
Electromagnetic properties of neutral and charged spin-1 particles
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The structure of the electromagnetic vertex of spin-1 particles is studied in a general way, for the diagonal
as well as the off-diagonal couplings. In each case, we consider in detail the consequences of gauge invariance
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I. INTRODUCTION AND NOTATION

The properties of vector bosons have been the subject of
intense studies recently@1#. This is motivated mainly by the
fact that direct measurement of the trilinear vector boson
couplings may be possible in the pair production of elec-
troweak bosons ate1e2 and hadron colliders. A possible
way to test whether the predictions of the standard model are
sustained is to parametrize the trilinear vector boson cou-
plings in some generalized form, and then try to constrain the
generalized couplings from the experimental results. A con-
sistent implementation of such parametrization must satisfy
certain requirements that follow from fundamental principles
such as Lorentz and gauge invariance, the discrete space-
time symmetriesC, P, T, and their combinations, or any
other symmetry that may be applicable. This has been done
in great detail for theW1W2g vertex @2,3#, which awaits
experimental tests in the near future.

Although neutral gauge bosons cannot have a coupling
with the photon at the tree level, they do develop such cou-
plings in higher orders of perturbation theory. Thus, for ex-
ample, the standard model admits aZZg coupling at loop
levels. It is conceivable that vector bosons in addition to the
standardW andZ exist in nature. In fact, it is not uncommon
to find in the literature theories beyond the standard model
that predict the existence of such additional bosons. In those
theories, the trilinear couplings involving the photon can be
more complicated than those of the standard model. In par-
ticular, for example, off-diagonal couplingsVV8g involving
different vector bosons can in principle exist. While such
couplings arise only at loop levels, they may be important for
discovering physics beyond the standard model. For ex-
ample, a heavy gauge boson may be detected by its radiative
decay into a lighter one. In order to prepare ourselves for
these possibilities, it is useful to look in a more general way
at the electromagnetic vertex of neutral spin-1 particles. This
is our purpose in this paper. We study the structure of the
electromagnetic vertex of charged as well as neutral spin-1
particles, for the diagonal and for the off-diagonal couplings.
We consider in detail the consequences of gauge invariance

and the space-time discrete symmetries, paying particular at-
tention to the implications for the electromagnetic couplings
of neutral gauge bosons. This kind of study can serve as a
guide in the quest to find the physics that may lie beyond the
standard model in a way that is general and model indepen-
dent. Moreover, it may allow us to recognize possible devia-
tions of the new physics from basic physical principles such
as Lorentz and gauge invariance, and crossing symmetry.

We begin by introducing the notation for the electromag-
netic vertex of spin-1 particles. The off-shell vertex function
Gaa8m(k,k8) is defined such that the matrix element of the
electromagnetic current is

^V8~k8!u j m
~EM!~0!uV~k!&5e8* a8~k8!ea~k!Gaa8m~k,k8!

[ j m~Q,q!, ~1.1!

corresponding to the vertex

V~k!→V8~k8!1g~q!. ~1.2!

For the sake of convenience, we represent the functionj m in
terms of the two independent momenta

Q[k1k8, q[k2k8, ~1.3!

whereq is the photon momentum as depicted in Eq.~1.2!.
Before we write the most general form of the vertex con-

sistent with Lorentz invariance, it is useful to make the fol-
lowing observations.~i! If V andV8 are neutral, electromag-
netic gauge invariance implies

qmGaa8m50 , ~1.4!

for arbitrary values ofk andk8, and hence ofq. On the other
hand, ifV andV8 are charged, the relation analogous to Eq.
~1.4! contains some terms in the right-hand side involving
the inverse propagators ofV andV8. Therefore, what we get
is the weaker condition

qm j m~Q,q!50 , ~1.5!
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where j m(Q,q) is the on-shell vertex function as defined in
Eq. ~1.1!, which follows simply by using the current conser-
vation condition

qm^V8~k8!u j m
~EM!~0!uV~k!&50 ~1.6!

in Eq. ~1.1!. ~ii ! For neutralV andV8, Gaa8m is well defined
in the limit q→0. This property does not hold forV and
V8 charged.~iii ! Ultimately, for the calculation of an ampli-
tude for a physical process, the indicesa8,a of G will be
contracted with the polarization vectorse8* a8ea of V8 and
V, or with fermion currents, and similarly for the photon
indexm.

II. PARAMETRIZATION OF THE VERTEX
AND ITS PHYSICAL INTERPRETATION

Let us consider for the moment the amplitude for pro-
cesses in which the vector particles are on-shell and/or the
fermion currents to which they couple are conserved. From
the transversality conditions

k8•e85k•e50, ~2.1!

we obtain

Q•e52q•e, Q•e85q•e8. ~2.2!

Similar relations to Eq.~2.2! hold for the fermion currents if
they are conserved, or in the limit in which the fermion
masses can be neglected. Therefore the terms inGaa8m pro-
portional toQa or Qa8 are not independent of similar terms
with Qa replaced byqa andQa8 replaced byqa8. In this
case the most general form ofGaa8m that is consistent with
Lorentz invariance can be written in terms of 10 form factors
as follows:

Gaa8m
~T!

5~a1qm1a18Qm!gaa81~a2qm1a28Qm!qaqa8

1a3~gma8qa2gmaqa8!1a4~gma8qa1gmaqa8!

1b1«aa8mnq
n1b18«aa8mnQ

n1b2qa@Qq#ma8

1b3qa8@Qq#ma ~2.3!

where we have defined

@Qq#aa8[«aa8bgQ
bqg ~2.4!

for the sake of brevity. For future reference, we note here
that our convention for«aa8bg is such that

«0123511. ~2.5!

In principle Eq.~2.3! can contain the terms

~h1qm1h2Qm!@Qq#aa8, ~2.6!

but in fact these are redundant. To see this, recall the identity

glm«aa8bg2gla«ma8bg2gla8«ambg2glb«aa8mg

2glg«aa8bm50 , ~2.7!

which follows from the fact that the left-hand side is a com-
pletely antisymmetric four-dimensional tensor in the indices
maa8bg. Contracting Eq.~2.7! with qlQbqg, we obtain

qm@Qq#aa852q2«aa8mnQ
n1Q•q«aa8mnq

n

2qa8@Qq#ma1qa@Qq#ma8. ~2.8!

Similarly, by contracting Eq.~2.7! with QlQbqg, we obtain

Qm@Qq#aa85Q2«aa8mnq
n2Q•q«aa8mnQ

n

2Qa8@Qq#ma1Qa@Qq#ma8. ~2.9!

