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Abstract. The effect of wave velocity on resonance line polar-
ization is studied. We assumed a photosphere - chromosphere
type of temperature structure for the atmosphere with plane
parallel symmetry. The ”Discrete Space Theory technique” to
solve the polarized radiative transfer in the presence of veloc-
ity fields and under the assumption of Complete Redistribution
mechanism is briefly described along with the numerical checks
performed. We considered both sinusoidal and sawtooth wave
functions for the velocity in the medium. We find the linear po-
larization in the resonance lines to be increased when averaged
over the whole period of the wave compared to the static medium
case. The sawtooth wave shows a different average polarization
profile compared to the sinusoidal wave. Line center intensity as
well as the polarization vary with a period which is half of that
of the wave. The variation amplitude for polarization is higher
compared to the intensity towards the limb. Hence polarization
in the limb may serve as an additional useful information to
characterize the wave.
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1. Introduction

The study of waves and wave motion in the solar atmosphere
has played an important role in identifying the heating mech-
anisms of chromosphere and corona. Phase relations between
velocity and brightness fluctuations observed in spectral lines
in the visible are utilized both to diagnose the dynamical state
of the solar atmosphere and to examine the various oscillatory
motions (Deubner, 1991). Fluctuations in the resonance line
polarization in the presence of acoustic wave may provide addi-
tional information on the characteristics of waves. In this paper
we study the time evolution of resonance line polarization in the
presence of wave motions. In the following paragraphs we give
a brief outline of the observations and the theory of resonance
line polarization pertaining to the study of solar atmosphere. A
partial list of the existing literature on the calculations of the
resonance line intensity profiles in the presence of wave motion
is also described.

1.1. Resonance line polarization in the solar atmosphere

Ever since Redman (1941) observed the Ca I resonance po-
larization, this topic has received considerable attention. The
observed polarization along with the relevant theory has been
used to study the solar atmosphere. Stenflo et al. (1983 a,b)
has published an extensive survey of linear polarization cov-
ering the wavelength range 3165Åto 9950Åand has found a
variety of effects due to resonance scattering. A detailed in-
vestigation of nonmagnetic scattering polarization in the Ca I
4227Åresonance line was made by Dumont et al (1973). Rees
and Saliba (1982) pointed out that the partial frequency redistri-
bution which is known to play an important role in the formation
of strong resonance lines is responsible for the wing maximum
in the observed polarization. Faurobert - Scholl has studied this
phenomenon in a series of papers over the last few years. She
has successfully applied the theory of Hanle effect on resonance
line polarization to derive the weak magnetic field strength and
Van der Waal broadening constant (Faurobert - Scholl, 1992,
Faurobert - Scholl et al 1995) in the solar atmosphere. Mohan
Rao and Rangarajan (1993) considered the effect of collisional
redistribution on resonance line polarization and showed that
the percentage of polarization at the line center is a monotonic
function of the coherence parameter γ when depolarizing colli-
sions are included in the calculations. Recently, Stenflo (1994)
has discussed the diagnostic value of the resonance line polar-
ization in an exhaustive volume.

1.2. Study of wave motion on resonance lines

Cram (1972) has attempted to reproduce the observed asymme-
tries and the wavelength shifts of the central absorption of Ca
II H and K lines by considering the effects of vertical velocity
fields in the solar atmosphere. Shine (1975) has investigated the
influence of mesoscale velocity fields upon the line profiles. He
employed the periodic and undamped sinusoidal and sawtooth
wave functions to represent the velocity. He could obtain asym-
metric time averaged line profiles when a sawtooth type of wave
is present. We have used the same type of undamped periodic
waves in this study. Heasley (1975) made a theoretical study of
the influence of propagating acoustic pulses in the solar chromo-
sphere upon the Ca II resonance line profiles. Scharmer (1984)



