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Abstract We compare the zonal flow pattern in subsurface layers of the Sun with
the distribution of surface magnetic features like sunspots and polar faculae. We
demonstrate that in the activity belt, the butterfly pattern of sunspots coincides
with the fast stream of zonal flows, although part of the sunspot distribution
does spill over to the slow stream. At high latitudes, the polar faculae and zonal
flow bands have similar distributions in the spatial and temporal domains.
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1. Introduction

The pattern of temporal variations in the solar differential-rotation rates discov-
ered by Howard and LaBonte (1980) from the Mt. Wilson full-disc Dopplergram
data is known as torsional oscillations. These manifest themselves as alternating
latitudinal bands of slightly faster and slower than the average rotation veloc-
ities migrating from pole to the Equator in about 22 years. The low velocity
of 3 – 5 m s−1 of these zonal flows makes it difficult to detect them from the
global rotation signal which is more than two orders of magnitude stronger, and
it was remarkable that Howard and LaBonte were able to isolate these weak
signals. The close correspondence between the torsional oscillation pattern and
the surface magnetic-flux distribution in the sunspot latitudes led Howard and
LaBonte (1980) to conclude that this velocity field is perhaps, the signature of a
“large-scale deep-seated phenomenon” and that “this velocity field is associated
in some way with the subsurface magnetic fields that are responsible for the
solar cycle”.

A subsequent investigation by Snodgrass and Howard (1985) used the cor-
rected values for the coefficients A, B, and C of the parabolic fit for the global
rotation to show that the full torsional oscillation pattern is not in the form
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of a continuous wave running from poles to the Equator but rather consisted
of a high-latitude and a low-latitude branch with a break around 40 – 50◦ with
each of the two components consisting of a fast and a slow stream alternating
with each other in time. Snodgrass and Howard (1985) also noticed that the
low-latitude stream of enhanced shear that lies in between the fast zone and
its poleward adjacent zone spatially coincides with the centroid of the sunspot
distribution. Later, Snodgrass (1987, his Figure 2) in addition to confirming the
overlap of the shear enhanced pattern with the sunspot distribution (referred
to as the Butterfly pattern) for cycles 20 and 21, demonstrated that the zone
of diminished shear is located in between the two successive sunspot activity
zones, i.e., in between two successive butterfly patterns. This figure also showed
that there are no magnetic features corresponding to the shear increase and
decrease zones at latitudes beyond ±60◦. Makarov and Sivaraman (1989) in
fact, suggested that these zones of increased or decreased shear at high latitudes
correspond spatially with the polar faculae distribution. Subsequent painstaking
efforts by Ulrich et al. (1988), Snodgrass (1992), and Ulrich (2001) and the
references therein) refined the methods of reduction of the Mt. Wilson full-
disc velocity maps, leading to a considerable improvement in the visibility of
torsional-oscillation signal against the background noise and, indeed, established
the reality of the existence of this velocity pattern on the solar surface.

All of the above-mentioned works refer to the rotation rate near the solar
surface. With the advent of helioseismology it has become possible to estimate
the rotation rate in the solar interior by inversions of the rotational splittings of
the solar-oscillation frequencies from the accurately measured helioseismic data
obtained by the ground-based Global Oscillation Network Group (GONG) and
by the Michelson Doppler Imager (MDI) onboard the SOHO spacecraft. The
rotation-rate residuals derived by subtracting the time-averaged rotation rate
from the corresponding rotation rate at each depth and latitude show temporal
variations with faster and slower rotating bands moving equatorward with time
(Schou 1999; Howe et al. 2000; Antia and Basu 2000). We refer to this as the
zonal-flow pattern in this paper. This pattern is very similar to the torsional
oscillation bands observed on the surface (Howard and LaBonte 1980; Ulrich et

al. 1988; Snodgrass 1992; Ulrich 2001) but because of smaller errors in the seismic
data, it is more well defined and robust than the latter. Further investigations by
Antia and Basu (2001), Vorontsov et al. (2002), Basu and Antia (2003), Howe et

al. (2006) using more extensive data from GONG and MDI have revealed results
sufficient to build a fairly consistent picture of the time-dependent structure
and dynamics of these zonal flows at different depths and in different latitudes
in the solar interior. The patterns derived from the GONG and MDI data are
generally in reasonably good agreement with each other. Finally, the results from
the recent study by Basu and Antia (2006) and Howe et al. (2006) using data
covering almost a complete sunspot cycle (1996 to 2006) have consolidated the
properties of the zonal flows and provided a fairly complete picture of these
migrating zonal bands.

