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Electromagnetic properties of neutral and charged spin-1 particles
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The structure of the electromagnetic vertex of spin-1 particles is studied in a general way, for the diagonal
as well as the off-diagonal couplings. In each case, we consider in detail the consequences of gauge invariance
and the space-time discrete symmetries, paying particular attention to the implications for the couplings of the
photon to neutral gauge bosons, which arise in higher orders. Several general results concerning the static
electromagnetic properties of neutral bosons are derived, analogous to the results that are well known in the
case of neutral spin-1/2 particl$0556-282(97)07105-]

PACS numbsgps): 13.40.Gp

I. INTRODUCTION AND NOTATION and the space-time discrete symmetries, paying particular at-
tention to the implications for the electromagnetic couplings
The properties of vector bosons have been the subject aff neutral gauge bosons. This kind of study can serve as a
intense studies recentft]. This is motivated mainly by the guide in the quest to find the physics that may lie beyond the
fact that direct measurement of the trilinear vector bosorftandard model in a way that is general and model indepen-
couplings may be possible in the pair production of elec-dent. Moreover, it may allow us to recognize possible devia-
troweak bosons aé*e~ and hadron colliders. A possible tions of the new physics from basic physical principles such
way to test whether the predictions of the standard model ar@s Lorentz and gauge invariance, and crossing symmetry.
sustained is to parametrize the trilinear vector boson cou- We begin by introducing the notation for the electromag-
plings in some generalized form, and then try to constrain thé]etiC vertex of spin-1 particles. The off-shell vertex function
generalized couplings from the experimental results. A conl o', (K,k") is defined such that the matrix element of the
sistent implementation of such parametrization must satisf@lectromagnetic current is
certain requirements that follow from fundamental principles ,
such as Lorentz and gauge invariance, the discrete space-(V'(k')[jT™(0)|V(K))=€"** (k") €*(K)T nqr (kK"
time symmetriesC, P, T, and their combinations, or any .
other symmetry that may be applicable. This has been done =1,(Q.), 1.9)
) ) A ) .
in great detail for t_heW W™y vertex[2,3], which awaits corresponding to the vertex
experimental tests in the near future.
Although neutral gauge bosons cannot have a coupling I
with the photon at the tree level, they do develop such cou- V=V *v(a). @2
plings in higher orders of perturbation theory. Thus, for ex-por the sake of convenience, we represent the fungtjoin

ample, the standard model admitsZ@y coupling at 10op  terms of the two independent momenta
levels. It is conceivable that vector bosons in addition to the

standardV andZ exist in nature. In fact, it is not uncommon Q=k+k’, gq=k—k’, 1.3

to find in the literature theories beyond the standard model

that predict the existence of such additional bosons. In thosghereq is the photon momentum as depicted in Eb2).
theories, the trilinear couplings involving the photon can be Before we write the most general form of the vertex con-
more complicated than those of the standard model. In passistent with Lorentz invariance, it is useful to make the fol-
ticular, for example, off-diagonal couplingéV’y involving  |owing observations(i) If V andV' are neutral, electromag-
different vector bosons can in principle exist. While suchpetic gauge invariance implies

couplings arise only at loop levels, they may be important for

discovering physics beyond the standard model. For ex- 9“T 4o, =0, 1.9
ample, a heavy gauge boson may be detected by its radiative

decay into a lighter one. In order to prepare ourselves fofor arbitrary values ok andk’, and hence ofj. On the other
these possibilities, it is useful to look in a more general wayhand, ifV andV' are charged, the relation analogous to Eq.
at the electromagnetic vertex of neutral spin-1 particles. Thi§1.4) contains some terms in the right-hand side involving
is our purpose in this paper. We study the structure of thehe inverse propagators ¥fandV'. Therefore, what we get
electromagnetic vertex of charged as well as neutral spin-is the weaker condition

particles, for the diagonal and for the off-diagonal couplings.

We consider in detail the consequences of gauge invariance q“j .(Q,q)=0, (1.5
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wherej ,(Q,q) is the on-shell vertex function as defined in which follows from the fact that the left-hand side is a com-
Eq. (1.1, which follows simply by using the current conser- pletely antisymmetric four-dimensional tensor in the indices

vation condition waa' By. Contracting Eq(2.7) with g*Q”q?, we obtain
gV’ (KM (0)|V(k))y=0 (1.6 9u[Qluer =~ 08 va usQ"+ Q- UE a0
in Eq. (1.). (ii) For neutraV andV', T, , is well defined —4x[Qa]uataa[Q0A] ar- (2.8

in the limit g—0. This property does not hold fov and o _ ) \ _
V' charged(iii) Ultimately, for the calculation of an ampli- Similarly, by contracting Eq(2.7) with Q*Q”q?, we obtain
tude for a physical process, the indice$,«a of I' will be

contracted with the polarization vectoes* ' e* of V' and QuLQUluar=Q%C aat s~ Q" UL aar Q"
V, or with fermion currents, and similarly for the photon —Q,[Q0]l,,+Q.Q0].. (2.9
index w. “ re s "
In the last two terms in this equatio@,, and Q, can be
Il. PARAMETRIZATION OF THE VERTEX replaced byq,: andq, due to Eq.(2.2), which finally justi-
AND ITS PHYSICAL INTERPRETATION fies the omission 0h1,2 in Eq. (2.3.

On the other hand, for amplitudes in which the vector
; . . articles are not on-shell and the fermion currents to which
cesses in which the vector particles are on-shell and/or th AR
. i ey couple are not conserved, the simplification made by
fermion currents to which they couple are conserved. From - . .
X oy using Eq.(2.2) is not valid. In these cases, the general form
the transversality conditions . L i .
of the vertex function contains in addition to the terms given

Let us consider for the moment the amplitude for pro-

K'-e'=k.-e=0 2.1) in Eq. (2.3) the following:
we obtain Tl = (€10,,+ €1Q, KK, + (€28, €5Q,) KoK yr
Q-e=—qg-e, Q- €=q-€. (2.2 +(C3q#+CéQM)k;k;'+C4gua’ka+c5gﬂak;’