266 K.E. Rangarajan: Resonance line polarization in the presence of wave motion

made a time series calculations of the line profiles affected by
a propagating wave. He chose the atmospheric structure and
parameters in such a way that it represents roughly the condi-
tions of Ca II K line in a chromosphere. The calculations were
made to mimic the evolution of the Ca II K line when an acoustic
wave propagates through the atmosphere. The wave chosen was
a damped one with a sinusoidal function representing the ve-
locity. He obtained measurable differences in the time average
intensity profile compared to the one produced by a static atmo-
sphere. He found the line center intensity to vary with a period
which is half of that of the wave. A numerical method developed
by Scharmer and Nordlund (1982) to solve the transfer equa-
tion was demonstrated by his application. We have also taken
the same model and obtained similar results for the intensity by
our method. Rammacher and Ulmschneider (1992) have shown
that short period acoustic waves can generate 3 min. type phe-
nomena and that they are able to produce a core evolution pattern
very similar to that of the observed Ca II K2v cell grains. Us-
ing these waves in their calculations, they were able to account
for the K2v - K2r asymmetry, the K3 Doppler evolution and the
symmetric wing brightening behaviour. The influence of MHD
waves on circular polarization was investigated by Solanki and
Roberts (1992). For propagating waves they find that with an
appropriate choice of spectral lines, a lower limit on the trans-
ported energy can be set up by observing the zero - crossing
wavelength of Stokes V, while an upper limit can be derived
from the line widths. They have also stressed the importance of
radiative transfer effects.

1.3. Aim of this study

All the existing calculations with wave (acoustic) motions have
so far been performed for obtaining the specific intensity. But
now with the advent of fast detectors like CCD etc we may be
able to observe resonance line polarization profiles with a fine
time resolution. Such observations may give some additional
clues to the nature of the velocity fields present in the sun. There-
fore we have decided to perform the resonance line polarization
calculations taking into account of the velocity fields.

2. Polarized line transfer equation and the method of
solution

In a non magnetic plane-parallel atmosphere with azimuthal
symmetry in the radiation field, it is sufficient to consider the
Stokes parameters Il and Ir to represent the polarization state of
the radiation field. The total intensity is defined as I = Il + Ir

and the Stokes Q parameter is defined as Q = Il − Ir . As in
Chandrasekhar(1960), Il and Ir denote the intensities of linearly
polarized radiation along two perpendicular directions l and r.
The linear polarization is defined as p = (Q/I). With the above
definitions, the vector transfer equation for a two-level atom
becomes

µ
dI(x, µ, z)

dz
= −χ(x, µ, z) I(x, µ, z) + ηηη(x, µ, z) , (1)

Here I = (Il, Ir)T and ηηη is the emission coefficient. The total
absorption coefficient is given by

χ(x, µ, z) = χl (z) φ(x, µ, z) + χc(x, µ, z) . (2)

The optical depth scale is defined as dτ (z) = −χl(z)dz. The
symbol µ denotes cos(θ) where θ is the angle made by the ray
with the normal to the surface. It is convenient to measure the
frequency displacements from the line center in units of Doppler
width ∆νD = ν0vth/c, where vth is the thermal velocity. Any
other velocity, say V , is also measured in thermal velocity unit.
Then the transformation between observer’s frame and atom’s
frame frequency is given by (Mihalas, 1978)

x′ = x − µV (3)

where

x =
ν − ν0

∆νD
, with ∆νD =

ν0

c

√
2kT
M

. (4)

In Eq.(2), χc and χl are the coefficients of continuous ab-
sorption and atomic absorption at the line center respectively.
ν0 is the line center frequency. The constants c and k are the
velocity of light and Boltzmann constant. M is the mass of the
atom under consideration. We have used Voigt function with a
depth independent damping parameter as the absorption pro-
file throughout this study. In the presence of velocity the profile
function is given by,

φ(x, µ, z) ≡ φ(x − µV ; z). (5)

All the other quantities have their usual meaning. The total
source function Stot(x, µ, z) is given by

Stot(x, µ, z) =
φ(x, µ)SL(x, µ, z) + βcSC

φ(x, µ) + βc
, (6)

where βc = χc/χl and continuum source function SC is defined
as

SC =
1
2

B(x) 111 =
1
2

B 111; 111 =
[
1 1
]T
, (7)

where B is the Planck function. We have considered only the
complete redistribution mechanism which may be valid in the
Doppler core of the line. The implication of this assumption is
discussed in the next section. In the absence of magnetic field
and for the s-p-s transition (intrinsic depolarization is absent),
the line source function for the complete redistribution mecha-
nism becomes,

SL(x, µ, z) =
(1− ε)

2

∫ +∞

−∞
dx′′
∫ 1

−1
PR(µ, µ′)×

× I(x′′, µ′, z)φ(x′′, µ′)dµ′ +
ε

2
B111,

(8)

where PR is the Rayleigh scattering phase matrix defined by
Chandrasekhar(1960).