The zonal-flow pattern in the solar interior has now become available for
almost the full sunspot cycle from helioseismic data. It would therefore be
of interest to compare the zonal-flow pattern with the distribution of surface
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magnetic features which are manifestations of the cyclic magnetic activity and
to look for similarities and differences between them. With this aim, we plot the
patterns of distribution of surface magnetic features, namely sunspots and the
polar faculae, on zonal-flow contour maps in the subsurface region at r = 0.98R⊙

derived from the GONG data for the period 1995 – 2007.
The rest of the paper is organised as follows: In Section 2 we describe the

data and the analysis procedure, in Section 3 we present the results, and finally
in Section 4 we summarise the conclusions.

2. Data and Analysis

2.1. Helioseismic Data and the Inferred Zonal Flow Pattern

In order to infer the rotation rate in the solar interior we use 120 temporally
overlapping data sets from GONG (Hill et al. 1996) each covering a period of
108 days from 7 May 1995 to 15 May 2007, with a spacing of 36 days between
successive data sets. Each data set consists of the mean frequencies of different
(n, ℓ) multiplets and the splitting coefficients. We use the 2D Regularised Least
Squares (2DRLS) inversion technique (Antia, Basu, and Chitre 1998) for deduc-
ing the rotation rate for each of these data sets. We take the temporal average
over all of these data sets to find the mean rotation rate at each latitude and
depth covered in the study. The temporal mean is subtracted from the rotation
rate at each epoch to find the residuals (δΩ) which give the temporally varying
component of the rotation rate. This is referred to as the zonal flow. Thus we
have,

δΩ(r, θ, t) = Ω(r, θ, t) − 〈Ω(r, θ, t)〉, (1)

where Ω(r, θ, t) is the rotation rate as a function of the radial distance r, latitude
θ, and time t. The angular brackets denote the temporal average over the data
ensemble. It should be noted that the splitting coefficients are sensitive only to
the North – South symmetric component of rotation rate and hence the inferred
rotation pattern always looks symmetrical about the Equator. The actual zonal
flow pattern may have some asymmetry which cannot be detected from the
seismic data used in this study.

The zonal flow pattern consisting of fast-rotating streams (represented by
contours in red) and slow-rotating streams (represented by contours in blue)
is shown in Figure 1. At low latitudes this flow pattern consists of bands of
fast- and slow-moving fluid which move towards the Equator with time in both
hemispheres, which eventually meet near the Equator. At high latitudes, the
behaviour of zonal flow pattern is quite different as the bands of fast- and slow-
moving streams migrate polewards with time. The slow stream reaches the poles
near the time of polar-field reversal around 2000.7. The zonal flow velocities
are rather small around latitudes of 40 – 50◦ (Vorontsov et al. 2002; Basu and
Antia 2003). This region acts as a boundary separating the zonal-flow systems
at low and high latitudes. Snodgrass and Howard (1985) also found a break in
the surface torsional oscillation pattern around the same latitudes.
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Figure 1. Contours of constant residual rotation velocity, δvφ = δΩr cos θ, at r = 0.98R⊙

obtained from GONG data are shown as a function of time and latitude. The red contours
show positive values while the blue contours show negative values. The contour spacing is
1 m s−1 and the zero contour is not shown. Different bands of faster (e.g., BN , BS , E, EN ,
ES) and slower (e.g., AN , AS , C, DN , DS) than average rotation velocity are marked in the
figure. The markings at low latitudes show the position of sunspots. The filled black circles
at high latitudes represent the daily mean number of polar faculae averaged over a period of
six months in 10◦ latitude bins from 40◦ to 90◦. The area of the circles is proportional to the
number of PFs.