Similar relations to Eq(2.2) hold for the fermion currents if +d1K,[Qaluar +d2K, [QA] e - (210
they are conserved, or in the limit in which the fermion

masses can be neglected. Therefore the ternfis,jn, pro-  In the most general case, the vertex function is the sum
portional toQ, or Q. are not independent of similar terms

with Q,, replaced byg, and Q.. replaced byqg,. In this Fw,M=F(aT;,M+FEYLCB,M. (2.1

case the most general form bf,,, that is consistent with
Lorentz invariance can be written in terms of 10 form factors  Fqr =V’ the form factors in Eq(2.3 have a definite

as follows: physical interpretation in terms of the static electromagnetic
™ , ) properties of the particles. To deduce this correspondence we
I = (210,121Q,) 900 + (820, +85Q,)0s0ar use the following procedure. Let us consider as an example

the electric dipole moment: . The classical definition of the

T35(0ada™ Gualar) T84(Guardat Gualla’) electric dipole moment of a charge distribution is

+ blgaa’,uqu+ b:’LSaa’MVQV+ qua[Qq],ua’
+b50,1Ql,. 23 B [ dPxip (), 212

where we have defined -
where we have denoted /™ (x) the zeroth component of

[Qq]aarfﬁ‘aarﬁyQqu (2.4  the electromagnetic current densijf"")(f). In quantum

) mechanicsﬁE becomes an operator, and the electric dipole
for the sake of brevity. For future reference, we note hergnoment of the particle is given by its expectation value. For
that our convention fok ../ g, is such that normalizable states, witkks'|ks)=N,ds¢, we can define
the electric dipole moment matrix elements as

%1% +1. (2.5
In principle Eq.(2.3) can contain the terms ¢ tdcg= (o) oo = (ks'|Dglks) 213
s¢ 0 .
Nk 124»0
(h19,+h2Q,)[Q0d]ae, (2.6)

but in fact these are redundant. To see this, recall the identit-ghfa limit k=0 reflects the fact that th_e Itrinsic static prop-

rties of the particle are determined in the limit of zero mo-
mentum or, equivalently, in the rest frame of the particle. In
Eqg. (2.13 the symbols¢, &’ stand for the space part of the
—OryEaapu=0, (2.7  polarization vectors

g)\;Ls aa' By g)\as,ua’ﬂy_ g)\a’sa,uﬁ‘y_ g}\ﬁsaa'uy
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e*(k,s)=(€° &), taking the limitq®=0, Q=0 andﬁ=0. Since, in vacuum,
the on-shell form factors are functions onlya#, in order to
MKk, )=(e% &, (2.14  evaluateb,(0) it is enough to pug®=0. However, in more

general situations, such as if the particle is propagating in a
written as column matrices. In the limikt=0, they are sim- Mmatter background, the form factors depend on the compo-
ply the spin wave functions of the particle at rest. Howevernents ofg” and Q" separately, and the static limit is meant
since the plane wave states satisfy to be as we have indicated, namelyg®€ O,ﬁ—>0) and
Q”—>(2mv,6). In what follows, we use the same notation
for the other form factors.

We can proceed in similar fashion for the electric charge
and the quadrupole moment. The formulas analagous to Eq.

(V(k's")|V(ks)y=(2m)32k° 6D (k—Kk")6s ¢,  (2.19

the appropriate formula is

(&' Tde)(2m) k5 (K=K') (219 are
=(V(K'S")|De|V(K9))| k|- k0.  (2.16) (&"Tqyé)(2m)%2k°6 3 (k—k')
By translation invariance, =(V(k's")|ae|V(ks)|jir|= k-0, (224
(V(K's")| Dg|V(ks)) (&'TxE&)(2m)*2k05 3 (k—K")

I — It ij R N
:j d3xxe™® KK V(K's') | pEW(G)| V(Ks)) (V(K's")[XE|V(ks))|jkr = k-0, (2.25

whereqg is the charge operator

.. 1i9)%Q,
=(2m)36®(k—k") & , (2.17 .
Ge= J d®xp'E(x) (2.26
where, to arrive at the second equality, Efj.1) has been
used. Then, taking the limits indicated in EG.16), and
. 1 i93%q) ij_f 3y wivi A(EM)/ o
rt _ Xg= [ d°xx'x!p'="(x) (2.27
(¢''dgé) 2my| " ag ) O, (2.18 E
q=

are the elements of the quadrupole moment tensor operator.
Following the steps leading to E(R.18), we obtain, forgy
andxg,

where we have introduced
3,(0) =] ,.(Q.0)|g0-06-0
' 1 R
=[€**" (k) e* (KT par (k. k)|go—0G-0- (2.19 (£ Tave) = 5—3%0), (2.28
\

The expression foﬂE can finally be obtained by substituting

Eqg. (2.9 into Eq. (2.18. The terms contained iﬁ(aLi,M do (g’TxiEj§)= i['_'?r Bj_‘]o(d))} , (2.29
not contribute because they vanish when the vertex function 2my | dq' dq 4=0
is multiplied by the polarization vectors, and it is important _ _
also to keep in mind that, in the limi°=0 andQ=0, from which we obtain
W 5. & qv=—2a;(0), (2.30
Eozq—g, e’oz—q ¢ , (2.20
2my 2my, 1
[ — ij
which follow from Eqg.(2.1). In this way we then obtain Xg 3QEI ' (2.31
de=deS, (2.2)  In Eq. (2.3) the Il are a set of symmetric matrices with
elements
where
by(0) (M= 8,81+ 83, (2:32
oor[22),
e~ 2m, (2.22 and
and we have introduced the spin-1 matriGewith elements S a,(O)—ai(O)_l—Zag(O) 233
(S)y=—ie'k, (2.23 : 2 4mg ' '

The notationb;(0) is meant to indicate that the form factor It is customary to define the quadrupole moment tensor as
is to be evaluated by first puttingandk’ on shell, and then [4]
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U=3xl— 5| > x| = |‘J—E5‘1 (2.34 __ 3 2O b,(0)+b3(0 (2.44)
Qg =3Xg — - Xg | = Qg 3%+ . Qm= 2my| my [b2(0)+b3(0)] ). .
where1l stands for the 3 unit identity matrix. It is easy to verify that the above result fiy; , for example,
At this point it is useful to consider the amplitude for the js the same as that obtained from the formula
scattering of a slowly moviny particle in an external elec-
tromagnetic field. Introducing the potentials , 1 |iad%Qq)
Eldyé= —e' | ——— , (2.45
o o 2my, aq! G=0
¢(>?>=f—ge“‘*'x¢<a>,
(2m) which follows by using the definition
.. d3g - -. . 11§ 3910 S(3) (b _ o/
A= | pze A, (2.39 ¢ Guszmr2koT k)
=<V(k’S’)|DM|V(|(S)>|“2/‘=||Z|HO, (2.46)
the amplitude is ) .
in terms of the magnetic dipole moment operator
iM=—i[¢(@I(@)-A@- @] (236

