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A high-precision experiment to measure parity-nonconservation in atomic Yb has been proposed recently
[D. De Mille, Phys. Rev. Lett74, 4165(1995]. We use a relativistic configuration-interaction approach to
highlight the importance of correlation effects in the?6'S,)—6s5d(®D;) parity-nonconserving electric
transition amplitude for Yb. Our result shows that this transition amplitude is dramatically altered by the strong
mixing between some of the configurations that make up the odd-paggp(6P;) atomic state.
[S1050-294{@7)03305-2

PACS numbegps): 32.80.Ys, 11.30.Er, 12.15.Ji, 32.70.Cs

In a recent paper, De Mille has proposed that theusing first-order perturbation theory as
6s%(1S,)—6s5d(°D,) transition in atomic Yb can be used
for studying parity nonconversatigPNC) [1]. He points out
that (i) the aforementioned transition has a very large Elec=E (| D[ )W [Hpnd Vi)
electric-dipole E1) amplitude arising from PNC, a strongly [ Ei—E
suppressed magnetic dipol&l () amplitude, and a moderate
Stark-inducedE1l amplitude;(ii) extremely high-precision + (WilHend Wi)(W[D[W3)
measurements of PNC in Yb using the well-developed tech- Ei—E ’
nigue of Stark PNC interference appear possible; @nda
comparison of PNC between the large number of stable iso- . _— )
topes of Yb may provide a unique test of the standard mode?’.\'heremfi> and|Vy) are, respectively, the initial and final

In this paper we are concerned with only the theoretical asgtomic states anfll’,) is an intermediate atomic state whose

pects of the PNC-inducedEl amplitude of the parity is opposite that of the initial and the final atomic
65%(1S,)— 655d(°D,) transition in atomic Yb. states. The energies of these states are givels; b, and

The E1 transition amplitude arising from a parity-

nonconserving weak interaction can, in general, be written TABLE I. Cl results for the reduced matrix element of the
parity-nonconserving §(S,) —6s5d(3D;) transition amplitude

in Yb. Units are inieagQyx 10~ %

25068.222 ' ——

*p 24489102 4F146S6p i Case Configurations Elpnc

' 4f6e5d 1 even: 414652 4f 1¥6s5d(J=1) 0.355
odd: 4f1%6s6p(J=0)

2 even: 41%6s,4f%6s5d(J=1) 3.284
odd: 4f'6s6p(J=0),4f%6s6p(J=1),

w

% 4f¥%6p5d(J=1)
3‘:1) 3 even: 46s2,4f1%6s5d(J=1); 2.765
4 4f15d%(J=0); 4f¥5d%(J=1);
6s6 0 ’ '
1 4f 6s6p Af¥6p2(J=0); 4fl%6p2(J=1);
S T 4fB%6p5d(J=1); 4f%s26p(J=1)
4f 6s odd: 4f1%6s6p(J=0); 4f1%6s6p(J=1)
4fY%6p5d(J=1), 4f%6s5d%(J=1),
FIG. 1. Some low-lying energy levels of Yb in crh (not to 411%6s6p?(J=1), 4f1%s?5d(J=0)
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TABLE 1l. Comparison between theoretical and experimental TABLE Ill. Comparison between theoretical and experimental
energies of atomic states. Units are intm energies of atomic states fowy=0.997, a;=0.654, anda,
=0.98. Units are in cm?.

State Theory Experiment
State Theory Experiment
6s6p(3P) 13 839.179 17 288
6s6p(3P,) 14 373.477 17 992 6s6p(*Po) 16 882.601 17288
6s5d(3D,) 24 582.682 24 489.102 6s6p(°Py) 17 641.244 17992
6s6p(1P,) 24 217.839 25 068.222 6s5d(°D,) 24 497.245 24 489.102
6s6p(*P,) 25075.991 25 068.222