2.2. Properties of Polar Faculae

2.2.1. Number Counts and Latitudinal Distribution

Soon after the polar-field reversal, which occurs after sunspot activity has reached
its peak, polar faculae (abbreviated as PF) make their appearance in the latitude
zones poleward of 40◦ in both the hemispheres. They can be identified easily on
the broad-band images as tiny bright features of sizes ranging from 3 – 10′′ with
a contrast IPF/Iphotosphere = 1.03 to 1.10 and on the K-line spectroheliograms
as bright points located preferentially along the network boundaries i.e., along
the boundaries of the supergranular cells (Makarov and Makarova 1996). The
cyclically varying numbers of PF, which are 180◦ out of phase with the sunspot
number, over the entire solar disk are highly correlated with the polar magnetic-
field strengths (Sheeley 1964, 1976, 1991). The total counts and the latitude
distribution of PF determined for the period 1940 – 1985 by Makarov, Makarova,
and Sivaraman (1989), Makarov and Sivaraman (1989), Makarov and Makarova
(1996) have been extended to the present day by Makarov, Makarova, and Calle-
baut (in preparation). The procedure that was adopted for determining the total
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counts, as well as the latitude distribution of the PF, is described in Makarov
and Makarova (1996) and may be summarised as follows: For every month,
about 15 high-quality broad-band images were selected from the Kislovodsk
Solar Station collections. The gaps in the data were filled in using the Ca ii K
spectroheliograms of the Kodaikanal Observatory collections. The numbers of
PF within the latitude zones starting from 40◦ and reaching up to the poles
were counted in steps of 10◦ in order to derive their distribution. This was
done plate by plate for the northern and southern hemispheres separately and
from the counts so obtained for every month, the monthly and the six-monthly
averages were worked out. We use the six-monthly mean values of PF in each
of the 10◦ bins for comparison with the zonal-flow pattern in Figure 1. These
are represented by filled circles with area proportional to the six-monthly means
plotted at the mean latitude positions of each of the 10◦ bins.

The PFs appear first at latitude zones ±40 – 60◦. The zones of appearance
of the PF expand and reach almost to the poles filling the entire high-latitude
regions during the sunspot minimum years. On average, about 900 PF emerge
per day during this epoch. The zones of PF are seen to shrink progressively
in extent during the rising phase of the then-current sunspot cycle until they
finally disappear with the polar field reversal around the maximum phase (Figure
4 of Makarov and Sivaraman 1989). Sheeley and Warren (2006) used images and
magnetograms from MDI to study PFs during the period 1996 – 2005 and showed
that in each hemisphere there is a facula-free zone separating the old-cycle polar
field from trailing-polarity flux that is migrating poleward from the sunspot
belts. These facula-free zones coincide with the neutral lines of the axisymmetric
component of photospheric magnetic field and their arrival at the poles in 2001
marks the reversal of the polar fields.

2.2.2. Magnetic Fields of Polar Faculae as the Source of Polar Fields

PFs have most commonly sizes in the range of 3 – 10′′ when they occur as indi-
vidual structures or as bipoles, although a few of them appear at smaller sizes
reaching down to ≈ 1′′. A few others showing a complex structure have sizes
exceeding 10′′ and at times even as high as 30′′ (Makarov and Makarova 1996).
In the magnetograms they appear in the form of flux knots either bright or dark
depending on their magnetic polarity. Based on the polarimetric measurements
by Homann, Kneer, and Makarov (1997), Makarov and Makarova (1998) estimate
the magnetic flux per faculae to be ≈ 7 × 1019 Mx, while Varsik, Wilson, and
Li (1999) estimate the flux to be ≈ 1019 Mx from calibrated low-resolution
magnetograms. Thus the PFs possess a range of magnetic-field strengths from
150 to 1700 G depending on both their sizes and the amount of flux they carry,
although PF with low field strengths appear to be more common.

The evolution of the integrated flux over the polar regions was traced by Lin,
Varsik, and Zirin (1994) using high resolution magnetograms covering the period
from early-1991 to mid-1993 that spans the maximum and declining phases of the
sunspot cycle 22. According to them, during the solar-maximum phase, the polar
regions are populated by magnetic elements of positive and negative polarity of
almost equal numbers and of equal field strengths rendering the net fields at the
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poles close to zero. This presumably represents the polar-field reversal epoch.
With the progress of the sunspot cycle towards the minimum, the elements of one
polarity outnumber those of the opposite polarity in terms of the field strengths
and numbers rendering the fields at the poles predominantly of one polarity.
A subsequent study using more of such high-resolution magnetogram sequences
during sunspot minimum phase by Varsik, Wilson, and Li (1999) confirms that
knots of one polarity far exceed those of opposite polarity. It is this excess of one
polarity flux elements over the other, itself varying cyclically (from + to − and
then to + and so on), that decides the polarity of the field at the poles of the Sun
in any given cycle. It is the collective net field of the PF that a magnetograph
operating at low resolution measures as the magnetic flux at the poles of the
Sun during the sunspot minimum phase.