- 1 - - -
. R _ DM=—f d3xxx JEM(x). (2.47
If we expandJ®(q) in powers ofq, the term in Eq.(2.36) 2

that is independent orﬁ is then identified with the charge,

those proportional t(ﬁ are identified with the dipole mo- -
of q in Eqg. (2.36), not all terms that are generated can be

ments, while those proportional to two powersﬁ)fcorre- . . i )
spond to the quadrupole moments. More precisely, from Eqsv.vmten in the form of Eq.(2.39. The amplitude contains

(2.18, (2.29, and(2.29 we deduce that additional terms such as, for example,
a e (Algl+Algh, (2.48

We must mention that whed(q) is expanded in powers

- - S
¢(Q)J°(Q)=§'T(QV¢—O|E-E—— EE”>§, (2.37)

N

which do not fit in the form of Eq(2.38. However, all such

) ) terms in fact vanish once the constraint of gauge invariance,
and, by analogy, we can determine the magnetic moments Qynich in the static limit is simply

writing the amplitude in the form
q-J(a)=0, (249

=
=

N
N

is imposed upon them. While we do not discuss this any
(238 further here, the implications of gauge invariance are consid-

Here we have introduced ered in detail in Sec. IV.

E:id’(ﬁ’ B= _iq*x'&’ (2.39 IIl. IMPLICATIONS OF THE DISCRETE SYMMETRIES

, ) ) In this section we deduce the constraints on the vertex
which are the Fourier transforms of the external electric ang,tion and in turn on the form factors. that are imposed by
magnetic field, and several general requirements and/or symmetry principles.
These are crossing symmetry, the Hermiticity of the Lan-
grangian and, when applicable, the discrete space symme-

iesC, P, andT, or the appropriate combinations of them.

are the Fourier transforms of their space derivative{/rv . . .
- . = . e consider the diagonal and off-diagonal cases separately.
JE'(x)/ox) and oB'(x)/ax.

Thus, using Eq(2.3) to evaluate the amplitude, and then
comparing with the form given in Eq2.38), we obtain for

El=—iE'g), B'=-iBg (2.40

A. Diagonal case:vV=V'

the magnetic dipole and quadrupole moment matrices Let us consider the space-time symmetries first. Consider,
R ) for example, the parity symmetry. The effect of its transfor-
dy=duS, (2.41 mation can be summarized by the statement
1 T (K —TP (kK 3.1
Xihj/|:§QM|ij. (2.42 aa (KK =T (KK, 3.1

Wherel“za,# is obtained froml’,,s,, by multiplying every
where quantity that appears ifi,,/, by its parity phasepp tabu-
lated in Table I. Using similar notation for the effect of the
(2.43 charge conjugation and time reversal transformations, we ob-
’ ' tain
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TABLE I. The transformation rules of different quantities ap- a'.al a..b,= real
. . . . . 1:142,A43 1 )
pearing inI",,,,-,, under the various discrete symmetries.

ai,a,,a4,b;= imaginary,

7P s Mc Ticp Ncpt
1 + + + + + by=b3, (3.10
€aprp _ _ + _ + which in particular imply that the electromagnetic moments,
as we have identified them, are real. Notice also that once the
Hermiticity condition is imposed, th€ P T transformation in
) Eq. (3.5 becomes a trivial identity, as it should be.
Fparu(K K )—’ Fa aﬂ( —k',—k), (3.2 The above discussion applies to both the charged and neu-
tral cases. However, for the neutral case there is an additional
Ty u(K K )_) Fa W( K, —k'). (3.3 independent constraint if the particle is not just neutral but

also self-conjugate. If the particle is self-conjugate, then the
In general, theC transformation and the crossing relation, VErt€x obeys the crossing relation corresponding to the ex-
each one separately, give a relation that expresses the ampﬁhange of the external lines. The resulting condition is

tude for the antiparticle proces®/V'+vy) in terms of simply
I' .o, - Strictly speaking, theC transformation rule written KK)=T —K' —k

aa’ = , . 3.1
above is the combined effect of the charge-conjugation trans- aa’ w(K KD =Larau ) 319

formation and the crossing relation. As discussed below, isince all the form factors are now functionsas only, they
the case thaV is self-conjugate the crossing relation gives remain invariant under the substitutida——k’. Equation

by itself another independent constraint. 3. 1]) applied to Eq.(2.3) implies that the form factors
From these transformations we can deduce the effects %{ ,a},az,b; all vanish, whilebs= —b,. Thus the symmetry

combined operations, for example, reducesl“ﬁw),ﬂ to the form

aa ,u(k K’ )_> Fa a,“(_k,v_k)a (34) Faa’,u:alq,ugaa’+azq,uquzqa’+a4(g,u,a’qa+g,u,a(:{a’)
01 €00, Q" +02(0,[ QA s — U [QA]a)-
CPT , aa’ v a pa a pa
T (kKD - TPT (K K. 35 312

If the Lagrangian is symmetric under any of the discrete
symmetry transformations, then the arrow in the correspond;
ing relation in Egs.(3.1)—(3.5 should be replaced by the
equality sign. The resulting equations produce constraints o
the form factors. For example, €P is a symmetry of the
Lagrangian, then from the above it follows that the vertex
function satisfies