We have written the line source functions for the Stokes pa-
rameters I and Q in a suitable form and solved the Eq.(1) for
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Il and Ir . We find that due to the assumption of complete redis-
tribution mechanism, the angular phase matrix is not affected
by the velocity field and the velocity field affects only the fre-
quency dependence of the absorption and re-emission profiles,
as in non-polarized cases. If we were to consider partial redistri-
bution mechanism, the angle dependent redistribution functions
would have been affected by the velocity field and there would
have been an inextricable coupling between the angles and fre-
quencies. We have chosen azimuthally independent incident ra-
diation field with Rayleigh phase function. All these lead to
axi-symmetric situations. In passing, one should mention that
we have not considered the time dependent radiative transfer
equation because the period of the wave is much larger than
the mean time necessary for a photon to escape the atmosphere.
Therefore we could solve the transfer equation at different time
steps independently.

We modified the Discrete space theory technique of Grant &
Hunt(1969a) to solve the vector transfer equation. Stability and
accuracy of this method for plane parallel medium has been dis-
cussed by Grant and Hunt (1969b). Use of this basic technique
to solve the transfer equation with spherical symmetry has been
described by Peraiah and Grant (1973). But in this paper we
are concerned with only plane parallel medium and sinusoidal
velocity input. Therefore a brief description of the method is
given in the Appendix.

2.1. Numerical checks employed

First we checked the flux conservation for a purely scattering
medium. We considered 25 and 31 frequency points in the do-
main [-6,6]. They refer to two different frequency mesh sizes.
The results for 25 frequency points and 31 frequency points
do not differ much. The error is less than 1%. This means that
our choice of the frequency mesh size is sufficient. Next we ex-
tended the frequency domain to [-8,8] with 33 frequency points.
Again the intensity and polarization results do not differ within
the frequency points [-6,6]. We have assumed only the complete
redistribution mechanism which is valid in the Doppler core and
our choice may be just adequate. In the static cases, the Doppler
core extends from -3 to +3 Doppler widths. Since we have the
presence of acoustic wave with a 3 Doppler width amplitude, we
should perform the calculations to cover [-6,6] frequency range.
By choosing the same velocity and atmospheric model as that
of Scharmer (1984), and obtaining the same results for the spe-
cific intensity, we ensured the accuracy of our calculations in
the presence of a damped acoustic wave. We (Mohan Rao and
Rangarajan, 1993) have already checked the correctness of the
calculation of polarization for a static atmosphere obtained by
this code by comparing with the results of Faurobert (1987). She
had used Feutrier technique to solve the problem. We tried two
different angular mesh sizes. We employed 3 and 4 angle Gaus-
sian quadrature to take care of the scattering integral. We find
a difference of nearly 20% (error) between these two different
mesh sizes at very few frequency points. This error analysis was
performed for only at one particular time step and it shows both
higher and lower values for the 3 angle case compared to the

four angle case. Therefore on an average, over the whole period
of the wave, the lesser mesh size may not give much error. The
discrete space theory method has the advantage of flexibility. If
we want to introduce some more physical processes, the ’extra’
terms will change only the ’cell’ matrices and the basic struc-
ture of the algorithm remains the same. It is quite accurate and
stable too. But it is computationally expensive since the matrix
sizes go up if we increase the number of frequencies or angles,
and a lot of inversion of matrices need to be done. A typical
matrix size is given by: number of frequency points × number
of angles× number of polarization states. In each layer one has
to calculate two reflection and two transmission matrices. For
this problem, one can perform the calculations for each time
step seperately which reduces the burden on the main memory.
We required 64 MB of main memory to handle this problem
and it takes two hours of CPU time on DEC Alpha workstation
to calculate the profiles at one time step.

A new technique to handle polarized radiative transfer based
on perturbation methods may be faster and better suited to cer-
tain class of problems (Faurobert et al. 1996). At present we
have not made any comparison between our method and that of
Faurobert et. al. (1996).

3. Results and discussion

The atmospheric parameters were chosen to represent very
roughly the conditions of formation of Ca II K line in a chromo-
sphere. We took βc = 10−7, ε = 10−4 and a depth independent
damping parameter a = 10−3. The planck function B appearing
in Eq.(7) was varied with depth according to

B(τc) = 1 + 10τ 0.9
c + 100exp(−70.7

√
τc). (9)

which gives temperature minimum near at τc = 10−2. Here τc

refers to the continuum optical depth. We have used the number
of angular points nµ = 3, and the number of depth points to be
nτ = 48, covering the range 10−11 < τc < 10. The choice of
the above parameters are from Scharmer (1984). We dealt with
three different types of waves and they are described below.

