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Abstract. We studied the effects of irradiation on the line
formation in the expanding atmospheres of the compo-
nents of close binary systems. We considered a two-level
atom approximation in Non-LTE situation. The thickness
of the atmosphere is assumed to be twice that of the stellar
radius. Expansion velocities are assumed to be as large as
50 mean thermal units. We have computed the lines using
total optical depths 103, 104 and 105 at the line centre.
The irradiation from the secondary is assumed to be one,
five and ten times the self radiation. The line fluxes in
the line of sight are calculated by using the total source
function which is the sum of the source functions due to
self radiation and that due to irradiation. We notice that
the expansion of the medium produces P Cygni type pro-
files and the irradiation enhances the emission in the lines
although the equivalent widths reduce considerably.
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1. Introduction

It is well known that when the two components of a binary
system are sufficiently close to each other, their mutual
irradiation is very important. The study of close binary
stars is of great importance in stellar astrophysics. The
atmospheres of the components of a close binary system
are distorted mainly by two physical effects: (1) rotation of
the component and (2) the tidal effect due to the presence
of its companion. These effects make the atmospheres of
these stars non-spherical. de Jager (1992) summarized the
problem of non-spherical atmospheres and flows in outer
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layers of young stars and other objects during the work-
shop at Baltimore. Non-sphericity changes the density dis-
tribution of the matter through which the radiation passes
and as a consequence, the lines formed in such medium are
modified. In addition to this, the presence of the secondary
component’s light falling on such a distorted components’
atmosphere will affect the line profiles formed in these at-
mospheres. One also encounters the systematic mass mo-
tions in the atmospheres of these stars.

In the observational aspects of the problem Yu.
Skulskij (1993) studied the variability of equivalent widths
with phases and other characteristics of absorption and
emission components of SiII λλ6347, 6371 in the study of
β Lyre with CCD spectra. The variation of the absorp-
tion line equivalent widths depends on the orbital modu-
lation and on the structure of the circumstellar gas in the
close binary system. Fergusson & James (1994) studied
the eclipsing binary BE UMa for its reflection effect and as
cataclysmic variable progenitor characteristics. The reflec-
tion effect is due to the relatively close proximity (about
8 R�) of a late type secondary of a very hot T ∼ 105 SdO
star.

Parthasarathy et al. (1990) analyzed the ultraviolet
spectrum (1175 Å to 3200 Å) of the hydrogen-poor binary
star HD 30353. The high resolution spectra show stellar
wind profiles of NV, CIV, SiIV, CII, SiII, AlII, AlIII, MgII
and FeII resonance lines. These profiles appear to shift
towards the shorter side of the spectrum. They concluded
that extended and multiple shells exist in the atmosphere
with a source at temperature of 30000 K, which could be
a O-type or an early B-type star as suggested by the far
UV flux distribution.

Theoretical studies about the reflection effect using ac-
tual model atmospheres are more recent. All the three
possible combinations (i.e., when primary and secondary
components are hot and hot, cool and cool, and hot and
cool) are studied by Buerger (1969, 1972); Nordlund &
Vaz (1990); and Claret & Gemenz (1992) respectively.
Vaz (1985) and Wilson (1990) reviewed several aspects
of reflection effect. They found that irradiation from the
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secondary component will effect the lines and as well
as equivalent widths. They also found that the theoret-
ical bolometric albedos have been found to be in good
agreement with the observations. Peraiah & Srinivasa Rao
(1983) studied the effects of reflection on the formation of
spectral lines in a purely scattering atmosphere and stud-
ied how the equivalent width changes due to irradiation
from the secondary. However these calculations were done
in static atmospheres.

The purpose of this study is to compute the spectral
lines formed in the expanding atmospheres with light of
the secondary falling on it. These atmospheres are dis-
torted due to the combined effect of self rotation and tidal
effect by the presence of the secondary component.

The transfer of radiation incident on the atmosphere of
the component from the companion cannot be studied by
using any symmetric solution of the equation of transfer.
This needs a special treatment. We adopt angle-free one
dimensional model (see Wing 1962; Sobolev 1963; Grant
1968). This procedure gives a fairly accurate solution pro-
vided we take large number of rays. The disadvantage in
this technique is that either the angle dependence or fre-
quency dependence cannot be incorporated.