Notice that this result implies that the charge form factor
s well as the d|pole moment form factors are zero for all
2 and not just forg?=0. Moreover, it implies in particular
at a neutralself-conjugatgvector particle can have neither
an electric nor a magnetic dipole moment, in complete anal-
ogy with the result for Majorana fermiorn$§]. Furthermore,
since a;=a;=az=0 the electric quadrupole moment is
r W_ _TCP zero, and since; =0 andb;= — b, the magnetic quadrupole
aa ,u(k k )_ a’a,u( k y k), (36) . 3 A ;
moment is also zero. In short, a self-conjugate vector particle
cannot have any static electromagnetic moments. Neverthe-
less, it is interesting to note that even self-conjugate particles
a—a.—a,=0 (3.7) can have an electromagnetic vertex. However, as will be
1 2 4 . . . . -
shown in Sec. IV, gauge invariance places further restrictions
and on the other form factora,, a,, a4, by, andb,, and in the
end onlyb, and a linear combination ai, anda, can be
b;=0, bz=-—b,. (3.8 nonzero.
In the standard model, the falls in this class; it is self-
From Egs.(2.22 and(2.44), the relations in Eq(3.8) imply  conjugate(which implies its charge neutralityBut in prin-
that the electric dipole moment and the magnetic quadrupoleiple, there can exist vector particles that are electrically neu-
moments are zero, which is a familiar result. tral, but which have a nonzero quantum number with respect
On top of all these relations, which may or may not beto the charge of some othéglobal or local symmetry which
satisfied in a particular case, the following relation followsis at the moment unknown to us. For such a particle, which is

which implies that

from the fact that the Lagrangian is Hermitian: neutral but not self-conjugate, the constraint of E811)
does not apply. The distinction between the neutral and self-
[ u(kK)= Fa W(k’,k). (3.9 conjugate vector particles is analogous to the one between

Dirac and Majorana neutrinos. For particles that are not self-
This relation, which is independent of whether the particle isconjugate, the crossing symmetry relations do not give us
neutral or charged, or of the status of the discrete symmesonstraints on the form factors, but instead allow us to relate
tries, yields the following reality conditions on the form fac- the form factors of the antipartici¢ghe conjugate particjeo
tors: those of the particle.
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One interesting case that appears as a special one is the V' =V s Ly stk P L oL
off-shell coupling of three photons. & invariance holds, we Larau (KK == dcpdcpl 400, (—ki —K). (320
can easily see that the vertex vanishes. This follows frontomparing this with Eq(3.18 we then obtain the condition
Egs.(3.2) and(3.11). From Table I, we see thaj: is + 1 for
all quantities of interest, so the quantlfy’ appearing in Eq. r*,
(3.2) is really equal tol'. If C invariance is valid, the two aar
expressions in E3.2) should be equal, which directly con- which implies thata, , 54 and a; , have the same phase
tradicts Eq.(3.11) unless the entire vertex vanishes. Thisgi¢ \whileb, ,5andb; all have the same phage ¢, with the
result is known as Furry’s theoref6]. However, note that sameg. It is also easy to verify that the results that were
this argument shows that in order that the vertex vanishegjerived previously for the diagonal case are reproduced here
V andV’ need not be photong; invariance and/=V’ are it we specialize these formulas to that case by setting
sufficient conditions. In other words, the off-shell vertex ;s —\,.
VVy vanishes for any self-conjugaié provided C invari- The case of self-conjugate particles is more interesting.
ance holds. _ o As already commented, the new feature is that Bdl9 is

On the other hand, since we know tt@invariance does gjig independently of whether the discrete symmetries are

not hold when the weak interactions are taken into accoungonserved or not. That condition together with the Hermitic-
the VVy vertex need not vanish in general. This will be ity congition of Eq.(3.18 give

discussed after introducing the constraints from gauge invari-
ance in Sec. IV. T poru(k k) =T

(kk')=—6gs8cpl" . (—k,—K'), (3.2D

aa'u

Za,u(—k,—k’), (3.22
B. Off-diagonal case:V=V'’ which implies that all the form factors are purely imaginary.
Now, if CP is conserved, we can combine this with what we
concluded after Eq(3.21). There are two possibilities de-
pending on the relative sign of thé P phases ofV and
V'(k")—=V(K)+ y(q) (3.13 V', which we denoted bycp and 6¢p in Eq. (3.20.

Same CP phase of'Vand V. In this case we have

In analogy with Eq(1.1) we define the vertex function for
the process

by writing
e o N N a1,2347a1,=0. (3.23
VIOl OV (kD)= e (k=T (K '(Ié)'m Only theb coefficients survivdand they are purely imagi-
' nary), so that the transition momends, ,Qg are zero while
Using a notation similar to before, the effect of the variousdg ,Qy are nonzero.
transformations on the vertex function can be summarized by Oppposite CP phases of \and V. In this case the oppo-

the following rules. FoiP and T we have site occurs: theb coefficients are zero while tha coeffi-
o cients are nonzero and purely imaginary. Accordingly, the
T g u(K, K ) — S5 5PFP , (kK'Y (3.19 transition momentg:,Q,, are zero whiledy, ,Qg are al-
aom lowed. This is, once more, in complete analogy with the
T T situation for Majorana fermionfb].
Upar (K K)—=—=6t" 6T, (—k,—K'), (3.16 The discussion above immediately brings the question of

whether the relativeC P phase of all self-conjugate vector
where 8p t and dp ; are the phases that appear in & posons is positive. For the photon and it is true, but can
transformation rules of th¥,V" fields. Under charge conju- one construct examples where it is not? The following ex-
gation, amples illustrate the various possibilities that can arise.
c , Suppose tha¥ andV' have the following couplings to a
T oo u(k k)= = 86857 “V(—K',—k), (3.17  pair of neutrinosy e, :

a'ap
while the Hermiticity condition becomes the statement that L'=aV' “[veVuLut ViuYubLel
, HFIOVA VL oYVl u— VL uYuVlel- 3.2
F(a\{a;\/)(k,1k):FZa!M(k|k,)- (318) [ Le'yM Lu L,u,’yM Le] ( 4)

_ It is clear from this that th&€ P phase ofV andV’' must be
The comment made after E(B.3) applies here also. In par- opposite in order to keep’ invariant underCP. A gener-
ticular, for the case of self-conjugate particles the crossinglization of this interaction is to promote it to an G

relation gives the additional condition gauge interaction by writing
V' =Yk k)=T,, ,(—k,—k’). (3.19 .
" : L'=—gmy.gm V" (3.29

Notice that takingy=V' as a particular case in E(3.19),

the condition expressed in E(B.11) is reproduced. where 7 stands for a doublet formed by, . In this
As an example of the kind of relation that we can deducemodel, undelCP,

from these results, suppose ti@P is conserved. From Eqs.

(3.15 and(3.17 it then follows that vis, —vi3 (3.26
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just like theZ and the photon, but analysis depends on whether the two gauge bosbmasnd
V' are charged or neutral; therefore we consider them sepa-
V2 V2, (3.27  rately.