3.1. Damped sine wave

The vertical velocity of the wave was assumed to be of the form,

v = v′sinφ′, (10)

where the amplitude v′ was written as

v′ = v0/[1 +
√
τc/τ∗] (11)

and τ∗ is roughly the depth where v′ saturates to v0. The phase
φ′ is given by

φ′ = 2π(z − ct)/cP. (12)

Here z is the height, t is the time and P the period of the wave.
This form of the velocity simulates the growth of the amplitude
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Fig. 1a. Time evolution of the specific intensity

Fig. 1b. Time evolution of the polarization

of a damped adiabatic acoustic wave in an isothermal atmo-
sphere. This wave model is chosen from Scharmer (1984). We
chose the period P to be 100 sec, τ∗ = 10−3, c = 7kms−1 and
v0 = 3kms−1. The amplitude of the wave is 3 Doppler units.

The time resolution of our calculations is 5 secs. In Fig. 1a
and b, we have plotted the time evolution of the intensity and
the polarization in the direction µ = 0.11 ( limb direction) with
respect to the frequency x. The profiles are shifted in the y-axis
by a constant amount so that they can be perceived. Therefore the
ordinate values for only the bottom most curve can be directly
read. We have not plotted the result for µ = 0.89 because the
polarization is the least in that direction and zero at µ = 1.0.
One can clearly see the effect of the wave by the distortion it
has produced on the profile shape. Here it is not as dramatic as
in the case of Scharmer (Fig. 4c, 1984) because he has plotted
at µ = 0.89 in the direction of which the effect is maximum.
But we find that the polarization shows the effect of the wave

Fig. 2a. Fluctuation of the intensity at the line center

Fig. 2b. Fluctuation of the polarization at the line center

better than the intensity. The change in the shape can be easily
understood as being due to the change in optical depth brought
about by the Doppler shift through the profile function.

The intensity and the polarization fluctuations as a function
of time at the line center are shown in Fig. 2a and b for two
different ray directions. If we define the intensity fluctuation as

fluctuation =
Iav(µ)− I(t, µ)

Iav(µ)

we find that this quantity is symmetric with respect to the mean.
The figure shows that the intensity and polarization fluctuate
with a period which is nearly half of that of the wave. An
excellent reasoning for this phenomenon is already given by
Scharmer and so we will not repeat it here. But we note that
both the intensity and the polarization show some phase differ-
ence between the two directions due to the path difference. We
can also see that the amplitude of the intensity fluctuations is
less than that of the polarization. Polarization is a measure of
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Fig. 3a. Time average of the intensity over one full period

Fig. 3b. Time average of the polarization over one full period

anisotropy. The absorption coefficient is affected by the velocity
in different directions by different amounts thereby aiding the
anisotropy in the radiation field. This may be a motivation for
looking for the polarization changes while studying the wave
phenomenon in the limb direction.

The time averaged intensity and polarization profiles in two
different directions are plotted in Fig. 3a and b. We have also
shown the static profiles with the same atmospheric structure
for the comparison sake. We find that the line center intensity
is enhanced by a factor of nearly three for the dynamic model
compared to the static one irrespective of the direction. The
average polarization becomes zero in the line wings and this is
due to the assumption of complete redistribution mechanism.

We wish to acknowledge the fact that this is not a good
assumption for studying the wing polarization of strong reso-
nance lines as already noted by several authors and we hope
to correct this inadequacy in our future work. The partial re-

Fig. 4a. Same as Fig. 2a

Fig. 4b. Same as Fig. 2b

distribution mechanism might have brought out the interesting
interplay between the wave motion and the resonance line scat-
tering. Nevertheless our work is valid in the Doppler core.

3.2. Undamped sine wave

We considered v′ = v0, in Eq.(11) and made it as a constant
throughout the atmosphere. This ensures a constant maximum
amplitude for the velocity. Such a representation was discussed
by Shine (1975). The velocity period and other terms were the
same as before. The results are shown in figures 4 and 5. We find
that neither the fluctuations nor the averages of the quantities are
very much different from the case of damped sine wave which
may be due to the following reasons. The magnitude of the
velocity amplitude and the complete redistribution mechanism
which we have chosen are quite effective only in the Doppler
core. But the damping may affect only the wings to which our
model is insensitive.
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Fig. 5a. Same as Fig. 3a