3. Results

3.1. Latitude Distribution of Sunspots and the Zonal Flow Pattern

We have shown in Figure 1 the latitudinal distribution of sunspots (the Butterfly
pattern) extracted from the Greenwich sunspot data superposed on the plot of
the zonal-velocity band pattern at r = 0.98R⊙. We find that the dense part
of the distribution of spots lies over the zonal bands of the faster than average
rotation rate (EN and ES) while, the less dense part of the distribution spills
over to the slow streams (DN and DS). There is also a sprinkling of sunspots in
the region C (the slow stream). These might possibly be very small spots or pores
being the last vestiges of solar cycle 22 (1986 – 1996). Similar spatial coincidence
between sunspot distribution and surface torsional oscillation pattern has been
noted earlier by Snodgrass (1987).

3.2. PF Distribution and the High Latitude Zonal Flow Pattern

It is evident from Figure 1 that the polar-faculae distribution coincides well,
both spatially and temporally, with the high-latitude zonal-band pattern (AN

in the north and AS in the south hemispheres). Both the slow-stream bands
AN and AS and the PF associated with them that have reached close to the
respective poles disappear with the polar-field reversal in 2000.7. Two new zonal
bands of fast streams (BN and BS) that originated at ±50◦ latitudes about two
years prior to the polar-field reversal, have now ascended poleward filling the
latitude regions where AN and AS were present before the polar-field reversal.
The PF of the new cycle (2002 – 2006) that appeared soon after the polar-field
reversal coinciding with the new fast streams BN and BS have also migrated
polewards synchronously with the fast streams. The polar-field reversal in 2000.7
that marks the end of one PF cycle and the beginning of the next one in both
hemispheres is also the epoch that marks the end of the slower-than-average
rotation-rate zonal bands at the poles (AN and AS) and the ascendancy of
the new faster than average rotation rate zonal bands (BN and BS) to their
positions. Thus the distribution of polar faculae that provides the magnetic field
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at the poles shows a distribution in latitude and time similar to the zonal flow
pattern of the sub-surface layers at r = 0.98R⊙ at high latitudes. Although, we
have used the zonal-flow pattern at r = 0.98R⊙ for establishing the spatial and
temporal coincidence with the PF, similar correspondence should hold for all
sub-surface layers lying above r = 0.95R⊙. Below r = 0.90R⊙ the zonal-flow
pattern appears to be smeared out and the phase also changes at low latitudes.
Thus at r = 0.8R⊙ the fast and slow streams can hardly be recognised at the
high latitudes (Antia and Basu 2001, Figure 4; Basu and Antia 2006, Figure 1).
At any rate it appears that the correspondence between zonal flow pattern and
the PF seems to be confined to the layers above r = 0.95R⊙.

4. Discussion and Conclusions

We have derived the residual rotation rates by subtracting the time-averaged
rotation rate from that at each epoch from helioseismic data from the GONG
project for a full solar cycle (1996 – 2007) at r = 0.98R⊙ in the solar inte-
rior. These show a set of zonal velocity bands moving with faster- and slower-
than-average rotation rate. The zonal velocity bands have two components per
hemisphere (Figure 1) (a) the high-latitude component of alternating slow (blue
contours) and fast (red contours) streams (above ≈ 50◦) that move poleward
(AN or AS and BN or BS), (b) the low-latitude component of fast (EN or
ES) and slow (DN or DS) streams in the sunspot latitudes that move towards
the Equator. EN and ES later merge to form a single fast stream E. From
the earlier studies (Vorontsov et al. 2002; Basu and Antia 2003) it is known
that the zonal flows in the high-latitude as well as in the sunspot-latitude belts
persist throughout much of the convection zone and are quite stable. The ≈ 50◦

latitude in the two hemispheres seems to be the boundary that separates the
high latitude streams from the low latitude streams. Interestingly, this is also
the latitude region where the rotation rate residual is close to zero throughout
almost the entire convection zone (Vorontsov et al. 2002; Basu and Antia 2006).

