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Rotation curves of galaxies: Missing mass or missing physics 
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Abstract. The rotation curves of galaxies are modelled using very special properties of an 
hydrodynamically turbulent fluid possessing helicity fluctuations. The development of correlations 
among these fluctuations leads to the formation of organized structures characterized by a new flat 
branch of the spatial energy spectrum in addition to the well known Kolmogorov spectrum. It is 
proposed that the flat nature of the rotation curves of galaxies may be a result of the energy 
cascading processes occuring in turbulent galactic atmospheres. Thus, in this model, there is no 
need of invoking dark matter to account for the flat rotation curves of galaxies. 
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1. Introduction 

We observe coherent structures and correlated motions delineating well defined 
patterns on all spatial and temporal scales. Some of  the examples are: a convection 
cell, a tornado, a cyclone, convective flows on stellar surfaces, the Red spot on Jupiter, 
spiral patterns in galaxies, clusters of  galaxies and perhaps - ourselves. The belief is 
that at the roots of  this diversity lie the unique and transcendental properties of  non- 
equilibrium systems. Such systems exhibit organization of  matter and motion through the 
formation of  dissipative structures. A stable system near equilibrium, when disturbed 
bounces back to the initial state. But a system driven sufficiently far from equilibrium 
may become unstable, reach a bifurcation point after which it attains a completely 
new identity, a dissipative structure, named so because it needs more energy to 
sustain itself than the initial configuration. Associated with these bifurcations is the 
breaking of  symmetry, i.e. one starts with symmetric equations and ends up with 
asymmetric solutions, one of  which the system chooses to obey. Sea shells often show 
a preferential chirality! That means, we need representations of  dynamics, which are 
not invariant with respect to time inversion. Such representations have been found 
for highly unstable systems [1]. Thus, structure formation takes place in an intrinsically 
random, irreversible, unsymmetric non-equilibrium systems. The essential conditions 
for the formation of  dissipative structures, thus, are: a macroscopic system far from 
equilibrium, with correlated fluctuations that can maintain themselves by deriving 
from their environment. Far from equilibrium conditions exist everywhere in the 
universe, the big bang being the ultimate example. Many structures like clusters of  
galaxies are suggested to form and exist in non-equilibrium circumstances [2]. Attempts 
to fathom them in equilibrium have lead us to darkness; to an unending search and 
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an unquenchable need for dark matter! Here, we show that the flat rotation curves 
of galaxies can be successfully modeled if the recently discovered properties of a 
turbulent medium are included in addition to the standard gravitational effects [3]. 
Fluid turbulence is a complex subject. Even a genius like Heisenberg seems to have 
said that he hoped, before he died, someone would explain quantum mechanics to him, 
but after he died, he hoped, God, would explain turbulence to him [4]. Simply put, 
turbulence is a random state of fluid motions on many different spatial and temporal 
scales exchanging energy among themselves. The spatial and temporal scales are 
constrained by boundaries, buoyancy and dissipation. The problem of turbulence is 
addressed in two ways: (i) the Kolmogorov approach in which the statistically stationary 
states are studied using dimensional arguments and (ii) the Navier-Stokes way, in which, 
one hopes that the solutions of the Navier-Stokes equations would comply with the 
predictions of the Kolmogorov approach [5, 6]. Here, we describe the Kolmogorov 
approach. 

2. The Kolmogorov  approach 

It is well known that the energy cascades from large spatial scales to small spatial scales 
in a homogeneous and isotropic three dimensional fluid turbulence and the energy 
spectrum is given as E(K)c~K -5/3. But, what if the assumptions of homogeneity and 
isotropy are dropped? In two-dimensional turbulence, the energy 

E = / ~pV2d3r (1) 

and the enstrophy 

U = f ( v  x V)2d3r (2) 

are the two quadratic inviscid invariants for vanishing normal component of velocity V 
i.e. for rigid or periodic boundaries. The Kolmogorovic arguments give energy spectrum 
in the inertial range, corresponding to the energy invariant as 

E(g)  of. g -5/3 (3) 

and corresponding to the enstrophy invariant as 

E(K) oc K -3 (4) 