In the last two terms in this equation,Qa8 andQa can be
replaced byqa8 andqa due to Eq.~2.2!, which finally justi-
fies the omission ofh1,2 in Eq. ~2.3!.

On the other hand, for amplitudes in which the vector
particles are not on-shell and the fermion currents to which
they couple are not conserved, the simplification made by
using Eq.~2.2! is not valid. In these cases, the general form
of the vertex function contains in addition to the terms given
in Eq. ~2.3! the following:

Gaa8m
~L !

5~c1qm1c18Qm!kaka8
8 1~c2qm1c28Qm!kaka8

1~c3qm1c38Qm!ka8ka8
8 1c4gma8ka1c5gmaka8

8

1d1ka@Qq#ma81d2ka8
8 @Qq#ma . ~2.10!

In the most general case, the vertex function is the sum

Gaa8m5Gaa8m
~T!

1Gaa8m
~L ! . ~2.11!

For V5V8, the form factors in Eq.~2.3! have a definite
physical interpretation in terms of the static electromagnetic
properties of the particles. To deduce this correspondence we
use the following procedure. Let us consider as an example
the electric dipole momentdE . The classical definition of the
electric dipole moment of a charge distribution is

DW E5E d3xxWr~EM!~xW !, ~2.12!

where we have denoted byr (EM)(xW ) the zeroth component of
the electromagnetic current densityj (EM)(xW ). In quantum
mechanicsDW E becomes an operator, and the electric dipole
moment of the particle is given by its expectation value. For
normalizable states, witĥks8uks&5Nkds,s8, we can define
the electric dipole moment matrix elements as

j8†dWEj5~dWE!ss85
^ks8uDW Euks&

Nk
U
kW→0

. ~2.13!

The limit kW50 reflects the fact that the intrinsic static prop-
erties of the particle are determined in the limit of zero mo-
mentum or, equivalently, in the rest frame of the particle. In
Eq. ~2.13! the symbolsj,j8 stand for the space part of the
polarization vectors
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em~k,s![~e0,jW !,

e8m~k8,s8![~e80,jW8!, ~2.14!

written as column matrices. In the limitkW50, they are sim-
ply the spin wave functions of the particle at rest. However,
since the plane wave states satisfy

^V~k8s8!uV~ks!&5~2p!32k0d~3!~kW2kW8!ds,s8, ~2.15!

the appropriate formula is

~j8†dWEj!~2p!32k0d~3!~kW2kW8!

5^V~k8s8!uDW EuV~ks!&u ukW8u5ukW u→0 . ~2.16!

By translation invariance,

^V~k8s8!uDW EuV~ks!&

5E d3xxWeix
W
•~kW2kW8!^V~k8s8!ur~EM!~0W !uV~ks!&

5~2p!3d~3!~kW2kW8!F i ] j 0~Q,q!

]qW
G , ~2.17!

where, to arrive at the second equality, Eq.~1.1! has been
used. Then, taking the limits indicated in Eq.~2.16!,

~j8†dWEj!5
1

2mV
F i ]J0~qW !

]qW
G U

qW 50

, ~2.18!

where we have introduced

Jm~qW !5 j m~Q,q!uq050,QW 50

5@e8* a8~k8!ea~k!Gaa8m~k,k8!#uq050,QW 50 . ~2.19!

The expression fordWE can finally be obtained by substituting
Eq. ~2.3! into Eq. ~2.18!. The terms contained inGaa8m

(L) do
not contribute because they vanish when the vertex function
is multiplied by the polarization vectors, and it is important
also to keep in mind that, in the limitq050 andQW 50,

e05
qW •jW

2mV
, e8052

qW •jW8

2mV
, ~2.20!

which follow from Eq.~2.1!. In this way we then obtain

dWE5dESW , ~2.21!

where

dE5S b1~0!

2mV
D , ~2.22!

and we have introduced the spin-1 matricesSW with elements

~Si ! jk52 i« i jk . ~2.23!

The notationb1(0) is meant to indicate that the form factor
is to be evaluated by first puttingk andk8 on shell, and then

taking the limit q050, QW 50 andqW 50. Since, in vacuum,
the on-shell form factors are functions only ofq2, in order to
evaluateb1(0) it is enough to putq

250. However, in more
general situations, such as if the particle is propagating in a
matter background, the form factors depend on the compo-
nents ofqm andQm separately, and the static limit is meant
to be as we have indicated, namely, (q050,qW→0) and
Qm→(2mV ,0W ). In what follows, we use the same notation
for the other form factors.

We can proceed in similar fashion for the electric charge
and the quadrupole moment. The formulas analagous to Eq.
~2.16! are

~j8†qVj!~2p!32k0d~3!~kW2kW8!

5^V~k8s8!uqEuV~ks!&u ukW8u5ukW u→0 , ~2.24!

~j8†xE
i j j!~2p!32k0d~3!~kW2kW8!

5^V~k8s8!uXE
i j uV~ks!&u ukW8u5ukW u→0 , ~2.25!

whereqE is the charge operator

qE5E d3xr~EM!~xW ! ~2.26!

and

XE
i j5E d3xxixjr~EM!~xW ! ~2.27!

are the elements of the quadrupole moment tensor operator.
Following the steps leading to Eq.~2.18!, we obtain, forqV
andxE ,

~j8†qVj!5
1

2mV
J0~0W !, ~2.28!

~j8†xE
i j j!5

1

2mV
F i ]]qi

i ]

]qj
J0~qW !G U

qW 50

, ~2.29!

from which we obtain

qV52a18~0!, ~2.30!

xE
i j5

1

3
QEI

i j . ~2.31!

In Eq. ~2.31! the I i j are a set of symmetric matrices with
elements

~ I i j !kl5dk
i d l

j1dk
j d l

i ~2.32!

and

QE523Fa28~0!2
a18~0!12a3~0!

4mV
2 G . ~2.33!

It is customary to define the quadrupole moment tensor as
@4#
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QE
i j[3xE

i j2d j
i S (

k
xE
kkD 5QES I i j2 2

3
d j
i1D , ~2.34!

where1 stands for the 333 unit identity matrix.
At this point it is useful to consider the amplitude for the

scattering of a slowly movingV particle in an external elec-
tromagnetic field. Introducing the potentials

f~xW !5E d3qW

~2p!3
e2 iqW •xWf~qW !,

AW ~xW !5E d3qW

~2p!3
e2 iqW •xWAW ~qW !, ~2.35!

the amplitude is

iM52 i @f~qW !J0~qW !2AW ~qW !•JW~qW !#. ~2.36!

