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Abstract. The dispersive characteristics of interfacial waves in
low β plasma is studied. The condition for the existence of these
waves is derived. It is assumed that the magnetic field and the
propagation vector are inclined at different angles to the den-
sity discontinuity which is horizontal.The dispersion relation for
such a configuration is solved for the interfacial (surface) waves
as a function of the propagation angle for a given inclination of
the magnetic field. The normalized phase speed of these waves
are studied for different values of α = ρ02/ρ01, γ1 and γ2.
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1. Introduction

Gravity and magnetism play an important role in stratifying
and structuring the solar atmosphere. The combined action of
these forces complicates the description of waves that occur in
the solar atmosphere. Surfaces of discontinuity across which
the plasma and magnetic properties vary rapidly can support
magnetohydrodynamic interfacial (surface) waves.

By interfacial waves we mean waves that propagate on a
sharp (discontinuous) interface. These waves are anisotropic
and guided by the interface. The phase speed of these waves
generally lies between the bulk speeds of the media on either
sides of the interface.

Several authors have investigated wave propagation in a
magnetically structured atmosphere (see Roberts (1991) for a
review). Wentzel (1978), Roberts(1981), Somasundaram and
Uberoi (1982), Miles and Roberts (1989), Jain and Roberts
(1991), Singh and Talwar (1993) have investigated the prop-
erties of waves arising on a single magnetic interface. Recently,
Satya Narayanan (1995), studied surface waves in a two layered
fluid model wherein the magnetic field was inclined at an angle
to the interface in the upper region, while the lower region was
field free. The dispersion relation was solved for the normal-
ized phase speed of the waves as a function of the propagation
angle θ for different values of the parameters α = ρ02/ρ01 and
δ = c2/vA1. Here ρ02 and ρ01 are the mass densities on either

side of the interface, while vA1 and c2 are the Alfven velocity
and sound velocities in the media 1 and 2, respectively.

In this paper, we will be concerned with a plane surface, the
single magnetic interface. Although the single magnetic inter-
face is the most elementary of field structures, its detailed study
provides a valuable insight into the general nature of the sur-
face wave propagation. We also assume the plasma β to be very
small. The dispersion relation is presented in the next section.
Discussion of the results and concluding remarks are made in
the subsequent sections.

2. Dispersion relation

Let x = 0 be the interface between two compressible media
where the region x < 0 is denoted by the suffix ”1” and the
region x > 0 by the region ”2”. The magnetic fields which are
inclined at an angle to the interface can be chosen to be of the
form

B01,2 = (0, B01,2Cosγ1,2, B01,2Sinγ1,2) (1)

The wave vector is chosen to be

K = (0, kSinθ, kCosθ) (2)

Here γ1,2 is in general different from θ. Let ρ01 and ρ02 be
the mass densities on either side of the interface and c1,2 and
vA1,2 be the sound and Alfven speeds, respectively. Solving
the linearized magnetohydrodynamic equations at the interface
leads to the dispersion relation (Uberoi and Satya Narayanan
(1986))

τ1ε2(ω, k) + τ2ε1(ω, k) = 0 (3)

where

ε1(ω, k) = ρ01(−ω2 + k2v2
A1Sin

2(θ + γ1)) (4)

ε2(ω, k) = ρ02(−ω2 + k2v2
A2Sin

2(θ + γ2)) (5)

and

τ 2
1,2 = (ω4 −A + B)/(C −D) (6)

where

A = k2ω2(v2
A1,2 + c2

1,2)
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B = k4c2
1,2v

2
A1,2Sin

2(θ + γ1,2)

C = k2c2
1,2v

2
A1,2Sin

2(θ + γ1,2)

D = ω2(c2
1,2 + v2

A1,2)

Eq. (3) is very similar to Eq. (21) of Jain and Roberts (1991).
In the incompressible limit, c1,2→∞ τ 2

1 = τ 2
2 = k2 and Eq. (3)

reduces to

ρ01(−ω2 + k2v2
A1Sin

2(θ + γ1))

+ρ02(−ω2 + k2v2
A2Sin

2(θ + γ2)) = 0 (7)

which gives

(ω2/k2) = (B2
01Sin

2(θ + γ1) + B2
02Sin

2(θ + γ2))/E (8)

where E = (ρ01 + ρ02). Eq. (8) is a generalization to Eq. (27) of
Jain and Roberts (1991).