It has been verified by several means that the energy cascades from small scales to large 
scales according to the spectrum given by equation (4) and from large scales to small 
scales according to the spectrum given by equation (3). Thus a 2-D system admits an 
inverse cascade of energy. This is also true for a quasi 2-D system i.e. the one with the 
vertical component of velocity and spatial scale much smaller than their horizontal 
components [7, 8]. But the question is: is inverse cascade of energy possible in a 3-D 
system? Since, the real world is 3-dimensional! The recent developments in 3-D 
turbulence point to the existence of inverse cascade under well defined conditions. Using 
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the standard fluid equations 

d V  1 
- -  -- Vp + F,  (5) 
dt p 

o;  
o t  + v .  (pV) = o, 

p = p ( p ) ,  F = -Vqo,  

it can be shown that the system supports another invariant called helicity H defined as 

H(t) = f V .  (V x V)d3r  (6) 

under vanishing normal component of  the vorticity 07 = V x V. Turbulence with H # 0 
lacks reflectional symmetry. For a reflectionally symmetric system, H = 0, but it may 
happen that the higher moments of  helicity distribution are non-zero and affect the 
statistics of  the flow [9]. The moments of  helicity distribution are defined as 

1 . . 
Hn = lim mEith(i)] ", 

v~-~oo VL 

where 

h' = f (v. v × V)d3r, (7) 

and Vi is a small volume element of  the total volume Vt.. For a random distribution, 
H1 = 0 but all even moments are finite and in particular/-/2 ~ 0 i.e. the fluctuations about 
the mean have constant variance. Thus, a new invariant I is defined as 

I = f ( (V 1 • ~r x V l ) ( V  2 • V x V2))d3r -~ A f E2(K)dK (8) 

which describes helicity-helicity correlations and can be expressed in terms of  the energy 
spectrum E(K) for a quasi-normal distribution of  helicities. Here E = f E(K)dK is the 
total energy density. 

In the inertial range for the energy invariant we have 

(KVK)V~ = e = V~r, 

where K = wavenumber, V0 = the initial rms velocity on small scales, r = the duration 
for which this energy is available, Vr = velocity in Fourier space and e = average energy 
transfer rate per unit mass (ergs g - i  s - l ) .  This, combined with KE(K) = V~c yields the 
well-known Kolmogorov spectrum 

E(K) = ~2/3K-5/3. (9) 

It would be appropriate to comment  on ~ here. Kolmogorov (1941) conjectured that in a 
quasi-steady state there should be a stationary flow of  energy in the K space from the 
source to the sink. Thus the energy transfer rate per unit mass should be a constant and be 
equal to the dissipation rate at the sink. Although numerous experiments have confirmed 
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that e is a strongly fluctuating quantity, surprisingly there is no experimental evidence 
indicating a deviation from the Kolmogorov spectrum [10]. 

The value of c for the galaxy has been estimated to be of  the order of  
8 × 10-3ergs g-~ s - l  by considering the various sources (such as supernovae, stellar 
winds, etc) which contribute to the turbulence, energetics. In the same vein ~- is calculated 
to be 3 × 107yr [11]. 

From equation (5), we find total energy E = f E ( K ) d K  or 

E(I) = ~2/312/3 (for K ~-- 1/l). 

The corresponding velocity field may be described as 

V(I) = (lzc) U3 (l/lz)l/3 (10) 

for some normalizing length, lz. Similarly, in the inertial range for the l-invariant, we 
have 

(KVr)[KE2(K)]  = , '  = Io/~-, (11) 

where ¢' = the average mean square helicity density exchange rate between the scales. 
Combining this with 

r e ( K )  = V~ (12) 

gives 

e(K)  = (to/r)2/Slc -1. 

Or in real space, 

E(I) = ( I t~r)  2/5 ln(l/lz) for l > lz. (13) 

Here, the normalizing length I z can be used to make the transition from one inertial law 
(eq. (10)) to the other (eq. (13)). The velocity field in this range is described as 

V(I) = (C2/zr) '/5 Ix/ln(l/lz)], (14) 

where 

I0 = V~lz 

which follows from eqs (11) and (12). 