Since it is difficult to handle asymmetric atmospheres
in the radiative transfer calculations, we restrict our cal-
culations to spherical geometry in this problem. As the
gases in the atmospheres of close binaries move with large
velocities, the problem can be treated in the comoving
frame only. The solution of the radiative transfer equa-
tion in the comoving frame is given in Peraiah (1980).
The radiation in the atmosphere consists of (1) self ra-
diation of the component and (2) the incident radiation
from the atmosphere of the companion. We need to treat
the combination of these two radiation fields for calcula-
tions of the line profiles. The case of distorted atmosphere
due to self rotation and tidal effect will be taken up in a
subsequent paper.

2. Brief description of the method of calculations

We have assumed a spherical shape of the reflecting atmo-
sphere to simplify the computational problems of radiative
transfer. The geometry of the model is shown in Fig. 1.

Let O and O′ be the centres of the primary and the
secondary respectively. The atmosphere of the primary is
assumed to be spherical and divided into several discrete
shells. We calculate the source functions of the radiation
field emerging from the companion whose centre is at O′

(see Fig. 1) and incident on the atmosphere of the com-
ponent whose centre is at O. We consider the set of rays
such as STP , EτP , O′T1P , E′τ ′P , WT2P etc., emerging
from the surface SW of the companion and meeting at a
point P in the atmospheres of the component. These rays
lie within the quadrilateral such as PSO′W and enter the
boundary of the atmosphere of the component at points
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Fig. 1. Schematic diagram of the binary components with inci-
dent radiation from the surface of the secondary. O and O′ are
the centres of gravity of the two components
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Fig. 2. Schematic diagram of the rod model

T, τ, T1, τ
′, T2 etc. The surfaces of the companion such

as SW will be different for different points P in the atmo-
sphere. The radiation field at P is estimated by calculat-
ing the source function whose contribution comes from self
radiation of the primary and that due to the incident ra-
diation from the surface SW of the secondary facing the
primary. We need to estimate geometrical length of the
ray segments such as Pτ , Pτ ′ etc, inside the atmosphere
so that the transfer of radiation along these segments is
estimated and its contribution to the source function at
the point P due to the incident radiation at τ, τ ′ etc.
The length of the segments such as Pτ in SPO′ are given
in the Appendix A (see Peraiah 1983 and Peraiah & Rao
1983).

For a given density distribution we need to calculate
the optical depth along the segments Pτ , Pτ ′ etc. The
source function at points such as P due to the irradiation
are calculated using the one-dimensional transfer (Wing
1962; Sobolev 1963; Grant 1968). We will describe this
procedure briefly below.

We consider a segment AB (see Fig 2) which has two
rays oppositely directed to each other. The optical depth
τ is given by,

τ = τ(x) = −

∫ x

L

σ(x′)dx′ ; τ(0) = T (1)

where σ(x′) is the extinction coefficient and T is the to-
tal optical depth. The optical depth is measured in the
direction opposite to that of the geometrical segment.

We assume a steady state, monochromatic condition
with local source function B+(τ) in the direction of in-
creasing τ and B−(τ) in the reverse direction. U+(τ) and
U−(τ) are the specific intensities in the τ increasing and
decreasing directions respectively.
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The two equations of transfer for U+(τ) and U−(τ)
are

dU+

dτ
+ U+ = S+

1 , (2)

dU−

dτ
+ U− = S−1 , (3)

where

S+
1 = B+(τ) + ω(τ)

[
p(τ)U+(τ) + (1− p(τ)U−(τ)

]
, (4)

S−1 = B−(τ) + ω(τ)
[
(1− p(τ))U+(τ) + p(τ)U−(τ)

]
, (5)

are the source functions and ω(τ) is the albedo for single
scattering and the phase function p = 1

2 . The boundary
conditions at τ = 0 and τ = T are given by

U+(τ = 0) = U1, (6)