The dispersion relation (3) with the coefficients (4), (5) and
(6) is quite complicated to study analytically and one has to
resort to numerical methods. However, under some specific ap-
proximations which are realistic and applicable to the solar at-
mosphere the dispersion relation can be simplified. Assume that
the sound speed is small compared to the Alfven speed. In this
case

τ 2
1 = k2(1− ω2

k2v2
A1

), τ 2
2 = k2(1− ω2

k2v2
A2

) (9)

Define α = ρ02/ρ01, x = ω/kvA1, λ1 = Sin(θ + γ1) and λ2 =
Sin(θ + γ2). It is important to note that for the low β case the
pressure balance condition given by

p1 + B2
01/2µ = p2 + B2

02/2µ (10)

at the interface would yield ρ1v
2
A1≈ρ2v

2
A2. In this case τ1 =

k(1 − x2)1/2 and τ2 = k(1 − αx2)1/2. The dispersion relation
can be simplified to yield

(1− αx2)1/2(λ1
2 − x2)+

(1− x2)1/2(λ2
2 − αx2) = 0 (11)

Before discussing the roots of the above dispersion relation, we
shall discuss some special cases.

The dispersion relation (11) for the case whenγ1 = γ2 = π/2
reduces to

(1− αx2)1/2(Cos2θ − x2)+

(1− x2)1/2(Cos2θ − αx2) = 0 (12)

which can be simplified to yield

αx4 − (1 + α)x2 + Cos2θ(1 + Sin2θ) = 0 (13)

so that

x2 = ((1 + α)± [(1− α)2 + 4αSin4θ]1/2/2α (14)

The above relation is same as given in Jain and Roberts (1991).
For the case θ = 0 (parallel propagation) the dispersion relation
(11) becomes

(1− αx2)1/2(Sin2γ1 − x2)+

(1− x2)1/2(Sin2γ2 − αx2) = 0 (15)

which can be simplified to yield

x6(α2 − α) + x4(1− α2 + 2αSin2γ1 − 2αSin2γ2)

+x2(Sin4γ2 − αSin4γ1 + 2αSin2γ2 − 2Sin2γ1)

+(Sin4γ1 − Sin4γ2) = 0 (16)

For γ1 = γ2, the above relation reduces to

αx4 − (1 + α)x2 + Sin2γ(1 + Cos2γ) = 0 (17)

so that

x2 = ((1 + α)± [(1− α)2 + 4αCos4γ]1/2)/2α (18)

Whenever θ, γ1 and γ2 are such that (θ + γ1) and (θ + γ2) is 90◦,
the dispersion relation reduces to

(1− αx2)1/2(1− x2)+

(1− x2)1/2(1− αx2) = 0 (19)

This is same as in Roberts (1981) with l = 0. This has roots
x = ±1,±α−1/2, which do not describe surfaces waves.

In order to derive the relation for the existence of surface
modes, we turn to Eq. (3). It is interesting to note that Eq. (3)
will have real roots only when ε1 and ε2 are of opposite signs
and the decaying constants τ1,2 should both be positive for the
roots to represent surface wave propagation. This implies that
ω/k should lie in the region

min(vA1,2Sin(θ + γ1,2)) < ω/k <

max(vA1,2Sin(θ + γ1,2)) (20)

For the case when the lower fluid is field free as considered
by Satya Narayanan (1995), the behaviour of the surface waves
differ significantly compared to the present study.

3. Discussion of the results

It is evident from the dispersion relation that the phase speed
depends onα, γ1, and γ2. We are forced to present the results for
specific values of these parameters. The normalized phase speed
of the surface waves as a function of the propagtion vector θ is
presented in Fig. 1 for α = 0.8, γ1 = 60◦ and different values
of γ2 = 50◦, 60◦, 70◦, 75◦. The phase speed has an increasing
trend upto θ = 30◦ and monotonically decreases.

An increase in the inclination angle γ2 lowers the phase
speed of these waves for θ > 30◦.

Fig. 2 presents a similar situation when α = 0.8, γ2 = 40◦

and γ1 = 30◦, 35◦, 45◦ and 50◦. In contrast to Fig. 1, the phase
speed of the wave increases monotonically upto θ≈50◦ and then
decreases. Here also, the phase speed of the wave decreases as
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Fig. 1. Normalized phase speed of the surface wave as a function of θ

Fig. 2. Same as in Fig. 1, but for different γ

the inclination angle is increased for θ > 50◦. The magnitude
of the phase speed is less for the waves in Fig. 2 compared to
Fig. 1. This clearly indicates the strong dependence of the phase
speed on the inclination angles. We have carried out similar
calculations for other choice of parametric values. The results
are qualitatively similar and we skip the details.

Fig. 3 presents the variation of phase speed for different val-
ues of α with γ1 = 60◦ and γ2 = 50◦. The phase speed reduces

Fig. 3. Variation of the phase speed of the surface wave for different
γ2 with γ1 = 60◦.

Fig. 4. Variation of the phase speed of the surface wave for different α.

significantly with increasing values of α, the trend being the
same. The variation is more for θ > 40◦.

4. Conclusions

The dispersive characteristics of the interfacial (surface) waves
are greatly altered when the inclination angle of the magnetic
field to the interface is different from being parallel or perpen-
dicular. The magnitude of the phase speed decreases with an
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increase of α. More realistic geometries will have to be studied
to get a better picture of these waves. This will be pursued in
future.
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