If we expandJ0(qW ) in powers ofqW , the term in Eq.~2.36!
that is independent ofqW is then identified with the charge,
those proportional toqW are identified with the dipole mo-
ments, while those proportional to two powers ofqW corre-
spond to the quadrupole moments. More precisely, from Eqs.
~2.18!, ~2.28!, and~2.29! we deduce that

f~qW !J0~qW !5j8†S qVf2dWE•EW 2
1

2
xE
i j Ei j D j, ~2.37!

and, by analogy, we can determine the magnetic moments by
writing the amplitude in the form

M522mVj8†S qVf2dWE•EW 2
1

2
xE
i j Ei j2dWM•BW 2

1

2
xM
i j Bi j D j.

~2.38!

Here we have introduced

EW 5 iqW f, BW 52 iqW 3AW , ~2.39!

which are the Fourier transforms of the external electric and
magnetic field, and

Ei j52 iEiqj , Bi j52 iBiqj ~2.40!

are the Fourier transforms of their space derivatives
]Ei(xW )/]xj and]Bi(xW )/]xj .

Thus, using Eq.~2.3! to evaluate the amplitude, and then
comparing with the form given in Eq.~2.38!, we obtain for
the magnetic dipole and quadrupole moment matrices

dWM5dMSW , ~2.41!

xM
i j 5

1

3
QMI

i j , ~2.42!

where

dM52S a3~0!

2mV
D , ~2.43!

QM52
3

2mV
Fb1~0!

mV
2@b2~0!1b3~0!#G . ~2.44!

It is easy to verify that the above result fordWM , for example,
is the same as that obtained from the formula

j8†dM
i j5

1

2mV
« i jkF i ]Jk~qW !

]qj
G U

qW 50

, ~2.45!

which follows by using the definition

j8†dWMj~2p!32k0d~3!~kW2kW8!

5^V~k8s8!uDW MuV~ks!&u ukW8u5ukW u→0 , ~2.46!

in terms of the magnetic dipole moment operator

DW M5
1

2E d3xxW3 jW ~EM!~xW !. ~2.47!

We must mention that whenJW (qW ) is expanded in powers
of qW in Eq. ~2.36!, not all terms that are generated can be
written in the form of Eq.~2.38!. The amplitude contains
additional terms such as, for example,

a4j* 8 jj i~Aiqj1Ajqi !, ~2.48!

which do not fit in the form of Eq.~2.38!. However, all such
terms in fact vanish once the constraint of gauge invariance,
which in the static limit is simply

qW •JW~qW !50 , ~2.49!

is imposed upon them. While we do not discuss this any
further here, the implications of gauge invariance are consid-
ered in detail in Sec. IV.

III. IMPLICATIONS OF THE DISCRETE SYMMETRIES

In this section we deduce the constraints on the vertex
function, and in turn on the form factors, that are imposed by
several general requirements and/or symmetry principles.
These are crossing symmetry, the Hermiticity of the Lan-
grangian and, when applicable, the discrete space symme-
triesC, P, andT, or the appropriate combinations of them.
We consider the diagonal and off-diagonal cases separately.

A. Diagonal case:V5V8

Let us consider the space-time symmetries first. Consider,
for example, the parity symmetry. The effect of its transfor-
mation can be summarized by the statement

Gaa8m~k,k8!→
P

Gaa8m
P

~k,k8!, ~3.1!

whereGaa8m
P is obtained fromGaa8m by multiplying every

quantity that appears inGaa8m by its parity phasehP tabu-
lated in Table I. Using similar notation for the effect of the
charge conjugation and time reversal transformations, we ob-
tain
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Gaa8m~k,k8!→
C

2Ga8am
C

~2k8,2k!, ~3.2!

Gaa8m~k,k8!→
T

2Ga8am
T

~2k,2k8!. ~3.3!

In general, theC transformation and the crossing relation,
each one separately, give a relation that expresses the ampli-
tude for the antiparticle process (V̄→V̄81g) in terms of
Gaa8m . Strictly speaking, theC transformation rule written
above is the combined effect of the charge-conjugation trans-
formation and the crossing relation. As discussed below, in
the case thatV is self-conjugate the crossing relation gives
by itself another independent constraint.

From these transformations we can deduce the effects of
combined operations, for example,

Gaa8m~k,k8!→
CP

2Ga8am
CP

~2k8,2k!, ~3.4!

Gaa8m~k,k8!→
CPT

Ga8am
CPT

~k8,k!. ~3.5!

If the Lagrangian is symmetric under any of the discrete
symmetry transformations, then the arrow in the correspond-
ing relation in Eqs.~3.1!–~3.5! should be replaced by the
equality sign. The resulting equations produce constraints on
the form factors. For example, ifCP is a symmetry of the
Lagrangian, then from the above it follows that the vertex
function satisfies

Gaa8m~k,k8!52Ga8am
CP

~2k8,2k!, ~3.6!

which implies that

a15a25a450 ~3.7!

and

b150, b352b2 . ~3.8!

From Eqs.~2.22! and~2.44!, the relations in Eq.~3.8! imply
that the electric dipole moment and the magnetic quadrupole
moments are zero, which is a familiar result.

On top of all these relations, which may or may not be
satisfied in a particular case, the following relation follows
from the fact that the Lagrangian is Hermitian:

Gaa8m~k,k8!5Ga8am
* ~k8,k!. ~3.9!

This relation, which is independent of whether the particle is
neutral or charged, or of the status of the discrete symme-
tries, yields the following reality conditions on the form fac-
tors:

a18 ,a28 ,a3 ,b15 real,

a1 ,a2 ,a4 ,b185 imaginary,

b35b2* , ~3.10!

which in particular imply that the electromagnetic moments,
as we have identified them, are real. Notice also that once the
Hermiticity condition is imposed, theCPT transformation in
Eq. ~3.5! becomes a trivial identity, as it should be.

The above discussion applies to both the charged and neu-
tral cases. However, for the neutral case there is an additional
independent constraint if the particle is not just neutral but
also self-conjugate. If the particle is self-conjugate, then the
vertex obeys the crossing relation corresponding to the ex-
change of the externalV lines. The resulting condition is
simply

Gaa8m~k,k8!5Ga8am~2k8,2k!. ~3.11!

Since all the form factors are now functions ofq2 only, they
remain invariant under the substitutionk↔2k8. Equation
~3.11! applied to Eq.~2.3! implies that the form factors
a18 ,a28 ,a3 ,b1 all vanish, whileb352b2. Thus the symmetry
reducesGaa8m

(T) to the form

Gaa8m5a1qmgaa81a2qmqaqa81a4~gma8qa1gmaqa8!

1b18eaa8mnQ
n1b2~qa@Qq#ma82qa8@Qq#ma!.