U−(τ = T ) = U2, (7)

where U1 and U2 will be specified later. The total source
function Sd at any point τ is the combination of the scat-
tered part of the local intensities U±(τ) in either directions
and the diffuse radiation generated by the incident radi-
ation at the boundaries τ = 0 and τ = T (the quantities
U1 and U2 in Eqs. (6) and (7) respectively). This added
to the local sources would give the total source function
given by,

S+
d (τ)=S+

1 (τ)+ω(τ)

[
p(τ)U1e−τ+(1− p(τ))U2e−(T−τ)

]
(8)

S−d (τ)=S−1 (τ)+ω(τ)

[
(1− p(τ))U1e−τ+p(τ)U2e−(T−τ)

]
(9)

In this case, the boundary conditions are,

U+(0) = U−(T ) = 0. (10)

We can write the Eqs. (2) and (3) as

M
dU

dτ
+ U = S1, (11)

where

M =

[
1 0
0 −1

]
, U =

[
U+

U−

]
, S1 =

[
S+

1

S−1

]
, (12)

and Eqs. (4) and (5) and (8) and (9) will be written as,

S1(τ) = B(τ) + ω(τ)P (τ)U(τ), (13)

Sd(τ) = S1(τ) + ω(τ)P (τ)Ub(τ), (14)

where

B =

[
B+

B−

]
, P =

[
p 1− p
1− p p

]
, (15)

Ub(τ) =

[
U1 e−τ

U2 e−(T−τ)

]
. (16)

The mathematical aspects of the solution of the Eqs. (2)
and (3) are discussed in Sobolev (1963) and Grant (1968).
We shall merely quote the relevant results and these are
given in Appendix B.

Using equations (B1) and (B2) one can calculate the
source function at points such as P , due to the incident
radiation from the secondary component.

Now, we need to estimate the source function due to
self radiation of the component. This can be done by solv-
ing the line transfer equation for a Non-LTE two-level
atom in the comoving frame in spherical symmetry. This
is given by (see Peraiah 1984; Peraiah et al. 1987)

µ
∂I(x, µ, r)

∂r
+

(1− µ2)

r

∂I(x, µ, r)

∂µ
= K(x, r)SL(r)

+Kc(r)Sc(r) −

[
K(x, r) +Kc(r)]I(x, µ, r)

+[(1− µ2)
V (r)

r
+ µ2 dV (r)

dr

]
∂I(x, µ, r)

∂x
, (17)

and

−µ
∂I(x,−µ, r)

∂r
−

(1− µ2)

r

∂I(x,−µ, r)

∂µ
=

K(x, r)SL(r) +Kc(r)Sc(r) −

[
K(x, r)

+Kc(r)

]
I(x,−µ, r) +

[
(1− µ2)

V (r)

r

+µ2 dV (r)

dr

]
∂I(x,−µ, r)

∂x
, (18)

where I(x,±µ, r) is the specific intensity of the ray at an
angle cos−1 µ [µε(0, 1)] with the radius vector at the radial
point r with frequency x(= (ν − ν0)/∆νD where ν0 and ν
are the frequency points at the line centre and at any point
in the line and ∆νD is the standard frequency interval such
as Doppler width) V (r) is the velocity of the gas at r in
units of mean thermal units (mtu) and K(x, r) and Kc(r)
are the absorption coefficients per unit frequency interval
in the line and the continuum respectively. The quantities
SL and Sc are the line and continuum source functions
given by,

SL(r) = (1− ε)

∫ +∞

−∞
J(x, r)φ(x)dx + εB(x, T (r)), (19)

Sc(r) = ρ(r)B(x, T (r)), (20)

K(x, r) = KL(r)φ(x), (21)

where KL(r) is the line-centre absorption coefficient and
φ(x) is the normalized line profile and ρ(r) is an arbitrary
factor less than one and B(x, T (r)) is the Planck function
with frequency x, and temperature T at the radial point
r. J(x, r) is the mean intensity given by,

J(x, r) =
1

2

∫ +1

−1

I(x, r, µ)dµ. (22)

The quantity ε is the probability per scattering that a
photon is thermalised by collisional de-excitation of the
excited states, and this is given by,

ε = C21

[
C21 +A21

[
1− exp(−hν0/kT )

]]−1

(23)
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where C21 is the collisional transition rate from level 2 to 1
and A21 is the Einstein spontaneous emission probability
for transition from level 2 to 1. The quantities h and k are
the Planck constant and Boltzmann constant respectively.
From Eqs. (17) to (22), we obtain the source function due
to self radiation, given by

Ss(x, r) =
φ(x)

β + φ(x)
SL(r) +

β

β + φ(x)
Sc(r). (24)

where β is the ratio of absorption coefficients in the con-
tinuum and line centre.

