depends on TheT
e
1@2.

dependence of the Gaunt factor on is indirect and weak.T
eYoshikawa et al. (1998) have shown that a gas temperature

drop in the central regions (their Fig. 3) should increase
both and b Ðtted to y(h), and to a lesser extent torcore SX(h),
as compared to those Ðtted to This discrepancyn

e
(r).

increases at higher redshifts. However, in their case, there is
little change in the gas density proÐle. Clumpiness can also
give rise to di†erent Ðts, resulting in an overestimation of
the Hubble constant (Inagaki et al. 1995).

There are two other important points that should be kept
in mind while Ðtting the proÐles. First, we must remember
that we are trying to Ðt a cluster having a Ðnite proÐle with
the formulae (eqs. [12] and [13]) for isothermal b proÐles,
which are derived assuming the cluster to be of inÐnite
extent. This by itself can lead to an overestimation of H0(Inagaki et al. 1995). Thus, to have a good Ðt one must
choose a segment of the proÐle such that, within that
segment, the proÐles (SZ or X-ray) for a Ðnite cluster do not
di†er much from those of a hypothetical cluster of inÐnite
extent. We found that SZ and X-ray proÐles of clusters start
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TABLE 3

FITTING OF SZ PROFILE AND DEVIATION OF FORH0 m5 \ 200 M
_

yr~1

H/Htrue

SOLUTION TYPE rmin \ 0.2rcool rmin \ 0.5rcool rmin \ 0.8rcool
A2 . . . . . . . . . . . . . . . 1.57 1.74 2.18
B2 . . . . . . . . . . . . . . . 1.44 1.58 2.06
C1 . . . . . . . . . . . . . . . 2.20 1.18 1.07

di†ering from those of inÐnite size at radii greater than 1.5
times the core radius. Hence, we have restricted our Ðtting
to radii within 1.5rcore.Next, one must also be careful to exclude the region close
to the sonic point, so that the X-ray spike is excluded from
the Ðt. In addition, the central portion in the SZ proÐle
should be avoided, since its inclusion can give an apparent
central decrement less than its neighboring points (see Sch-
lickeiser 1991). We have Ðtted the SZ and X-ray proÐles,
varying the inner cuto† radius, and the results for a repre-
sentative solution for each class of model are tabulated in
Tables 3 and 4. Thus, all Ðttings were done for proÐles
extending from tor \ rmin r \ 1.5rcore.As can be seen from Table 2, cooling Ñows can lead to an
overestimation of the Hubble constant. However, we must
emphasize that it may not be possible to a priori estimate
the amount of bias introduced in the measurement of the
Hubble constant due to cooling Ñows. There is no simple
correlation between the amount of cooling (i.e., and them5 )
change in the estimated from the actual value. The totalH0change depends not only on but also on the position ofm5 ,
the cooling radius, the sonic radius, the temperature at the
sonic point, and the isothermal temperature characterizing
the hydrostatic cases, with which comparisons are made.
SpeciÐcally, the Ðtted values of and b for cooling-rcore(hc

)
Ñow models di†er from hydrostatic models according to the
shape of the underlying proÐles, which is marked by two
important features : Ðrst, the central excess of X-ray Ñux (or
excess decrement of SZ Ñux), and second, the deviation from
the smooth hydrostatic proÐle inside the amount ofrcool ;overestimation mainly depends on these factors. For
models with a central galaxy potential, there is always an
overestimation of which is greater than in the modelsH0,without the central galaxy.

For the realistic cases of models C1 and C2, where we
have a variable with r inside the cooling radius, the devi-m5
ation of the estimated Hubble constant from its actual value
is almost the same. It is also greater than that of models A
and B, having similar mass Ñow rates. This may be due to
the fact that the maximum deviation in pressure from the
hydrostatic cases is more in nonsteady cases than in steady

Ñows. In addition, nonsteady cases are marked by the
absence of the sonic radii and the subsequent drop in tem-
perature.

We note that although the di†erent choice of Ðtting may
change the absolute determination of cosmological param-
eters, the trend (i.e., deviation from the correct values)
remains more or less una†ected. It is interesting to note that
for the B-type model (C1), which includes mass deposition
in cooling Ñows, the deviations decrease as one excludes a
greater part of the cooling-Ñow region (Tables 3 and 4). The
other models instead show an increase. Here we remind
ourselves that models with mass deposition (i.e., B-type
models) are more realistic (Fabian 1994). It is possible that
the unusually high value of the deviation (Table 3) and the
counterintuitive trend of increasing deviation with decreas-
ing portion of cooling Ñow region used for Ðtting (Tables 3
and 4) arise because of the unrealistic modeling of cooling
Ñows. If we take the model C1 as realistic, then Tables 3 and
4 show that to obtain a value of the Hubble constant within
an accuracy of D10%, one should have InrminD 0.8rcool.most cases, (Fabian et al. 1984). However, sincercool\ rcorecannot be determined without actually detecting arcoolcooling Ñow in a cluster, we suggest that a signiÐcant
portion of the proÐle within should be excluded as arcoreprecaution. The SZ and the X-ray proÐles for the di†erent
models are shown in Figures 4 and 5.