~3.12!

Notice that this result implies that the charge form factor
as well as the dipole moment form factors are zero for all
q2 and not just forq250. Moreover, it implies in particular
that a neutral~self-conjugate! vector particle can have neither
an electric nor a magnetic dipole moment, in complete anal-
ogy with the result for Majorana fermions@5#. Furthermore,
since a185a285a350 the electric quadrupole moment is
zero, and sinceb150 andb352b2 the magnetic quadrupole
moment is also zero. In short, a self-conjugate vector particle
cannot have any static electromagnetic moments. Neverthe-
less, it is interesting to note that even self-conjugate particles
can have an electromagnetic vertex. However, as will be
shown in Sec. IV, gauge invariance places further restrictions
on the other form factorsa1, a2, a4, b18 , andb2, and in the
end onlyb2 and a linear combination ofa2 anda4 can be
nonzero.

In the standard model, theZ falls in this class; it is self-
conjugate~which implies its charge neutrality!. But in prin-
ciple, there can exist vector particles that are electrically neu-
tral, but which have a nonzero quantum number with respect
to the charge of some other~global or local! symmetry which
is at the moment unknown to us. For such a particle, which is
neutral but not self-conjugate, the constraint of Eq.~3.11!
does not apply. The distinction between the neutral and self-
conjugate vector particles is analogous to the one between
Dirac and Majorana neutrinos. For particles that are not self-
conjugate, the crossing symmetry relations do not give us
constraints on the form factors, but instead allow us to relate
the form factors of the antiparticle~the conjugate particle! to
those of the particle.

TABLE I. The transformation rules of different quantities ap-
pearing inGaa8m under the various discrete symmetries.

hP hT hC hCP hCPT

1 1 1 1 1 1

i 1 2 1 1 2

eablr 2 2 1 2 1
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One interesting case that appears as a special one is the
off-shell coupling of three photons. IfC invariance holds, we
can easily see that the vertex vanishes. This follows from
Eqs.~3.2! and~3.11!. From Table I, we see thathC is11 for
all quantities of interest, so the quantityGC appearing in Eq.
~3.2! is really equal toG. If C invariance is valid, the two
expressions in Eq.~3.2! should be equal, which directly con-
tradicts Eq.~3.11! unless the entire vertex vanishes. This
result is known as Furry’s theorem@6#. However, note that
this argument shows that in order that the vertex vanishes,
V andV8 need not be photons;C invariance andV5V8 are
sufficient conditions. In other words, the off-shell vertex
VVg vanishes for any self-conjugateV providedC invari-
ance holds.

On the other hand, since we know thatC invariance does
not hold when the weak interactions are taken into account,
the VVg vertex need not vanish in general. This will be
discussed after introducing the constraints from gauge invari-
ance in Sec. IV.

B. Off-diagonal case:V5V8

In analogy with Eq.~1.1! we define the vertex function for
the process

V8~k8!→V~k!1g~q! ~3.13!

by writing

^V~k!u j m
EM~0!uV8~k8!&5e8a8~k8!e* a~k!Ga8am

~V8→V!
~k8,k!.

~3.14!

Using a notation similar to before, the effect of the various
transformations on the vertex function can be summarized by
the following rules. ForP andT we have

Gaa8m~k,k8!→
P

dP8* dPGaa8m
P

~k,k8!, ~3.15!

Gaa8m~k,k8!→
T

2dT8* dTGa8am
T

~2k,2k8!, ~3.16!

wheredP,T and dP,T8 are the phases that appear in theP,T
transformation rules of theV,V8 fields. Under charge conju-
gation,

Gaa8m~k,k8!→
C

2dC8 dC*Ga8am
~V8→V!

~2k8,2k!, ~3.17!

while the Hermiticity condition becomes the statement that

Ga8am
~V8→V!

~k8,k!5Gaa8m
* ~k,k8!. ~3.18!

The comment made after Eq.~3.3! applies here also. In par-
ticular, for the case of self-conjugate particles the crossing
relation gives the additional condition

Ga8am
~V8→V!

~k8,k!5Gaa8m~2k,2k8!. ~3.19!

Notice that takingV5V8 as a particular case in Eq.~3.19!,
the condition expressed in Eq.~3.11! is reproduced.

As an example of the kind of relation that we can deduce
from these results, suppose thatCP is conserved. From Eqs.
~3.15! and ~3.17! it then follows that

Ga8am
~V8→V!

~k8,k!52dCP8* dCPGaa8m
P

~2k,2k8!. ~3.20!

Comparing this with Eq.~3.18! we then obtain the condition

Gaa8m
* ~k,k8!52dCP8* dCPGaa8m

P
~2k,2k8!, ~3.21!

which implies thata1,2,3,4 and a1,28 have the same phase
eif, while b1,2,3andb18 all have the same phaseie

if, with the
samef. It is also easy to verify that the results that were
derived previously for the diagonal case are reproduced here
if we specialize these formulas to that case by setting
V85V.

The case of self-conjugate particles is more interesting.
As already commented, the new feature is that Eq.~3.19! is
valid independently of whether the discrete symmetries are
conserved or not. That condition together with the Hermitic-
ity condition of Eq.~3.18! give

Gaa8m~k,k8!5Gaa8m
* ~2k,2k8!, ~3.22!

which implies that all the form factors are purely imaginary.
Now, if CP is conserved, we can combine this with what we
concluded after Eq.~3.21!. There are two possibilities de-
pending on the relative sign of theCP phases ofV and
V8, which we denoted bydCP anddCP8 in Eq. ~3.20!.

Same CP phase of V8 and V. In this case we have

a1,2,3,45a1,28 50 . ~3.23!

Only theb coefficients survive~and they are purely imagi-
nary!, so that the transition momentsdM ,QE are zero while
dE ,QM are nonzero.

Oppposite CP phases of V8 and V. In this case the oppo-
site occurs: theb coefficients are zero while thea coeffi-
cients are nonzero and purely imaginary. Accordingly, the
transition momentsdE ,QM are zero whiledM ,QE are al-
lowed. This is, once more, in complete analogy with the
situation for Majorana fermions@5#.

The discussion above immediately brings the question of
whether the relativeCP phase of all self-conjugate vector
bosons is positive. For the photon and theZ it is true, but can
one construct examples where it is not? The following ex-
amples illustrate the various possibilities that can arise.

Suppose thatV andV8 have the following couplings to a
pair of neutrinos,nLe,m :

L85aV8m@n̄LegmnLm1 n̄LmgmnLe#

1 ibVm@n̄LegmnLm2 n̄LmgmnLe#. ~3.24!