Finally we calculate the total source function by
adding Sd(τ) in Eq. (14) and Ss(x, r) in Eq. (24) and
obtain,

S = Ss + Sd. (25)

We calculate the set of source functions at the points of
intersection of the ray parallel to the line of sight and
the shell boundaries. These source functions are used to
calculate the emergent specific intensities at infinity (or at
the observer’s point), by using the formula (see Peraiah &
Srinivasa Rao 1983)

In+1(r) = I0(n)e−τ +

∫ τ

o

S(t)e−[−(τ−t)]dt, (26)

where In(r) corresponds to the specific intensity of the ray
passing through shell numbers n and n+1 and correspond-
ing to the perpendicular to the axis OO′ at different radii.
I0(n) corresponds to the incident intensity at the bound-
ary of the shell and τ is the optical depth in the sector
along the ray path. The source function S(t) is calculated
by linear interpolation between S(tn) and S(tn+1). The
specific intensity at the boundary of each shell is calcu-
lated by using Eq. (26).

The atmosphere in question is divided in to n shells
(see Fig. 1) where n = 1 corresponds τ = T and n = 100
corresponding to τ = 0, and τ is the optical depth at any
point and T is the total optical depth. The total optical
depth is set in advance. The incident radiation at Q, the
bottom of the atmosphere, (see Fig. 1) is given as

Is(τ = T, µj) = 1. (27)

The incident radiation from the secondary is given in
terms of Is in the ratio I, where I is given by

I =
U1

Is
. (28)

The velocities of expansion of the gas are expressed in
terms of mean thermal units VT (mtu) given by,

VT =

[
2kT

mi

] 1
2

(29)

where k is the Boltzmann constant and T is the tempera-
ture and mi is the mass of the ion. The velocity at n = 1
or τ = T is VA and VB is the velocity at n = 100 or τ = 0
are given in terms of mtu or VT as

VA =
vA

VT
(30)

VB =
vB

VT
(31)

where vA and vB are the velocities at the inner radius A,
outer radius B at radial point r respectively in units of
mtu of gas. We assume uniform expansion of the gases for
the sake of simplicity. The proximity of the component is
measured in terms of separation parameter r1/R, where
r1 is the radius of the primary and R is the separation of
centres of gravity of the two components. The ratio of the
outer to the inner radii (B/A) of the atmosphere is always
taken to be 2. The actual thickness in the components
could be much larger than what we have considered here.
As the number of parameters is large, we restricted our
calculations to this modest thickness of the atmosphere.

The variation of the source functions are shown against
the shell numbers (n = 1 to 100) for different parame-
ters are shown. The line profile fluxes (FQ/Fc) are plotted
against the normalized frequency Q, where

Q = x/xmax, (32)

FQ = F (xQ), (33)

FC = F (xmax), (34)

and

x = (ν − ν0)/∆νD, (35)

xmax =| x | +VB, (36)

∆νD = ν0
vT

c
, (37)

x lies between ± 5 units. The equivalent widths are cal-
culated by the relation,

EQ.W =

∫ xmax

xmin

(1− FQ/Fc)dx (38)

where

xmin = −(| x | +VB). (39)

3. Results and discussion

The equations of line transfer given in the Eqs. (17)
and (18) are solved following the procedure described in
Peraiah et al. (1987). The optical depths along these seg-
ments Pτ Pτ ′ are calculated using the Eq. (1). We set σ as
the electron scattering coefficient equal to (Thomson cross
section) to 6.6525 10−25 cm2. The lengths of the segments
change between 0 and 2r where r is the radius of the com-
ponent. We have set an electron density of 1014 cm−3. The
maximum optical depth is 97.5 while optical depth of the
segment along the x-axis OO′ is 66.525 where the radius
of the star is taken to be 1012 cm and the thickness of the
atmosphere as 1012 cm. The parameters that are used in
the calculations are listed below.