5. DISCUSSIONS AND CONCLUSION

Our work on the e†ect of the temperature structure of
clusters and its e†ect on the SZ decrement di†ers from other
previous works of this nature in following way : this work
takes into account the change in density proÐle as well as
the temperature proÐle, since both become important in the
central region of the cluster. In addition, previous authors
have looked at the issue of nonisothermality of a cluster at
radii greater than the core radius of the cluster, whereas we
look at temperature change in regions inside the core
radius. For them, the density proÐle can still be well
approximated by a b proÐle, whereas for cooling-Ñow solu-
tions the density proÐle is vastly di†erent. Furthermore,
they have neglected radiative cooling in their work. We for
the Ðrst time look at the SZ e†ect in the presence of radi-
ative cooling, by Ðrst solving the cooling-Ñow equations for
reasonable and physical solutions.

In summary, we Ðnd that the presence of a cooling Ñow in
a cluster can lead to an overestimation of the Hubble con-
stant determined from the Sunyaev-Zeldovich decrement.
We have used di†erent models of cooling Ñows, with and
without mass deposition, and found the deviation in the
estimated value of the Hubble constant in the case of a
cooling Ñow from that of hydrostatic equilibrium. We have
used the usual procedure of Ðtting the SZ and X-ray proÐle

TABLE 4

FITTING OF X-RAY PROFILE AND DEVIATION OF FORH0 m5 \ 200 M
_

yr~1

H/Htrue
SOLUTION TYPE rmin \ 0.5rcool rmin \ 0.8rcool rmin \ 0.9rcool rmin \ 0.95rcool

A2 . . . . . . . . . . . . . . . . . . 4.7 2.7 1.7
B2 . . . . . . . . . . . . . . . . . . 4.9 2.24 1.6
C1 . . . . . . . . . . . . . . . 1.69 1.12 1.02 B1.0
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with a b proÐle to get an estimated value of and thenrcore,compared this with the case of gas in hydrostatic equi-
librium in order to estimate the deviation in the Hubble
constant. For the more realistic models with mass deposi-
tion (varying with radius), we found that the deviationm5
decreases with the exclusion of greater portions of the
cooling-Ñow region. Quantitatively, we found that for the
deviation to be less than D10%, one should exclude a
portion of the proÐle up to Since is difficultD0.8rcool. rcoolto estimate without actually detecting a cooling Ñow, we
have suggested that a signiÐcant portion of the proÐle inside

should be excluded, to be safe.rcoreThere can be another important implication of the e†ect
of cooling Ñows. With the upcoming satellite missions
(MAP and Planck), we have come to the point where there
are e†orts to constrain with surveys of blank SZ Ðelds)0(Bartlett, Blanchard, & Barbosa 1998 ; Bartlett 2000), ulti-
mately giving rise to SZ-selected catalogs of clusters
(Aghanim et al. 1997). This method relies on estimating the
number of SZ sources brighter than a given threshold Ñux
(Barbosa et al. 1996a). The point to be noted is that since
these surveys are essentially Ñux-limited in nature, the valid-
ity of the analysis in determining depends crucially on)0the one-to-one association of Ñux limits to corresponding
mass limits of clusters. From our analysis above, it seems
that it may not be possible to associate a unique cluster
mass with a given SZ distortion, given the uncertainty due
to the presence of cooling Ñows. This might lead to con-
tamination in SZ cluster catalogs and the inference of )0.Recently, attempts have been made to constrain from)0variance measurement of brightness temperature in blank
Ðelds (Subrahmanyan et al. 1998), and comparing them to
simulated Ðelds (Majumdar & Subrahmanyan 2000) of
cumulative SZ distortions from a cosmological distribution
of clusters. These results may also be systematically a†ected
by the presence of clusters having cooling Ñows.

The estimations made in this paper strictly apply to cases
in which the image of the SZ e†ect is directly obtained by
single-dish observations. For interferometric observations,
the interferometer samples the Fourier transform of the sky
brightness rather than the direct image of the sky. The

Fourier conjugate variables to the right ascension and decli-
nation form the u-v plane in the Fourier domain. Due to
spatial Ðltering by an interferometer, it is necessary that
models be Ðtted directly to the data in the u-v plane, rather
than to the image after deconvolution. We do not foresee
drastic changes from our inferences in such cases, since the
result mainly depends on the deviation of the SZ and X-ray
proÐles in the case of a cooling Ñow from those in the case
of hydrostatic equilibrium. This, however, should be looked
at in greater detail in future. We also note that with the
growing number of high-quality images of the SZ e†ect with
interferometers, which have greater resolution than single-
dish antennas, the shape parameters of the clusters can be
directly determined from the SZ data set rather than from
an X-ray image (Grego et al. 2000).

Finally, we would like to add that although the calcu-
lations presented in this paper were done using the dark
matter proÐle (eq. [21]) that is commonly used for calcu-
lating cooling Ñow solutions, it is inconsistent with the dark
matter proÐle (Navarro et al. 1997) found in numerical
simulations. (For a comparison of mass and gas distribu-
tions in clusters having cooling Ñows with di†erent dark
matter proÐles, see Waxman & 1995.)Miralda-Escude�
Moreover, we have neglected the self-gravity of the gas.
Suto, Sasaki, & Makino (1998) have calculated the e†ect of
including the self-gravity of the gas in determining the gas
density proÐle. To make strong conclusions about the e†ect
of cooling Ñows in the determination of the Hubble con-
stant, one should take both the points mentioned above
into account.
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