Interactions of a similar type generally appear in models that
have been considered in various contexts, such as grand uni-
fied theories, family or horizontal symmetries, and super- The condition is expressed in Ed..4), and applying it to
string inspired models. Eqg. (2.11) we get the relations

In the examples considered in Eq8.24) and(3.25, the
vector bosons are self-conjugate. On the other hand, if the
theory is such that the individual lepton numbérs and
L, are separately conserved, then it is more convenient to

A. V, V' are neutral

a;9°+a;Q-q=0,

a,q2+a,Q-q+2a,=0,

work with
b;1=0,
V Ei(vlﬂvz) (3.28
SN " ' 19%+¢1Q-q—cs+c5=0,

; : i C,0%+¢5Q-q+c,=0
and its complex conjugate, because they are the eigenstates 24 2Q-07TCs=0,
of the conserved. , operators. The couplings &f to the .,
neutrinos is of the fornV, v ¢¥*v,+H.c., and in such a C3q°+c3Q-q—cs=0. (4.

theory V would carry bothL, and L, quantum numbers.

While electrically neutralV is not self-conjugate. If there is . . .
another such vector partich’, one of them can decay ra- The nontrivial ones of these relations are solved, without

diatively into the other. introducing artificial singularities, by writing
We would like to point out that, in the examples given in

this section, we have focused the attention on the relations ai:anO,
for the a andb coefficients, which are contained Iffuf,u.
We have chosen that only for illustrative purposes, motivated a,=—Q-qay,

by the fact that those are the form factors that contribute
when the vector bosons are on-shell, and therefore the ones 1, ,
that have a direct physical interpretation in terms of the elec- ay=- E(q a+Q-qay),
tromagnetic moments of the particles. However, analogous
relations can be similarly derived for tlieandd coefficients

contained inl"(") by applying the conditions that the ver-

tex function rrcfljs;tL satisfy, such as E@3.6) or (3.9), to Eq.
(2.10.

— 2
C4=—Cy0°—C5Q-q,
— 2
Cs=C30°+C3Q-q,
CcitcCrtC3=—CoQ-q,

IV. GAUGE INVARIANCE ci+ch+cy=co0?. 4.2

Now we explore what are the constraints imposed by the
electromagnetic gauge invariance on the vertex function. Th&herefore,

1
+85 Quialar~ 5 Q- A(Juardat Guallar)

T, =(0°Q,=Q-40,) 808 + e +
aa'w M 1w 09qq’ T a2 qﬂqaqa’ 2q (g,ua’qa g,uaqa’)
+a3(g,u,a’qa_g,u,aqa’)+bleaa’,u,qu_l—b2qa[Qq],ua'+b3qa’[Qq],u,a (43)

and
F(L)

aoz’,uz CO(qu,u_ Q qq’u,)kak;' + CZsz(q,u,qa’ - ng,ua’) + Céka(QMqa’ - Q qg,u,a’) - C3k;’(q,uquz_ ng,ua)

- Cék;’(Q,uqa_ Q qg,ua) + dlka[Qq]/.La’ + d2k;’[Qq],ua ' (44)

In the most general case, the vertex cannot be simplified further. Simplification occurs in special cases as we discuss below.
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1. V#V', all particles on-shell 1
q,uqaqa’ - qu(g,ua'qa

=q? ,
Physically, this represents a decay process where one veclj““'“ 0°Qu0Gaa’ + 32
tor boson decays radiatively to another one. In this case we

can reduce the vertex of E4.3) further by using the on- I 1a i _
shell conditions for the photon, Oualar) | +82Qu00ler F 33(GparGa™ Guallar)
e”.q=0, ¢?=0. (4.5 +b1€4a 40"+ 020, Q00 + D30, [ Q0] 4a -
This gives the form (4.13
As already discussed in Sec. lll, if the particle is self-
r™ —a’ 1 conjugate then the vertex obeys the crossing relation corre-
aa’ﬂ_az Qp,qaqa’ - EQ q(g,ua’qa-i_g,uaqa’)

sponding to the exchange of the exterddines. In this case,
v Eq. (3.1 applied to Eq(4.13 implies that the form factors
+ ! - ’ + !

33(GuaGa~ Guaba) T D1t ag, a5, as, by all vanish, whilebs= —b,, using the fact that
+b,0,[ Q0] e +030,[QA] 4a s (4.6)  in this case all form factors must be functions aff only.

Thus Eq.(4.13 reduces to the form
while ') does not contribute. Notice that E@.6) involves

a combination of dipole and quadrupole moment terms only 1,

and, in particular, the term with the charge form facedr loar =82 dulaba’ = 59(9pardat Gpalar)
vanishes in this case. The reason behind this is that in this

configuration(all particles on-shellthea; form factor is the +b2(0a[QA] 4o’ — Uur [ QU o) - (4.14

matrix element of the charge operator between thand
V' states, which is zero if the particles are different.

It is interesting to consider what occurs in this case whe
the particleV’ also is the photon, which corresponds to the
possibility of a vector boson decaying into two photons. In
this case, the vertex function should satisfy the additional
constraint

Therefore, while a self-conjugate particle cannot have any
r;.tatic electromagnetic moments, in the most general case it
can have an electromagnetic vertex characterized,bgnd

b, as above.

3. V=V’, all particles off-shell

This corresponds, for example, to the off-shelly ver-
L parw(KK) =T 40 (k,q), (4.7 tex in the standard model or beyond. We should now use the
. N _vertex given in Eqs(4.3) and (4.4), remembering that the
wh|ch corresponds to the condition that the two phOtonS.'rbrOSSing symmetry of Eq3.11) applies here provided the
the final state obey Bose symmetry. In addition, gauge inparticleV is self-conjugate. The difference with the previous
variance of the second photon requires case is that now the form factors are functions of the Lorentz
invariantsk?, k'2, andg?, so the form factors,, a;, as,

K" T g1, =0, (4.8 b, do not vanish, but rather satisfy the constraints

but this is satisfied automatically if EG}.7) is imposed upon 2 112 42y — _ 12 1,2 42
Eq. (4.6). Equation(4.7) translates to (kK5 0%) (k™%k%0%) (4.15
r -7 lomBas 4.9 and similarly for the other three. Similarly, the condition
aa’p™ " apa’lQ=Q,4-q ) b;=—Db, obtained for the previous case should be replaced

where in this case by

O=k+q=(Q+3q)/2, (4.10 bo(k?k'?,0%) = —bs(k'?,k?,0?). (4.16
(41) Moreover, the terms iT"(®) also should be present in this

g=k-g=(Q-q)/2. case, and the form factors in this part should satisfy the re-

After substituting Eq(4.6) into Eq.(4.9), the right-hand side lations
of Eq. (4.9 can be reduced with the help of EQ.9) and the