B/A = ratio of the outer to the inner radii of the atmo-
sphere of the primary component and whose reflection ef-
fect is being studied(=2). n = number of shells into which
the atmosphere of the component is divided,



A. Peraiah and M. Srinivasa Rao: A series of theoretical line profiles 49

r1/R = ratio of the radius of the component to that of the
line joining the centres of gravity of the two components
r1 = 2 1012 cm.

VA = initial velocity of expansion in units of mtu at n = 1
(see Eqs. (29) and (30)).

VB = final velocity in units of mtu at n = 100 (see Eq.
(31)).

S = total source function (see Eq. (25)),

Ss = source function due to self radiation (see Eq. (24)),

I = ratio of incident radiation to that of self radiation of
the star (see Eq. (28)),

ε = probability per scatter that a photon is thermalised
by collisional de-excitation (see Eq. (23)),

β = ratio of absorption coefficient in continuum to that
in the line,

T = total optical depth,

Q = x/xmax (see Eq. (32)),

FQ/Fc = ratio of the line flux at the normalized frequency
Q to that in the continuum or at xmax (see Eqs. (33) and
(34)),

(R;N.R) = with reflection and with no reflection,

He/Ha = height of the emission to the depth of absorption
in the line,

Te = temperature in the atmosphere.

Few results are presented in Figs. 3, 4, and 5 for dif-
ferent parameters. The figures are self explanatory as far
as the parameters are concerned. The atmosphere of the
primary whose centre is atO is divided into 100 shells (see
Fig. 1). The separation of the components as r1/R where
r1 is the radius of the primary and R(= OO′) is the sep-
aration of the centres of gravity of the components. We
have considered two cases of separation r1/R = 1/2 and
1/5 and the atmospheric extension is set to equal to stel-
lar radius or B/A = 2. The total radial optical depth T is
taken to be 103, 104 and 105. The velocities of expansion
are measured in terms of mean thermal units and uniform
expansion velocity law is assumed. If VA and VB are the
velocities at A and B respectively, then the velocity at any
shell boundary Vn =

[
VA + VB−VA

N

]
. At A(τ = τmax = T )

the velocity is VA and at B(τ = 0) the velocity is VB. The
parameters ε which is defined in Eq. (23) is the probabil-
ity that a photon is destroyed by collisional de-excitation
and it is < 1 for non-LTE line formation and this is set to
equal to 0 and 10−4. The quantity β which is the ratio of
absorption in the continuum to that in the line centre is
set to 0 and 10−4 in our calculations.

Figure 3a gives the source functions Ss and S given in
Eqs. (24) and (25) for various parameters shown in the
figure, across the atmosphere from n = 1 to n = 100.
These results represent a static and scattering medium
with VA = VB = 0 and ε = β = 0 and the incidence radia-
tion factor I = 1 (see Eq. (28)). The incident radiation at
A is given according to Eq. (27). The source function Ss

(which does not contain the reflected radiation) decreases
slowly from the point τ = T to the point τ = 0 in the