E, . D is the electric-dipole operator aithyc is the nuclear-
pin-independent neutral weak current interaction Hamil-will be given in this unif. The odd-parity configurations
tonian given by[2] 6s6py(d=1), 6s6p3(J=1), 6p1/,5d3(J=1),
6p3bds(Jd=1), and G35d;5(J=1) have dramatic ef-
Ge fects onE1lpyc. The addition of the first three configurations
Henc=5.75 Qw > ysp(re), changes its value te-0.228< 10~ ! with the largest contri-
€ bution (—0.635< 10" %) coming from the 86p(*P,) inter-
mediate state. The reason for the change in sigBlglc is
because of the change in ordering of the56(°D;) and
6s6p(tP,) energy levels relative to the Dirac-Fock case.
The addition of the 65,5ds5, configuration produces an-
other change in the ordering of those two levels and the very
small energy separation (70.2 ch) between them leads to
very large contribution (7.2810™ 1Y) once again from the
6s6p(1P,) state. The total contribution from all the interme-
diate states in this case is 7.5220 1. The effect of the
6ps5ds, configuration is to reduce this value to 3.284
X 10" 1% The result of the 140dd plus evennonrelativistic
or 54 relativistic configurations calculation clearly shows
that the effect of electron correlation dalpyc is much
_ weaker from the initial and final states than it is for some of
¥ o(IMm)) Er: Cral ®(IM ™)), the intermediate states. Table Il gives the energies obtained
for the atomic states in this case and the corresponding ex-
where|¥ ) is a general atomic state with angular momen-perimental energieg5]. The agreement between these ener-
tum (J,M) and parity(m). Note that|®,) is a configuration ~gieés can be improved by introducing an effective Hamil-
state with the some angular momentum and paritjlag).  tonian that contains adjustable shielding factors. The
The configuration mixing coefficients are given &y,. The  €lectron-electron interaction part of this Hamiltonian can be
diagonalization of the atomic Hamiltonian in the spaceWritten as(7]
spanned by all the configurations required to describe the
initial, final, and intermediate atomic states yields its eigen- 4 K K
values and eigenvectors, which are, respectively, the energies,ee_ gl a* q <
and the mixing coefficients of the atomic states. The occu-ﬂeﬁ_E ¥ 2k+1 q;_k i (01,61)Yi(02,62) P
pied orbitals used in the determination®f py for the tran-
sition of experimental interest in the case of Yb were ob-
tained by performing a single-configurationsf®s?...6s%)  where a’s are multipole shielding factors and if chosen
Dirac-Fock calculation. The 5, 6ps;, 5dz,, and Hs,  properly they can account for certain types of shielding ef-
virtual orbitals were generated from\Va,_; potential[4] that  fects that are not included in our calculations described ear-
was constructed by exciting as@rbital. All these calcula- lier (see Table)l For ag=0.99, a;=0.654, anda,=0.98,
tions were carried out using th&RASP code[5]. we get our best fit for energiésee Table Ill. The agreement
The dominant contribution tB1pyc comes from the odd-  between our calculated and experimentBl; and P, ex-
parity 6s6p(*P,) intermediate state, which differs in energy perimental energies is indeed very good for this case and we
from the 65d(°D;) state by only 579.12 ci (see Fig. 1L obtainElpyc=—0.768< 10" MieayQ,y . The contribution of
In the present work we consider the effect of this and severahe 6s6p(1P;) state is—0.895< 10 tlieayQyy. Our result
other low-lying configurations built out of the occupied 5 is in reasonable agreement with De Mille’'s estimate of
and @ orbitals. Some of the residual shielding configura-|Im Elpnd =1.1(4)x 10 lea, [1], which takes into consid-
tions will be taken into account through an effective Hamil- eration only the dominant contribution tBlpyc, Which
tonian. Table | gives the contributions to the reduced matrixcomes from the p5d configuration, which strongly mixes
elementElpyc for three different cases. The Dirac-Fock with the 6s6p configuration in the'P; state. His estimate is
approximation (no  configuration mixing yields based on information obtained from previous atomic struc-
0.355x 10 tieay,Qyy (note that all the subsequent valuesture calculations on Y§8—10]. It is not straightforward to

whereGg is the Fermi constant an@,y is the weak nuclear
change given by, =2[ZC,,+NC,,]. Z andN* are the
number of protons and neutrons, respectivély, andC,,
are the vectotnucleon—axial vector(electron coupling co-
efficients, p(r¢) is the normalized nucleon number density,
and vys is the usual pseudoscalar Dirac matrix. We use
relativistic configuration interactiofCl) approacHh 3] to de-
termine the strong correlatidmany-body effects that char-
acterizeE1lpyc for atomic Yb. An atomic state in this ap-
proach is written as a linear combination of configuration
states

>
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determine the accuracy of the present calculation even The author is grateful to Dr. David De Mille, Professor
though it contains the most important correlation contribu-Eugene Commins, and Professor Dmitry Budker for very
tion arising from the mixing of 66p and 65d configura- valuable discussions. He would also like to thank Dr. De
tions. We are presently exploring other nonperturbativeMille for drawing his attention to a calculation of PNC in Yb
methods that will incorporate the unusually strong correlaby Porsewet al. [11] after this paper was submitted for pub-
tion effects that make the parity-nonconservig transition  lication. The result of that calculation is in reasonable agree-
amplitude in Yb larger than in other atoms of experimentalment with this calculation before adding the shielding fac-

interest. tors.
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