It is clear from this that theCP phase ofV andV8 must be
opposite in order to keepL8 invariant underCP. A gener-
alization of this interaction is to promote it to an SU~2!
gauge interaction by writing

L852gh̄Lgm

tW

2
hL•VW

m, ~3.25!

where hL stands for a doublet formed bynLe,m . In this
model, underCP,

V1,3→2V1,3, ~3.26!
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just like theZ and the photon, but

V2→V2. ~3.27!

Interactions of a similar type generally appear in models that
have been considered in various contexts, such as grand uni-
fied theories, family or horizontal symmetries, and super-
string inspired models.

In the examples considered in Eqs.~3.24! and ~3.25!, the
vector bosons are self-conjugate. On the other hand, if the
theory is such that the individual lepton numbersLe and
Lm are separately conserved, then it is more convenient to
work with

Vm[
1

A2
~Vm

11 iVm
2 ! ~3.28!

and its complex conjugate, because they are the eigenstates
of the conservedLe,m operators. The couplings ofV to the
neutrinos is of the formVmn̄Leg

mnLm1H.c., and in such a
theory V would carry bothLe and Lm quantum numbers.
While electrically neutral,V is not self-conjugate. If there is
another such vector particleV8, one of them can decay ra-
diatively into the other.

We would like to point out that, in the examples given in
this section, we have focused the attention on the relations
for the a andb coefficients, which are contained inGaa8m

(T) .
We have chosen that only for illustrative purposes, motivated
by the fact that those are the form factors that contribute
when the vector bosons are on-shell, and therefore the ones
that have a direct physical interpretation in terms of the elec-
tromagnetic moments of the particles. However, analogous
relations can be similarly derived for thec andd coefficients
contained inGaa8m

(L) , by applying the conditions that the ver-
tex function must satisfy, such as Eqs.~3.6! or ~3.9!, to Eq.
~2.10!.

IV. GAUGE INVARIANCE

Now we explore what are the constraints imposed by the
electromagnetic gauge invariance on the vertex function. The

analysis depends on whether the two gauge bosonsV and
V8 are charged or neutral; therefore we consider them sepa-
rately.

A. V, V8 are neutral

The condition is expressed in Eq.~1.4!, and applying it to
Eq. ~2.11! we get the relations

a1q
21a18Q•q50,

a2q
21a28Q•q12a450,

b1850,

c1q
21c18Q•q2c41c550,

c2q
21c28Q•q1c450,

c3q
21c38Q•q2c550 . ~4.1!

The nontrivial ones of these relations are solved, without
introducing artificial singularities, by writing

a185q2a0 ,

a152Q•qa0 ,

a452
1

2
~q2a21Q•qa28!,

c452c2q
22c28Q•q,

c55c3q
21c38Q•q,

c11c21c352c0Q•q,

c181c281c385c0q
2. ~4.2!

Therefore,

Gaa8m
~T!

5~q2Qm2Q•qqm!a0gaa81a2S qmqaqa82
1

2
q2~gma8qa1gmaqa8! D1a28SQmqaqa82

1

2
Q•q~gma8qa1gmaqa8! D

1a3~gma8qa2gmaqa8!1b1eaa8mnq
n1b2qa@Qq#ma81b3qa8@Qq#ma ~4.3!

and

Gaa8m
~L !

5c0~q
2Qm2Q•qqm!kaka8

8 1c2ka~qmqa82q2gma8!1c28ka~Qmqa82Q•qgma8!2c3ka8
8 ~qmqa2q2gma!

2c38ka8
8 ~Qmqa2Q•qgma!1d1ka@Qq#ma81d2ka8

8 @Qq#ma . ~4.4!

In the most general case, the vertex cannot be simplified further. Simplification occurs in special cases as we discuss below.
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1. VÞV8, all particles on-shell

Physically, this represents a decay process where one vec-
tor boson decays radiatively to another one. In this case we
can reduce the vertex of Eq.~4.3! further by using the on-
shell conditions for the photon,

e~g!
•q50, q250. ~4.5!

This gives the form

Gaa8m
~T!

5a28FQmqaqa82
1

2
Q•q~gma8qa1gmaqa8!G

1a3~gma8qa2gmaqa8!1b1eaa8mnq
n

1b2qa@Qq#ma81b3qa8@Qq#ma , ~4.6!

while G (L) does not contribute. Notice that Eq.~4.6! involves
a combination of dipole and quadrupole moment terms only
and, in particular, the term with the charge form factora18
vanishes in this case. The reason behind this is that in this
configuration~all particles on-shell! thea18 form factor is the
matrix element of the charge operator between theV and
V8 states, which is zero if the particles are different.

It is interesting to consider what occurs in this case when
the particleV8 also is the photon, which corresponds to the
possibility of a vector boson decaying into two photons. In
this case, the vertex function should satisfy the additional
constraint

Gaa8m~k,k8!5Gama8~k,q!, ~4.7!

which corresponds to the condition that the two photons in
the final state obey Bose symmetry. In addition, gauge in-
variance of the second photon requires

k8a8Gaa8m50, ~4.8!

but this is satisfied automatically if Eq.~4.7! is imposed upon
Eq. ~4.6!. Equation~4.7! translates to

Gaa8m5Gama8uQ→Q̃,q→ q̃, ~4.9!

where

Q̃5k1q5~Q13q!/2, ~4.10!

q̃5k2q5~Q2q!/2. ~4.11!

After substituting Eq.~4.6! into Eq.~4.9!, the right-hand side
of Eq. ~4.9! can be reduced with the help of Eq.~2.9! and the
relations in Eqs.~2.2! plus additional relations such as

@Q̃q̃#mn52@Qq#mn . ~4.12!

It then follows easily from Eq.~4.9! that the vertex in fact
vanishes. In other words, a spin-1 particle cannot decay to
two photons. This is the well-known Yang theorem@7#.

2. V5V8, both on shell

In this case the photon is not on-shell (q2Þ0) but, since
both V lines are on shell,Q•q5k22k8250. The vertex
function then reduces to

Gaa8m5q2Qma0gaa81a2S qmqaqa82
1

2
q2~gma8qa

1gmaqa8! D1a28Qmqaqa81a3~gma8qa2gmaqa8!

1b1eaa8mnq
n1b2qa@Qq#ma81b3qa8@Qq#ma .

~4.13!

As already discussed in Sec. III, if the particle is self-
conjugate then the vertex obeys the crossing relation corre-
sponding to the exchange of the externalV lines. In this case,
Eq. ~3.11! applied to Eq.~4.13! implies that the form factors
a0 , a28 , a3 , b1 all vanish, whileb352b2, using the fact that
in this case all form factors must be functions ofq2 only.
Thus Eq.~4.13! reduces to the form

Gaa8m5a2H qmqaqa82
1

2
q2~gma8qa1gmaqa8!J

1b2~qa@Qq#ma82qa8@Qq#ma!. ~4.14!