Fig. 5b. Same as Fig. 3b

3.3. Sawtooth wave

Following Shine (1975), we chose a sawtooth wave of the form

v = v0
[
2((z − ct)/cP)mod 1 − 1

]
. (13)

Here the mod 1 indicates that only the excess above the next
smallest integer of the enclosed quantity is used. The time av-
eraged intensity and the polarization obtained with this repre-
sentation of the velocity is shown in Fig. 6. The asymmetry in
the average profile was already noticed by Shine (1975). But
the polarization shows a noticeable flip of the sign within the
profile in the averaged quantity in the direction µ = 0.5. This
may be due to a jump in the optical depth which must have made
the medium optically thin at this frequency to give a ’positive’
polarization.

We have also computed the profiles for the case of ε = 10−5

and velocity amplitude v0 = 1kms−1. Since we did not find
significant differences for ε = 10−5 from that of ε = 10−4

Fig. 6a. Same as Fig. 3a

Fig. 6b. Same as Fig. 3b

cases, we have not included those results here. But for veloc-
ity amplitude v0 = 1 we find the average intensity profile to
be narrower compared to v0 = 3 which is in agreement with
that of Scharmer. Since the intensity for v0 = 1kms−1 is higher
compared to v0 = 3kms−1 we find these cases show more po-
larization at line center. An extensive study of different waves
with different amplitudes with partial redistribution formalism
is underway and will be reported in future.

4. Conclusions

By this study we have shown that there is considerable differ-
ence in the resonance line polarization profiles from a dynamic
atmosphere compared to the static one. If we use static model
to interpret dynamic phenomena, we may miss many interest-
ing effects. The same conclusion was arrived at by Carlsson
and Stein (1995) by detailed modelling. Our results also show
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that we can obtain additional information regarding the type
of wave from the studies of resonance line polarization. Future
work should include the PRD effects, a more realistic model
atmosphere and so on. Observations may be planned to obtain
the time resolved resonance line polarization.
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Appendix A: method of solution

A.1. Interaction principle

The Discrete Space Theory technique is based on interaction
principle and the ’Star product’ algorithm. These two ideas are
described in great detail in Grant and Hunt (1969a). Interaction
principle gives the relationship between the input and output
radiation fields from a given medium. Consider the medium to
be stratified into different layers z1, z2, . . . zN At any layer we
define two oppositely directed beams as I+(zn) and I−(zn). Let
I+(zn) and I−(zn+1) be the incident intensities. The emergent
intensities from the layer depend on the incident intensities and
on the sources

∑+(zn, zn+1),
∑−(zn+1, zn) present within the

layer. Thus we can write

I+(zn+1) =t(zn+1, zn)I+(zn) + r(zn, zn+1)I−(zn+1)+
+∑

(zn+1, zn),
(A1)

I−(zn) =r(zn+1, zn)I+(zn) + t(zn, zn+1)I−(zn+1)+
−∑

(zn, zn+1),
(A2)

or(
I+n+1
I−n

)
= S(n, n + 1)

(
I+n
I−n+1

)
+
∑

(n, n + 1). (A3)

The linear operators t(n,n+1),t(n+1,n),r(n+1,n),r(n,n+1) of
which the first two are operators of diffuse transmission and
the last two are for diffuse reflexion.They include the geome-
try and the physical properties of the medium. Once we obtain
the response functions for a layer of specified boundaries with
given inputs, we can proceed to calculate the response functions
for two or more consecutive layers by a process termed as ’Star
product’.

A.2. Derivation of reflection and transmission matrices for a
single layer for the case of polarized line transfer with com-
plete redistribution mechanism

Rewriting the Eq. (1) for the two oppositely directed beams
and using some of the above definitions we get,

±µdI(x,±µ, z)
dz

=kL[β + φ(x,±µ)] [S(x,±µ, z)

− I(x,±µ, z)].
(A4)

This problem can be solved by a suitable discretization in
frequency, direction and space for both the polarization states.
For the frequency discretzation, we choose division points {ψi}
and weights {ai} such that∫ ∞

−∞
f (ψ)dψ '

i=m∑
i=−m

aif (ψi) (A5)

and for the directional discretization we choose abscissae {µj}
and weights {cj} such that∫ 1

0
f (µ)dµ '

J∑
j=1

cjf (µj). (A6)