2 1,12 A2\ — __ 12 1,2 2
relations in Egs(2.2) plus additional relations such as Co(k™k"%,0%) = = Co(k"K%,0%),

Cz(kZ,er,qZ) — Cs(k/Z,kZ,qZ),

[QC],.=—[Qal., - (4.12
It then follows easily from Eq(4.9) that the vertex in fact ca(K?,k'2,0%) =c3(k'%,k%,0%),
vanishes. In other words, a spin-1 particle cannot decay to o o oo o
two photons. This is the well-known Yang theoré. di (k% k'%,q%) =da(k' <, k%, g%). (4.17
2. V=V', both on shell 4. V' =1, both photons on-shell
In this case the photon is not on-shei?¢ 0) but, since WhenV'’ corresponds also to the photon, the vertex func-

both V lines are on shellQ-q=k?—k’2=0. The vertex tion, given by the sum of Eqg4.3 and (4.4), satisfies the
function then reduces to additional constraint
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0. (4.18 These can be solved, without introducing artificial singulari-
ties, by writing

Moreover, since two of the bosons are photons, the vertex

must satisfy the symmetry condition given in Hg4.7). Let

us consider Eqg(4.18 first. The contraction on the left-hand C,=ap+Cok’2+C,, cCh=ag+Cok'2—C,,

side produces six different kinds of tensor structures. Ac-

cordingly, we get six equations, but it turns out that only four

of these are independent. Out of those four, one connects the c3=k'-qA;+C;, ci=k’-qA3—Cg,

b- and thed-type coefficients by

k'e'T

aa’'

1
§b1+b3k,'q+d2k,2:0, (419 2a0+a2+aé:2k,2A3,

which can be trivially solved fob,. The other three can be

written as 1 ., ., 1., )
az=2k-qap+ E(k —k’'%)a,+ >4 a,—2C3k'?,

(ca+cyk'?=(2ap+a,+ay)k’-q, (4.22

1 1
cs—chk'?=2k-qag+ = (k?—k'?)a,+ =q%a,—as,
(3= ¢3) 4% 2( az 24828 so thatag, a,, ¢g, Cy, Cg, andA; can be taken as the inde-
pendent form factors in tha-c sector. Using these form

Cy+Ch=2ag+2cok’ 2. (420  factors we can then write

|
[ arn=280{00q (K- gk, —K"-gk,) + 00 (KKe = Qu04) + 9,0 (Q- 90— K- gky) } +2(820 4+ Coko) (9 ark’ - =K}, 0y)
+2As{k-q0,4(K' - K}, —k'?qe) =K' qK'?g 4/ 0at Qa(K 2Q 0, — K - qk k!,)}
+CoKo{k., (0°Q,—Q-qd,) + 2K ?(K,qa —K-qFuar)} +2Ca{k,, (K0, =K' 09u0) K *(9parOa— Gualar)}
+020,[ Q0] uar +05{0 [QA] o= 2K - A€ ar 0} + A1k [ QU] uar + dofK ) [QA] 0= 2K *€0ar,n”}. (422

Up to this point we have not used the fact that the two parorder inM\ZN), which is a well-known general resy8] and
ticles in the final state are both photons. Therefore, the abowg also corroborated by explicit calculatiof.

expression is appropriate even in the case YHais not the

photon, provided that it couples in the Lagrangian to a con- 5. Off-shell V, V' which couple to conserved currents
served current. On the other handVif is indeed the photon
also, then the condition in E@4.7) applies. In the case that
we are considering, in which both photons are on-shell, thi
condition implies that all form factors, excef}t, and d,,
vanish. Thus the general form of the vertex function in this
case is

If both V and V' couple to conserve currents like the
hoton, then the vertex function, given by the sum of Egs.
4.3) and(4.4), satisfies the condition

KT 4o, =0 (4.24)

in addition to the condition given in Eq4.18. This now
Faa,#zzczka(gw,k’-q—k;qa,)+2dlka[k’q]ﬂa,. gives some extra constraints on the form factors. For the
(4.23  b-type andd-type coefficients, one obtains

. Notice that if the .partic_le\/ is on-shgll, t_he vertex van- _ £b1+b2k~q+dlk2:0 (4.25
ishes upon contracting with the polarization vector of the 2

particle V, reproducing once more Yang's theorem. On the

other hand, for an off-sheN/, the amplitude is not zero as in addition to Eq.(4.19. These two equations imply that, in
long as theV line in the corresponding Feynman diagram isthe b-d sector, there are three independent form factors. To
not attached to a conserved current. This is the situation ifexpress the form factors appearing in these equations in
for example )V is attached to a neutrino curreﬁy#yL and terms of three independent ones without introducing any ar-
at least one of the neutrinos has a nonzero mass. Carryirificial kinematic singularity, we first add the two equations
this argument a little further, it explains why the amplitude to eliminateb,, which gives

for the processy’ —wvyy is proportional to the neutrino

masses in the local limit of thé/-boson propagatdieading k?(dy+by)+k'?(d,—bg)+k-k'(bg—by)=0. (4.26
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This equation can be written & K =0, where For thea- andc-type coefficients, in addition to the rela-
) tions given in Eq(4.20, we get two more independent con-
di+Db; k ditions, which are
B=( dy—bs |, K=| kK'?]. (4.27 o ,
bs—b, kK’ (co—cy)k=(2ap—a,+a,)k-q,
C3—Cy=—2a9— 2Cok>. (4.32

We can then try to find two column matricés, and K,
which are both orthogonal t, and then the most general
form for B would be B;K;+B,K,, in terms of two new
form factorsB, andB,. Choosing

Thus, for example, the form factd€; introduced in Eq.
(4.2)) is identified in terms of, andcy here, and similarly
we can eliminateC, by introducing a new form factoA,