scattering medium with T = 104. When the reflected radi-
ation is included, the source functions for r1/R = 1/2 and
1/5 are considerably enhanced as these source functions
include the incident radiation from the companion along
the axis OO′. Figure 3b gives the line profile in the direc-
tion of the line of sight, corresponding to the source func-
tions given in Fig. 3a. The line fluxes are plotted against
the normalized frequency points Q (see Eq. (32)). As the
medium is static, the profile are symmetric with central
absorption. More photons are removed from the centre
when the line central optical depth is 104, and the cen-
tre becomes almost black. When the incident radiation
from the component is added, there is more emission in
the central portion of the line. The shapes of the lines in
all these cases remain symmetric about the centre of the
line. Figure 3c gives the variation of the same quantities as
those given in Fig. 3a except that velocity VB = 50 mean
thermal units. There is a marked difference in the varia-
tion of the source functions in the two cases when VB = 0
in Fig. 3a and VB = 50 mtu in Fig. 3c. There is a sudden
fall in the source functions near τ = T and these remain
almost constant throughout the rest of the atmosphere.
Figure 3d presents the line profiles along the line of sight
corresponding to the source functions presented in Fig. 3c.
These are similar to P-Cygni type profiles formed in an ex-
panding media with blue shifted absorption. However the
emission although small, confines more or less to the cen-
tre of the line formed in static medium. The reason for this
is that the absorption core is formed in the portion of the
atmosphere which is directly in between the star and the
observer. As it is moving towards the observer there will
be a Doppler shift of the frequencies of the line photons
towards the blue side of the centre of the line. The photons
that are emitted in the side lobes of the atmosphere are
merely scattered and the Doppler effect due to the veloci-
ties in the farther part and nearer part (with respect to the
observer’s point) will nearly counter each other, maintain-
ing an approximate symmetric emission about the centre.
Therefore the asymmetry caused by the Doppler shifts is
minimal in the emission part of the line. Figure 3e gives
the variation of equivalent widths against the expanding
velocities VB for the parameters shown in Fig. 3. We can
see that when no radiation is incident from the compan-
ion the equivalent widths are much larger than when there
is incident light falling on the component from the com-
panion. This can be understood from the fact that more
photons are emitted through the line when external radi-
ation is falling on the atmosphere from out side, which is
also clear from a comparison of profiles given in Figs. 3b
and 3d. However in both the cases of reflection and no re-
flection the equivalent widths increase with the increasing
velocities of expansion. Figure 3f gives the variation of the
ratio of height of emission (He) to that of depth absorp-
tion (Ha). There is no change in the reflection and non
reflection cases. However it is noteworthy that this ratio
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Fig. 3. a) The source functions S and Ss are shown with respect to the shell numbers in a scattering medium for velocity
VA = 0; VB = 0. b) Line profiles with reflection and without reflection from the secondary components for a static and scattering
medium with total optical depth T = 104 and VA = 0; VB = 0. c) The source functions S and Ss are shown with respect to
the shell numbers in a scattering medium for velocity VA = 0;VB = 50. d) Line profiles with reflection and without reflection
from the secondary components for a static and scattering medium with total optical depth T = 104 and VA = 0; VB = 50. e)
Equivalent widths of the lines are plotted against the expansion velocity VB. f ) The ratios of the height of the emission to the
depth of the absorption in the lines for both the case of reflected radiation and non reflected radiation are shown against the
velocity of expansion VB
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Fig. 4. a) Same as those given in Fig. 3a but with ε = 1 10−4 b) Same as those given in Fig. 3b but with ε = 1 10−4 c) Same
as those given in Fig. 3c but with ε = 1 10−4 d) Same as those given in Fig. 3d but with ε = 1 10−4 e) Same as those given in
Fig. 3e but with ε = 1 10−4
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Fig. 5. a) Same as those given in Fig. 3a but with ε = 1 10−4 b) Same as those given in Fig. 3b but with ε = 1 10−4 c) Same
as those given in Fig. 3c but with ε = 1 10−4 d) Same as those given in Fig. 3d but with ε = 1 10−4 e) Same as those given in
Fig. 3e but with ε = 1 10−4
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reaches a maximum at about VB = 4 to 10 mtu and then
falls slowly as the expansion velocities increase.

Figures 4a to 4e gives the results for the set ε = 10−4

and β = 0. The Planckian B(T (r)) is set to equal to
1 uniformly throughout the medium. The source func-
tions described in Fig. 4a represent the internal emission
of photons. Although we have given a uniform emission
B(T (r)) = 1 throughout more of the radiation is scattered
towards the boundary τ = 0 (r = rmax = B) this is the
effect of sphericity or curvature scattering. The incident
radiation increases the source function only marginally.
Corresponding line profiles (along the line of sight) are
given in Fig. 4b. these profiles show emission with absorp-
tion at line centre and these are symmetric with respect
to the centre of the line as the medium treated here is
static. Figure 4c gives the source functions of a medium
which is expanding with VB = 50 mtu. These are different
from those given in Fig. 4a for a static medium. The max-
imum is spread over a larger spatial extent which is the
effect of scattering in an expanding gas. The correspond-
ing line profiles are given in Fig. 4d. The emission is spread
through the line except for a small absorption around the
central position of the line. The equivalent widths of those
lines are plotted in Fig. 4e with respect to expansion ve-
locities V ′Bs. It is interesting to note that when there is
no reflection, the equivalent widths of the emission lines
increase with velocities of expansion while the incident ra-
diation from outside reduces the emission line equivalent
widths considerably.