Therefore, while a self-conjugate particle cannot have any
static electromagnetic moments, in the most general case it
can have an electromagnetic vertex characterized bya2 and
b2 as above.

3. V5V8, all particles off-shell

This corresponds, for example, to the off-shellZZg ver-
tex in the standard model or beyond. We should now use the
vertex given in Eqs.~4.3! and ~4.4!, remembering that the
crossing symmetry of Eq.~3.11! applies here provided the
particleV is self-conjugate. The difference with the previous
case is that now the form factors are functions of the Lorentz
invariantsk2, k82, andq2, so the form factorsa0, a28 , a3,
b1 do not vanish, but rather satisfy the constraints

a0~k
2,k82,q2!52a0~k8

2,k2,q2! ~4.15!

and similarly for the other three. Similarly, the condition
b352b2 obtained for the previous case should be replaced
in this case by

b2~k
2,k82,q2!52b3~k8

2,k2,q2!. ~4.16!

Moreover, the terms inG (L) also should be present in this
case, and the form factors in this part should satisfy the re-
lations

c0~k
2,k82,q2!52c0~k8

2,k2,q2!,

c2~k
2,k82,q2!52c3~k8

2,k2,q2!,

c28~k
2,k82,q2!5c38~k8

2,k2,q2!,

d1~k
2,k82,q2!5d2~k8

2,k2,q2!. ~4.17!

4. V85g, both photons on-shell

WhenV8 corresponds also to the photon, the vertex func-
tion, given by the sum of Eqs.~4.3! and ~4.4!, satisfies the
additional constraint

55 3125ELECTROMAGNETIC PROPERTIES OF NEUTRAL AND . . .



k8a8Gaa8m50. ~4.18!

Moreover, since two of the bosons are photons, the vertex
must satisfy the symmetry condition given in Eq.~4.7!. Let
us consider Eq.~4.18! first. The contraction on the left-hand
side produces six different kinds of tensor structures. Ac-
cordingly, we get six equations, but it turns out that only four
of these are independent. Out of those four, one connects the
b- and thed-type coefficients by

1

2
b11b3k8•q1d2k8

250, ~4.19!

which can be trivially solved forb1. The other three can be
written as

~c31c38!k825~2a01a21a28!k8•q,

~c32c38!k8252k•qa01
1

2
~k22k82!a21

1

2
q2a282a3 ,

c21c2852a012c0k8
2. ~4.20!

These can be solved, without introducing artificial singulari-
ties, by writing

c25a01c0k8
21C2 , c285a01c0k8

22C2 ,

c35k8•qA31C3 , c385k8•qA32C3 ,

2a01a21a2852k82A3 ,

a352k•qa01
1

2
~k22k82!a21

1

2
q2a2822C3k8

2,

~4.21!

so thata0, a2, c0, C2, C3, andA3 can be taken as the inde-
pendent form factors in thea-c sector. Using these form
factors we can then write

Gaa8m52a0$gaa8~k•qkm8 2k8•qkm!1qa8~kmka2Qmqa!1gma8~Q•qqa2k•qka!%12~a2qa1C2ka!~gma8k8•q2km8qa8!

12A3$k•qgma~k8•qka8
8 2k82qa8!2k8•qk82gma8qa1qa~k82Qmqa82k8•qkmka8

8 !%

1c0ka$ka8
8 ~q2Qm2Q•qqm!12k82~kmqa82k•qgma8!%12C3$ka8

8 ~km8qa2k8•qgma!2k82~gma8qa2gmaqa8!%

1b2qa@Qq#ma81b3$qa8@Qq#ma22k8•qeaa8mnq
n%1d1ka@Qq#ma81d2$ka8

8 @Qq#ma22k82eaa8mnq
n%. ~4.22!

Up to this point we have not used the fact that the two par-
ticles in the final state are both photons. Therefore, the above
expression is appropriate even in the case thatV8 is not the
photon, provided that it couples in the Lagrangian to a con-
served current. On the other hand, ifV8 is indeed the photon
also, then the condition in Eq.~4.7! applies. In the case that
we are considering, in which both photons are on-shell, this
condition implies that all form factors, exceptC2 and d1,
vanish. Thus the general form of the vertex function in this
case is

Gaa8m52C2ka~gma8k8•q2km8qa8!12d1ka@k8q#ma8.
~4.23!

Notice that if the particleV is on-shell, the vertex van-
ishes upon contracting with the polarization vector of the
particleV, reproducing once more Yang’s theorem. On the
other hand, for an off-shellV, the amplitude is not zero as
long as theV line in the corresponding Feynman diagram is
not attached to a conserved current. This is the situation if,
for example,V is attached to a neutrino currentn̄L8gmnL and
at least one of the neutrinos has a nonzero mass. Carrying
this argument a little further, it explains why the amplitude
for the processn8→ngg is proportional to the neutrino
masses in the local limit of theW-boson propagator~leading

order inMW
2 ), which is a well-known general result@8# and

is also corroborated by explicit calculations@9#.

5. Off-shell V, V8 which couple to conserved currents

If both V and V8 couple to conserve currents like the
photon, then the vertex function, given by the sum of Eqs.
~4.3! and ~4.4!, satisfies the condition

kaGaa8m50 ~4.24!

in addition to the condition given in Eq.~4.18!. This now
gives some extra constraints on the form factors. For the
b-type andd-type coefficients, one obtains

2
1

2
b11b2k•q1d1k

250 ~4.25!

in addition to Eq.~4.19!. These two equations imply that, in
the b-d sector, there are three independent form factors. To
express the form factors appearing in these equations in
terms of three independent ones without introducing any ar-
tificial kinematic singularity, we first add the two equations
to eliminateb1, which gives

k2~d11b2!1k82~d22b3!1k•k8~b32b2!50. ~4.26!

3126 55JOSÉF. NIEVES AND PALASH B. PAL



This equation can be written asB–K50, where

B[S d11b2

d22b3

b32b2
D , K[S k2

k82

k•k8
D . ~4.27!

We can then try to find two column matricesK1 and K2
which are both orthogonal toK , and then the most general
form for B would beB1K11B2K2, in terms of two new
form factorsB1 andB2. Choosing

K2[S 2k82

k2

0
D , K1[2S k2k•k8

k82k•k8

2~k41k84!
D , ~4.28!

we thus get1

d11b252k2k•k8B12k82B2 ,

d22b352k82k•k8B11k2B2 ,

b32b2522~k41k84!B1 . ~4.29!