We define the J × J matrices

c = [cjδij] MJ = [µjδij] (A7)

where cj’s andµj’s are the weights and roots of Gauss - Legendre
angular quadrature of the order J in the interval (0,1). In the ’cell’
method of deriving difference equations one formally integrates
Eq. (12) over an interval [zn, zn+1]× [µj− 1

2
, µj+ 1

2
] defined on a

two dimensional grid. Using the definition of optical depth, one
obtains,

Mm(I+i,n+1−I+i,n) + τn+ 1
2
(β + φ+

i )n+ 1
2
I+

i,n+ 1
2

= τn+ 1
2
(β + εφ+

i )n+ 1
2
Bn+ 1

2

+
1
2
τn+ 1

2
σn+ 1

2

m∑
i′=−m

ai′,n+ 1
2
c

[φ+PI+ + φ−PI−]i′,n+ 1
2

(A8)

and

Mm(I−i,n−I−i,n+1) + τn+ 1
2
(β + φ−i )n+ 1

2
I−

i,n+ 1
2

= τn+ 1
2
(β + εφ−i )n+ 1

2
Bn+ 1

2

+
1
2
τn+ 1

2
σn+ 1

2

m∑
i′=−m

ai′,n+ 1
2
c

[φ+PI+ + φ−PI−]i′,n+ 1
2
.

(A9)

Here (n+ 1
2 ) denote averages for the layer and σn+ 1

2
= 1−εn+ 1

2

. The vectors are defined as

I±i,n =


I(±µ1, ψi; τn)
I(±µ2, ψi; τn)

...
I(±µJ , ψi; τn)

 (A10)
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φ±
i,n+ 1

2
=


φ(xi,±µ1, τn+ 1

2
)

φ(xi,±µ2, τn+ 1
2
)

...
φ(xi,±µJ , τn+ 1

2
)

 .

Corresponding to each pair of subscripts (i, j), we now define
an index k so that

(i, j) ≡ k = j + (i − 1)J, 1 ≤ k ≤ K = mJ. (A11)

We extend this K vectors to 2K vectors to take into account of
two polarization states. Let φ±

n+ 1
2

and S±
n+ 1

2
be 2K vectors where

the first K elements of Sn+ 1
2

are defined by

S±
k,n+ 1

2
= (β + εφ±k )n+ 1

2
Bn+ 1

2
(A12)

and they are repeated for the next K elements. Similarly, let Φ
and M be 2K × 2K matrices defined by

Φ±
n+ 1

2
= [(β + φ±k )n+ 1

2
δkk′ ]

M =


MJ

MJ

.
.

MJ

 ,

and PR is also extended to include the frequencies as a P matrix.
Using the linear interpolation scheme,

I±n + I±n+1

2
= I±

n+ 1
2

(A13)

we obtain

(M +
τ

2
Z+)I+n+1 −

τ

2
Y−I−n =(M− τ

2
Z+)I+n +

τ

2
Y−I−n+1 + S+

(A14)

(M +
τ

2
Z−)I−n −

τ

2
Y+I+n+1 =(M− τ

2
Z−)I−n+1+

τ

2
Y+I+n + S−

(A15)

where

Z+ = Φ+ − σ

2
φ+(φ+)T acP, Z− = Φ− − σ

2
φ−(φ−)T acP,

Y+ =
σ

2
φ+(φ−)T acP, Y− =

σ

2
φ−(φ+)T acP,

∆+ = [M +
τ

2
Z+]−1, ∆− = [M +

τ

2
Z−]−1,

r+− =
τ

2
∆+Y−, r−+ =

τ

2
∆−Y+,

R+− = [I − r+−r−+]−1, R−+ = [I − r−+r+−]−1,

A = M− τ

2
Z+ , D = M− τ

2
Z−.

Here I is the identity matrix. Using the above definitions and the
equations we can write the transmission and reflection matrices
for a single layer as,

T (n + 1, n) = R+−[∆+A + r+−r−+]

T (n, n + 1) = R−+[∆−D + r−+r+−]

R(n + 1, n) = R−+r−+[I + ∆+A]

R(n, n + 1) = R+−r+−[I + ∆−D]

and the cell source vectors as,
+∑

= R+−[∆+S+ + r+−∆−S−]τ

−∑
= R−+[∆−S− + r−+∆+S+]τ.

By making use of the boundary conditions and the star al-
gorithm, one can build the response functions for the entire
medium to solve for the output radiation field (see Peraiah,
1978). Recently Mohan Rao et.al (1995) have shown that this
algorithm is stable against logarithmic step size for the layers.
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