In Figs. 5a to 5e, the results of the cases ε = β = 10−4

are plotted. These results show similar characteristics
those given in Figs. 4a to 4e.

We have performed several calculations for different
parameters to study the effects of irradiation on line for-
mation in the expanding atmosphere of the component
of a close binary system. We have studied the variation of
source functions, with different velocity gradients and also
various values of irradiation from the secondary compo-
nent. The line profiles computed with reflection are com-
pared with those computed without reflection and for sev-
eral cases of the proximity of the two components. We ob-
tained P-Cygni type profiles. These results are described
in six sets. The figures are self explanatory as far as the
parameters that are used, are concerned.

Appendix A:

The segment Pτ in SPO′ is given as (see Fig. 1)

Pτ = OP [A(B′/B) + (1−A2)1/2],

where

B = (OP/OT )A,B′ = (1−B2)1/2,

A = ξη′ − ξ′η,

η = sin E = SE/PE, η′ = cos E,

ξ = abc+ a′b′c+ a′bc′ − ab′c′,

ξ′ = (1− ξ2)1/2.

And

a = OQ/OP, a′ = (1− a2)1/2,

b = PS/O′P, b′ = (1− b2)1/2,

c = PQ/O′P,C′ = (1− c2)1/2.

Similarly the segments such as Pτ ′ in O′ PW are given
by,

Pτ ′ = OP [µ(s′/s) + (1− µ2)],

where

µ = ν′∆ + ∆′ν,

s = (OP/OT )µ, s′ = (1− s2)1/2,

ν = WE′/PE′, ν′ = (1− ν2)1/2,

PE′2 = PW 2 +WE′2, ∆ = ξ(1− 2δ2)− 2ξ′δδ′,

∆′ = (1−∆2)1/2, δ = SO′/PO′, δ′ = (1− δ2)1/2.

Appendix B:

As we are dealing with scattering along the ray and the
medium has no sources, we can set B = 0 and U2 = 0.
Then the intensities τ are given by,

U+(τ) = U1e−kτ
1− r2e−2k(T−τ)

1− r2e−2kt
, (B1)

U−(τ) = r U1
e−kτ − e−k(2T−τ)

1− r2e−2kT
, (B2)

where

k2 = (1− ω)[1 + ω(1− 2p)], (B3)

and

r =
k − 1 + ω

k + 1− ω
. (B4)

And the emergent intensities are

U+(T ) = U1
e−kT (1− r2)

1− r2e−2kT
, (B5)

U−(0) = U1r
1− e−2kT

1− r2e−2kT
. (B6)

If we represent the reflection and transmission coefficients
by r(T ) and t(T ) respectively, then and

r(T ) = r
1− e−2kT

1− r2e−2kT
, (B7)

t(T ) =
(1− r2)e−kT

1− r2e−2kT
. (B8)

We set p = 1
2 (for isotropic scattering) then

k = (1− ω)1/2, r =
1− k

1 + k
. (B9)

In the above treatment we assumed that ω < 1. If ω = 1,
the case of pure scattering, the treatment will be different
and we obtain, (for B = 0 and U2 = 0)

U =
U1

1 + T (1− p)

[
1 + (T − τ)(1− p)
(T − τ)(1− p)

]
(B10)
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The reflection and transmission factors are

r(T ) =
T (1− p)

1 + T (1− p)
→ 1 as T →∞, (B11)

t(T ) =
1

1 + T (1− p)
→ 0 as T →∞, (B12)

so that

r(T ) + t(T ) = 1. (B13)

which express conservation of energy.
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