The other form factor can be chosen by defining

b31b2[2B0 . ~4.30!

Together with Eqs.~4.19! and ~4.25!, these definitions give

b25B01~k41k84!B1 , b35B02~k41k84!B1 ,

d152B01~2k2k•k82k42k84!B12k82B2,

d25B01~2k2k•k82k42k84!B11k2B2,

b1522k•k8B012k•k8~k42k84!B12k2k82B2 . ~4.31!

For thea- andc-type coefficients, in addition to the rela-
tions given in Eq.~4.20!, we get two more independent con-
ditions, which are

~c22c28!k25~2a02a21a28!k•q,

c32c38522a022c0k
2. ~4.32!

Thus, for example, the form factorC3 introduced in Eq.
~4.21! is identified in terms ofa0 andc0 here, and similarly
we can eliminateC2 by introducing a new form factorA2
through the relations

c22c2852k•qA2 , 2a02a21a2852k2A2 . ~4.33!

So finally four form factors remain independent, which can
be taken asa0, c0, A2, andA3. The other ones, in terms of
these four independent ones, are identified by these relations:

a052A0 , c05A1 ,

a25k82A32k2A2 , a2852A01k82A31k2A2 ,

a352k2k82A12~k21k82!A01k82k•qA32k2k8•qA2 ,

c252A01k•qA21k82A1 ,

c2852A02k•qA21k82A1 ,

c35A01k8•qA32k2A1 ,

c3852A01k8•qA31k2A1 .

~4.34!

Putting these into Eqs.~4.3! and ~4.4!, we thus obtain the
most general form of the vertex for this case:

Gaa8m52A0$gaa8~k8•qkm2k•qkm8 !1gma~k•k8qa82k8•qka8!1gma8~k•qka82k•k8qa!1ka8km8qa2kmka8qa8%

12A1$k8
2@gma8~k

2qa2k•qka!1kaka8km#2k2@gma~k82qa82k8•qka8
8 !2ka8ka8

8 km8 #2k•k8~km1km8 !kaka8
8 %

12A2~k
2qa2k•qka!~km8qa82k8•qgma8!12A3~k8

2qa82k8•qka8
8 !~kmqa2k•qgma!2B0$2k•k8«aa8mnq

n

1ka8 @Qq#ma82ka8@Qq#ma%12k•k8B1$~k
42k84!«aa8mnq

n1k2ka@Qq#ma82k82ka8
8 @Qq#ma%

1~k41k84!B1$ka8@Qq#ma2ka8 @Qq#ma8%1B2$k
2k82«aa8mnq

n2k82ka@Qq#ma81k2ka8
8 @Qq#ma%. ~4.35!

For the particular caseV5V8, there are additional restric-
tions which can be easily obtained from the conditions on the
form factors expressed in Eqs.~4.15! – ~4.17!. These condi-
tions imply the following relations for the new form factors
appearing in Eq.~4.35!:

A0,1~k
2,k82,q2!52A0,1~k8

2,k2,q2!,

A2,3~k
2,k82,q2!52A3,2~k8

2,k2,q2!,

B0~k
2,k82,q2!52B0~k8

2,k2,q2!,

B1,2~k
2,k82,q2!52B1,2~k8

2,k2,q2!, ~4.36!

which we represent schematically by saying that, under the
interchangek2↔k82,

A0→2A0 , A1→2A1 , A2↔2A3 ,

B0→2B0 , B1↔2B1 , B2↔2B2 . ~4.37!

1If we are working in the kinematic region that includes the point
k25k8250, then we cannot useK1 andK2 as defined in Eq.~4.28!,
since they become null vectors in this case. The analysis below has
to be modified accordingly.
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Finally, if V5V8 is the photon itself then Eq.~4.35! gives
the three-photon vertex. However, in this case the vertex
must satisfy also the condition expressed in Eq.~4.7! and the
additional crossing relation

Gaa8m~k,k8!5Gma8a~2q,k8!. ~4.38!

Applying them to Eq.~4.35!, it follows that the relations
given in Eq.~4.37! should in fact be valid if any two external
momenta are interchanged. Using these extra crossing rela-
tions we then obtain

A15A25A35B15B250. ~4.39!

Thus, in general, the off-shell three-photon vertex does not
vanish and it is characterized by the two form factorsA0 and
B0. It can be easily seen that the effective interaction in this
case can be rewritten as

2A0F
l

n~k!Fn
r~k8!Fr

l~q!22B0F̃
l

n~k!F̃n
r~k8!F̃r

l~q!,
~4.40!

where

Fln~k!52 i @klAn~k!2knAl~k!#,

F̃ln~k!5
1

2
«lnrsF

rs~k!. ~4.41!

One may wonder, why not also interactions of the types
FFF̃ and F̃F̃F? It can be shown that the first of these has
precisely the form of the interaction with three factors of
F̃, whereas the second is equal to the interaction with three
factors ofF.

B. V,V8 charged

WhenV andV8 are charged, the condition on the vertex
function due to gauge invariance is expressed in Eq.~1.5!.
Thus, what we get are conditions on the form factors evalu-
ated fork25mV

2 and k825mV8
2 . Since the implications de-

pend on whethermV5mV8, we consider several cases sepa-
rately.

1. VÞV8, both on-shell

Using Eq.~2.3! in Eq. ~1.5!, we get the relations

a1q
21a18Q•q50,

a2q
21a28Q•q12a450, b1850, ~4.42!

remembering that these are the form factors evaluated with
k,k8 on shell. Since in this casek25k82, then Q•q50.
Thus, we then have fora1,4 anda18 a set of relations analo-
gous to Eq.~4.2!, and we finally arrive at an expression for
the vertex function that is identical in form toGaa8m

(T) given in
Eq. ~4.3!.

If the photon is also on shell, corrresponding to the decay
processV→V8g, then vertex function reduces to exactly the
same form as given in Eq.~4.6!. The comments made after
Eq. ~4.6! are applicable in this case also.

2. V5V8, both on-shell

In this casek25k82, and thereforeQ•q50. Instead of
Eq. ~4.42! we now have, fork,k8 on-shell,

a15b1850, a2q
212a450 , ~4.43!

and

Gaa8m5a18Qmgaa81a28Qmqaqa81a3~gma8qa2gmaqa8!

1a4S gma8qa1gmaqa822
qmqaqa8

q2 D1b1eaa8mnq
n

1b2qa@Qq#ma81b3qa8@Qq#ma . ~4.44!