—k'2 k2k -k’ through the relations
— 2 — 21 1!
Kp=| K° J, Ky=2| KTk ), (428 Co—Ch=2k-qA,, 2ap—a,+a,=2k?A,. (4.33
0 —(k*+ k'
we thus get So finally four form factors remain independent, which can
be taken asy, cg, A,, andAs. The other ones, in terms of
d;+b,=2k?k-k'B;—k’?B,, these four independent ones, are identified by these relations:
dz_b3:2k’2k'k,Bl+szz, aO:_A01 CO:Al’
b3_b2: _2(k4+k,4)Bl' (429) azzk,zAg_szz, aéZZAo‘l‘ k,2A3+ k2A2,
The other form factor can be chosen by defining az=2k?k'2A;— (K2+k'?)Ag+k'%k-qAs— K3k’ - qA,,
b3+ szZBO. (43@ C2: _A0+ kqA2+ kIZAl,
Together with Egs(4.19 and (4.25), these definitions give ch=—Ag—k-qA,+k'?A,
bZZBo+(k4+kl4)Bl, b3:BO_(k4+k,4)Bl, C3:Ao+k,'qA3_k2A1,
dy= —Bo+ (2k%k-K' —k*—k'4)B,—k'?B,, C3=—Agt+k'-qAg+ KA.

d,=Bo+(2k%k-k’ —k*—k'#)B;+k?B,,
Putting these into Eq94.3) and (4.4), we thus obtain the
b;=—2k-k'Bg+2k-k'(k*—k'*)B;—k?k'?B,. (4.31)  most general form of the vertex for this case:

(4.39
|

Faa’MZZAO{gaa’(k, . qk,u_ k- qk,:,,) +g,u,a(k‘ kIQa’ —k'- qka’)+g,ua’(k' qk;_ k- lea) + ka’k;,an_ k,uk:yqa"}
+2A1{k'2[gwr(k2qa— k-gkg,) +kaKyrk,]— kz[glm(k’zqa, -k’ qk;,) - k;k;,kl’L]— k-K'(k,+ k;)kak;,}
+2A5(K?0,— k- gk,) (K}, 00 =K' 00,40) + 2A3(K' 20, —K' - gk, ) (K0, K- 00.0) — Bo{2K-K' € 4qr,,,0"
+ kéy[Qq],u,a’ - ka’[Qq];La}+ 2k-k’ Bl{(k4_ k,4)8aa’,u,yqy+ kzka[Qq]Maf’ - k,zk;f[Qq]/.La}

+(k4+kl4)Bl{ka’[Qq]Ma_k;[Qq],ua’}J'_BZ{kzk,ZSaa’,u,VqV_k,zka[Qq]Ma’+kzk;’[Qq],u,a}' (435)
|
For the particular cas¥=V’', there are additional restric- Ao,l(kz,k'z,q2)=—Ao,l(k'z,kz,qz),
tions which can be easily obtained from the conditions on the 5 1o o P
form factors expressed in Eqe.15 — (4.17). These condi- Ao dK%K'%,0%) == Ag k' K%,07),
tions imply the following relations for the new form factors By(K2,k'2,02) = — Bo(k'2,k2,9?),

ppearing In EA35: By k% k'2,0%) =~ By ok k%07, (4.36

which we represent schematically by saying that, under the
Uif we are working in the kinematic region that includes the pointinterchangek?«k’?,

k?=k’2=0, then we cannot ug¢, andK, as defined in Eq4.29,

since they become null vectors in this case. The analysis below has Ao ~Ao, A~ AL, Ao —Ag,

to be modified accordingly. By——Bgy, Bi«——B;, B,y,—~—B,. (4.37)
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Finally, if V=V' is the photon itself then E¢4.35 gives 2. V=V’, both on-shell
the three-photon vertex. However, in this case the vertex |, this casek?=k’2
must satisfy also the condition expressed in @q7) and the
additional crossing relation

, and thereforeQ-q=0. Instead of
Eq. (4.42 we now have, fok,k’ on-shell,

a;=b;=0, a,q®+2a,=0, (4.43
Faa’p.(k7k,):Fua’a(_qvk’)- (438)
and
Applying them to Eq.(4.39), it follows that the relations
given in Eq.(4.37 should in fact be valid if any two external I',,/,=21Q,00s +85Q,0,90 +83(Ja’Ua— Ipalar)
momenta are interchanged. Using these extra crossing rela-

tions we then obtain +ay| 9,000t 9ualar — q“?]A +Db1€4ar 0"
A;=A,=A;=B,;=B,=0. 4.39
1=A,=As=B,=B, (439 +0,0,[QQ] o + D30 [QVl] e (4.44

Thus, in general, the off-shell three-photon vertex does n
vanish and it is characterized by the two form factaégsand
B,. It can be easily seen that the effective interaction in this
case can be rewritten as

% he main difference between this case and the previous one
is that here the; term does not vanish gf=0. This is how
St should be since, as shown in E@.30, in this limit the
a; term corresponds to the electric charge of the particle.
Notice also that, in spite of appearances, dhderm is well
defined for on-shell photons because the apparently trouble-
some termq*/q? vanishes when it is contracted with the
photon polarization vector. In fact, that term does not con-
tribute whenever the photon line is connected to a conserved
current, such as one generated by a pair of fermions on-shell.
However, in a more complicated diagram in which the pho-
oo ton line connects to an off-shell charged particle propagator,
Fkv(k) SUPU P7(k). (4.4 the contribution from theg” term is not zero and must be
retained. The apparent singularitygt=0 is eliminated by
One may_wonder, why not also interactions of the typeghe integration over the internal loop momenta.
FFF andFFF? It can be shown that the first of these has It is useful at this point to compare our expression in Eg.
precisely the form of the interaction with three factors of (4-44 with the expression given by Hagiwara, Peccei, Zep-

F, whereas the second is equal to the interaction with thre enfeld, and Hikas2], which is much in use by other au-
factors ofE. thors working in the field and therefore serves as a good

reference point. Equatio(2.4) of Ref.[2] gives the vertex
functionI’, 4, for the process
B. V,V’ charged
WhenV andV’ are charged, the condition on the vertex Yu(P)—Wo(q) +Wg(q). (4.49
function due to gauge invariance is expressed in &c).
Thus, what we get are conditions on the form factors evaluThe_ vertex function for the DFOCGSWa(Q)—WM(P)
ated fork?=mZ andk’>=m(, . Since the implications de- +Wg(q) is then given by making the substitution
pend on whethem,=m,, we consider several cases sepa-P——P, Q——Q in their Eq. (2.4. Finally, by setting
rately. B—a’' and making a trivial relabeling of the momentum
vectors in the resulting expressiomhich in the end amounts
1. V#V’, both on-shell to simply setP—q), we obtain the vertex function for the
processW,(k)— v,(q) + Wg(k’), which corresponds to the
process we are considering with the identification
a1q2+a1Q~ q=0, V=V'=W. Thus we obtain that the expression that must be
compared with our Eq4.449) is