We have established that (a) polar faculae and the zonal-flow bands in the
region above ±40 – 50◦ latitudes have very similar distribution in the spatial
and temporal domains, irrespective of whether the zonal velocity band is a fast
stream or a slow stream (Figure 1). The switch from fast to slow happens around
sunspot minimum (around 1996) when there is no reversal in polarity of the polar
magnetic field, while the switch from slow to fast occurs around the sunspot
maximum which coincides with field polarity reversal at the poles around 2000.7.
Thus there is one pair of streams (one fast and one slow) during the period of two
successive polar-field reversals and both components of the pair are associated
with polar fields of the same polarity either positive or negative as the case
might be. (b) In the sunspot latitudes, the butterfly pattern coincides with the
fast streams (EN , ES or E) although part of the sunspot distribution spills
over to the slow streams (DN and DS) too (Figure 1). Of course, our study
is restricted to one solar cycle for which the seismic data is available and this
association needs to be confirmed in subsequent cycles.

We have also established that there is a striking similarity in spatial and tem-
poral organisation between the zonal-flow streams in the interior and the surface

zonal.tex; 8/02/2008; 16:45; p.7



K.R. Sivaraman et al.

magnetic fields. This would imply a close coupling between the periodic com-
ponents of flows in the interior and the surface magnetic-field structures which
are visible manifestations of the cyclic magnetic activity. This close similarity
raises interesting possibilities about their connection links (cf., Snodgrass 1987).
Clearly, the velocity changes present in the zonal flow alone are intrinsically too
weak to drive the global solar-activity cycle. It is, therefore, possible that both
the zonal-flow pattern and the overall solar magnetic activity are manifestations
of a common coherently-driven global mechanism that remains to be identified
and properly understood. There could be other possibilities: two mechanisms
operating on disparate scales at two different depths in the convection zone could
conceivably result in mutually-coherent velocity and magnetic field patterns. It
is commonly accepted that the shear zone below the base of the convection zone
is the seat of the dynamo that amplifies and produces the strong magnetic field
that gives rise to sunspots. Likewise, there is an amplification of the magnetic
field by the shear in the sub-surface layers between r = 0.98R⊙ and 0.95R⊙ that
could produce weaker fields like those in the polar faculae (Dikpati et al. 2002).
The possible role of the near-surface shear layer in small scale amplification of
magnetic field has been envisaged earlier by Gilman (2000). More sophisticated
theoretical models supported by simulations to explore the mechanisms that can
generate and sustain the zonal-band systems in the interior and also organise the
magnetic fields in a mutually coherent way are clearly needed. It is gratifying
to note that initial efforts in this direction have already produced migrating
patterns (e.g., Covas et al. 2000; Covas, Tavakol, and Moss 2001; Covas, Moss,
and Tavakol 2004; Lanza 2007). It would equally be important to explore the role
of the subsurface shear region in small-scale amplification of magnetic fields and
to explain the intimate relationship between the family of zonal-band system
and the distribution of magnetic flux elements.

The helioseismic data from GONG and MDI accumulated over the past solar
cycle 23 enabled Antia, Chitre, and Gough (2008) to study temporal variations
in the solar rotational kinetic-energy. It was demonstrated that at high latitudes
(> 45◦) variation in the kinetic energy through the convection zone is correlated
with the solar activity, while in the equatorial latitudes (< 45◦) it is anticorre-
lated except for the upper 10% of the solar radius where both are in phase. The
amplitude of temporal variation of the rotational kinetic-energy integrated over
the entire convection zone turns out to be ≈ 3 × 1038 ergs implying a rate of
variation of about 5×1030 ergs s−1 over the solar cycle. From energy conservation
it is expected that the torsional kinetic-energy variation is comparable with that
in the magnetic energy but with opposite phase. It thus seems that the temporal
variation in rotational kinetic energy in the convection zone is related to the solar
cycle with its tantalising similarity with the magnetic activity cycle.
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