The main difference between this case and the previous one
is that here thea18 term does not vanish atq250. This is how
it should be since, as shown in Eq.~2.30!, in this limit the
a18 term corresponds to the electric charge of the particle.
Notice also that, in spite of appearances, thea4 term is well
defined for on-shell photons because the apparently trouble-
some termqm/q2 vanishes when it is contracted with the
photon polarization vector. In fact, that term does not con-
tribute whenever the photon line is connected to a conserved
current, such as one generated by a pair of fermions on-shell.
However, in a more complicated diagram in which the pho-
ton line connects to an off-shell charged particle propagator,
the contribution from theqm term is not zero and must be
retained. The apparent singularity atq250 is eliminated by
the integration over the internal loop momenta.

It is useful at this point to compare our expression in Eq.
~4.44! with the expression given by Hagiwara, Peccei, Zep-
penfeld, and Hikasa@2#, which is much in use by other au-
thors working in the field and therefore serves as a good
reference point. Equation~2.4! of Ref. @2# gives the vertex
functionGabm for the process

gm~P!→Wa~q!1W̄b~q!. ~4.45!

The vertex function for the processW̄a(q)→gm(P)
1W̄b(q̄) is then given by making the substitution
P→2P, Q→2Q in their Eq. ~2.4!. Finally, by setting
b→a8 and making a trivial relabeling of the momentum
vectors in the resulting expression~which in the end amounts
to simply setP→q), we obtain the vertex function for the
processW̄a(k)→gm(q)1W̄b(k8), which corresponds to the
process we are considering with the identification
V5V85W̄. Thus we obtain that the expression that must be
compared with our Eq.~4.44! is

Gaa8m
~HPZH!

52f 1Qmgaa81
f 2
MW

2 Qmqaqa82f3~qagma82qa8gma!

2 i f 4S qagma81qa8gma22
qmqaqa8

q2 D
2 i f 5S emaa8rQ

r2
qm

q2
@qQ#aa8D

1 f 6emaa8rq
r1

f 7
MW

2 Qm@qQ#aa8. ~4.46!
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In Eq. ~4.46! we have included a term proportional toqm in
the factors of thef 4,5 terms. Such terms were implicit in Ref.
@2# but they were omitted under the assumption that the pho-
ton coupled to a conserved fermion current and therefore do
not contribute to the amplitude, as it is the case for the pro-
cesse2e1→WW̄ considered there. We have restored them
here for the purpose of our comparison since we have not
made that assumption in the corresponding Eq.~4.44!.

Simple inspection of Eqs.~4.44! and ~4.46! reveals the
following direct correspondence between the form factors:

a1852 f 1 , a452 i f 4 ,

a285
f 2
MW

2 , a352 f 3 . ~4.47!

The correspondence between the remaining ones is not im-
mediately obvious, but follows straightforwardly upon using
the identities

q2«aa8mnQ
n2qm@qQ#aa852qa8@Qq#ma1qa@Qq#ma8,

~4.48!

Qm@Qq#aa85Q2«aa8mnq
n2qa8@Qq#ma2qa@Qq#ma8,

~4.49!

which follow from Eqs.~2.8! and~2.9! by specializing them
to the present situation (V5V8, both on-shell!. In this way
we then obtain

b15 f 62
Q2

MW
2 f 7 , b252 i

f 5
q2

1
f 7
MW

2 ,

b35 i
f 5
q2

1
f 7
MW

2 . ~4.50!

To take this comparison one step further, suppose that the
effects ofP andC violation are negligible in theVVg cou-
pling. It then follows from Eqs.~3.1! and~3.2! that the only
nonvanishing terms in Eq.~4.44! area18 , a28 , anda3. Apart
from a slight change of notation, this is the form adopted, for
example, in Refs.@10,11#.

V. CONCLUSIONS

We have studied in this article the structure of the cou-
plings of spin-1 particles to the photon. In Sec. II we consid-
ered the general form that the electromagnetic vertex can
have, consistent with Lorentz invariance, and we established
the physical interpretation of the various form factors that
parametrize the vertex in terms of the static electromagnetic
moments. In Sec. III we derived the consequences of the

various discrete space-time symmetries on the form factors,
paying special attention to the case of neutral bosons and in
particular to the case of self-conjugate bosons. In the latter
case, we derived some results that are analogous to similar
results that are known to hold regarding the electromagnetic
couplings of Majorana fermions. Finally, in Sec. IV we ana-
lyzed in detail the implications due to gauge invariance for
the structure of the vertex function. In particular, several re-
sults concerning the electromagnetic properties of self-
conjugate bosons were obtained there. For example, it was
shown that while a self-conjugate particle cannot have any
static electromagnetic moments, in the most general case it
can have an electromagnetic vertex characterized by two
form factors. This result is analogous to the corresponding
one for Majorana fermions, which cannot have static electro-
magnetic moments either, but it can have an electromagnetic
vertex characterized by an axial charge radius form factor.
For the three-photon vertex, which vanishes in pure QED
due to Furry’s theorem, we obtained a general form which
need not vanish due to the breaking of the charge conjuga-
tion symmetry by the weak interactions.

We have been motivated by the fact that experimental
studies of this kind of coupling will be feasible in the future.
In this context, the analysis that we have presented can be
useful in at least two ways. On one hand, it can serve as a
guide to parametrize any possible deviation of the couplings
from the values predicted by the standard model, in a way
that is general and model-independent. On the other hand,
whenever the study of a new kind of phenomena is acces-
sible to us, it is useful to keep in mind that our present
knowledge may be shaken by new discoveries in a more
unexpected way than simply just a deviation from the de-
tailed values predicted by the standard model for a given
physical quantity. The results of our analysis can be used to
test deviations from fundamental physical principles, such as
gauge invariance and crossing symmetry, in the context of
the processes described by the electromagnetic couplings of
vector bosons.

Note added in proof.After this paper was submitted for
publication we became aware of the papers cited in Refs.
@12,13#. In Ref. @12#, the authors considered the on-shell
electromagnetic coupling of a self-conjugate particle of any
spin. As far as the spin-1 case is concerned, this is the very
special case that we have considered in Eq.~4.14! of case 2
in Sec. IV; i.e.,V5V8, both on shell and self-conjugate. For
this case, our results agree with theirs. However, we go fur-
ther than this since the cited references do not consider the
off-shell couplings, nor the case of non-self-conjugate par-
ticles nor the off-diagonal case, all of which is contained in
the present work. Reference@13# presents explicit calcula-
tions of theZZg vertex in the standard model, for various
configurations, with results that exhibit the general features
that are described in the present article. We would like to
thank F. Boudjema for bringing these references to our at-
tention.
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