2A0FM (K)F” (K" )FP\ () — 2BoF™(K)F (K )Py (a),
(4.40

where

F)\V(k): _I[k)\Av(k)_kvA)\(k)]l

Using Eq.(2.9) in Eq. (1.5, we get the relations

a,0°+a,Q-q+2a,=0, b;=0, (4.42
(HPZH) _
remembering that these are the form factors evaluated wnFaa w 1Q#9aa’+ 2 Qubaler —f3(daBuar —darGpa)
k,k’ on shell. Since in this cask?=k’'?, then Q-gq=0.
Thus, we then have faa, , anda; a set of relations analo- . 0.9.90
& 1 : —if + -2
gous to Eq.4.2), and we finally arrive at an expression for 4| 9a8pa’ T Ga'ua q°
the vertex function that is identical in form fb(aTlf,M givenin "
Eq. (4.3. Y (6 )
If the photon is also on shell, corrresponding to the decay 5| €naa’pQ’ _Z[qQ]'m

processV— V' vy, then vertex function reduces to exactly the f
same form as given in Eq4.6). The comments made after +f66,uaa’pqp+_72Q,u[qQ]aa" (4.46
Eq. (4.6) are applicable in this case also. M
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In Eq. (4.46 we have included a term proportional@é in  various discrete space-time symmetries on the form factors,
the factors of thé, s terms. Such terms were implicit in Ref. paying special attention to the case of neutral bosons and in
[2] but they were omitted under the assumption that the phoparticular to the case of self-conjugate bosons. In the latter
ton coupled to a conserved fermion current and therefore doase, we derived some results that are analogous to similar
not contribute to the amplitude, as it is the case for the proresults that are known to hold regarding the electromagnetic

cesse e —WW considered there. We have restored themcouplings of Majorana fermions. Finally, in Sec. IV we ana-
here for the purpose of our comparison since we have ndyzed in detail the implications due to gauge invariance for
made that assumption in the corresponding Bc4. the structure of the vertex function. In particular, several re-

Simple inspection of Eqs(4.44) and (4.46) reveals the sults concerning the electromagnetic properties of self-

following direct correspondence between the form factors: conjugate bosons were obtained there. For example, it was
shown that while a self-conjugate particle cannot have any

static electromagnetic moments, in the most general case it

a;=—f,, a,=—if,, can have an electromagnetic vertex characterized by two
form factors. This result is analogous to the corresponding

one for Majorana fermions, which cannot have static electro-
f, magnetic moments either, but it can have an electromagnetic
aQIM—, ag=—fs. (447 vertex characterized by an axial charge radius form factor.
w For the three-photon vertex, which vanishes in pure QED

due to Furry's theorem, we obtained a general form which

The correspondence between the remaining ones is not infl€€d not vanish due to the breaking of the charge conjuga-

mediately obvious, but follows straightforwardly upon using 1O Symmetry by the weak interactions. _
the identities We have been motivated by the fact that experimental

studies of this kind of coupling will be feasible in the future.
In this context, the analysis that we have presented can be
qzsaa’,uVQV_q,U,[qQ]aa’: Qo[ QA0+ 4l QA 4ar, us_eful in at least two ways. Qn one han_d, it can serve as a
4.48 guide to parametrize any possible deviation of the couplings
from the values predicted by the standard model, in a way
that is general and model-independent. On the other hand,
QM[QQ]M':QZSM'WQ”—qa'[QQ],m—qa[Q(ﬂwu whenever the study of a new kind of phenomena is acces-
) sible to us, it is useful to keep in mind that our present
knowledge may be shaken by new discoveries in a more
unexpected way than simply just a deviation from the de-
which follow from Eqgs.(2.8) and(2.9) by specializing them tailed values predicted by the standard model for a given
to the present situationv(=V’, both on-she)l In this way  physical quantity. The results of our analysis can be used to
we then obtain test deviations from fundamental physical principles, such as
gauge invariance and crossing symmetry, in the context of
) the processes described by the electromagnetic couplings of
b 2 it vector bosons.
eomg 2 9> MZ Note added in proofAfter this paper was submitted for
publication we became aware of the papers cited in Refs.
[12,13. In Ref. [12], the authors considered the on-shell
fe  f electromagnetic coupling of a self-conjugate particle of any
by=i—+ Mz (450  spin. As far as the spin-1 case is concerned, this is the very
q w special case that we have considered in @dl4) of case 2
in Sec. IV; i.e.,V=V', both on shell and self-conjugate. For
is case, our results agree with theirs. However, we go fur-
er than this since the cited references do not consider the
. off-shell couplings, nor the case of non-self-conjugate par-
pling. It then follows from Eqs(3.1) and(3.2) that the only ticles nor the off-diagonal case, all of which is contained in

;gmlznslﬁgﬁgcae;%se'ing?éﬁg)na:ﬁgli’s ?ﬁé %r:g]aga?&ig fort.he present work. Referen¢&3] presents explicit calcu_la—
example, in Refs[10,11 ' ' t|on§ of theZZy yertex in the standgr_d model, for various

' SR configurations, with results that exhibit the general features
that are described in the present article. We would like to
V. CONCLUSIONS thank F. Boudjema for bringing these references to our at-

We have studied in this article the structure of the cou-f€ntion.

plings of spin-1 particles to the photon. In Sec. Il we consid-

ered the g_eneral f_orm that the el_ectromagnetic vertex can ACKNOWLEDGMENTS

have, consistent with Lorentz invariance, and we established

the physical interpretation of the various form factors that We thank Sonjoy Majumder for discussions. The research
parametrize the vertex in terms of the static electromagnetiof J.F.N. was supported in part by the U.S. National Science
moments. In Sec. Il we derived the consequences of th&oundation Grant No. PHY-9600924.

To take this comparison one step further, suppose that th%
effects of P and C violation are negligible in th&/V+y cou-
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