3. Modeling of  rotation curves 

The issue of the flat rotation curves of galaxies and the need for dark matter is described 
very precisely in figure 1 [12]. The flat nature of the orbital motion in galaxies is 
accounted through the relationship (mV2) /2  = G M m / R  by assuming that M cx R and 
therefore velocity V = constant. Since the mass M ~ R has no luminosity associated with 
it, it is known as dark matter. We present an alternative explanation of a flat rotation 
curve, by resorting to some properties of turbulence described in the previous section. 
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I 
Rotation curves o f  galaxies 
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Figure 1. The case for dark matter in spiral galaxies. Top: The orbital velocities of 
the planets (dots) decrease with distance from the Sun exacdy as predicted by 
Newtonian gravitation (line), assuming a system dominated by one solar mass at its 
center. Bottom: The cosmos is not as well behaved on galactic scales. Here a graph of 
orbital velocity versus radius has been computed for NGC 3198, a spiral galaxy in 
Ursa Major, assuming that the distribution of light serves as a good indicator of 
the distribution of mass. The failure of the observed velocities (dots) to match the 
predicted ones is striking and points to an unseen component of dark matter in the 
galaxy. Courtesy the author. 

The complete  energy spectrum in a hel ical ly turbulent medium derived in Krishan [8] 
and Krishan and Sivaram [13] is reproduced here in figure 2. We have modeled the 
rotation curves of  21 galaxies observed by  Amram et al [14], using the Kolmogorov 
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0 I z I 

Figure 2. Turbulent energy spectrum. Is, normalizing length; Ic, break due to 
Coriolis force [15]. 

branch IV(l) cx/I/3] and the flat branch IV(l) cx x / In / ] .  We propose a law of  velocities 
which is of  the type 

V(l)  = At  + Bl 1/3 (15) 

in the inner, i.e., l <_ lz, and 

V(l)  = C1 - j /2  + O v / l n ( l / l z )  (16) 

in the outer regions, i.e., l >_ I z of a galaxy, where A, B, C and D are the coefficients to be 
determined from the fits, with the observed velocity fields. 

The first terms on the right-hand side of  eqs (15) and (16) correspond to rigid rotation 
and gravity, respectively; therefore 

A = w ,  

the angular velocity of  a galaxy, and 

c = , / o n ,  

where G is the universal gravitational constant, refers to the mass of  a galaxy. The second 
terms on the right-hand side of  eqs (15) and (16) are due to the turbulence cascading so 
that 

and 

B = ~1/3 

D = (e2lzr) 1/5. 

By a judicious choice of  lz we can estimate Vo, r ,  e, w, and mass  M of  a galaxy. Some of  
the modeled rotation curves are shown in figure 3. 

Our model gives typical values of  the various quantities as 

V0 ~ 1 0 0 k m s  -1, 

T ~ 107 yr, 
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Rotat ion curves o f  galaxies  
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Rotation curves of the galaxies. Figure 3. 

c ~ 10-2 ergsg -I s - l ,  

W ~ ,  1 0  - 1 6  S - I  

Mass ~ 101° Mo.  

One must note that we did not have to choose any abnormal values of  lz for obtaining the 
best fits and it lies in the range 2 -10kpc .  This tells us that on scales smaller than Iz, the 
turbulence is isotropic and on the scales equal to and large than I z the turbulence becomes 
more and more anisotropic facilitating the inverse cascade of  energy. 
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4. Conclusions 

The velocity-radius relation has been derived using Kolmogorov arguments. We find that 
the matter at a large radius exhibits a balance of hydrodynamic forces, i.e., dynamical 
pressure, and Reynolds stress produced by the forced small-scale flow without the 
necessity of invoking a gravitational force, generated out of a mass distribution of the 
type M cx R. In other words, our system is hydrodynamically bound. 

We also find that e and 7- values for each of the galaxies obtained are almost of the 
same order as that quoted for our galaxy [11]. Therefore, it appears possible to model the 
observed rotation curves of galaxies by suitably combining the effects of rigid rotation, 
gravity, and turbulence. The validity of the 'turbulence model' can be further 
substantiated by confronting it with the observations of the velocity fields on the larger 
scales-like clusters and superclusters. It is intriguing that the energy spectrum (figure 1) at 
the largest scales i.e. E(L) c< L 2 or V(L) cx L resembles the Hubble flow. Is the Hubble 
flow, a result of an inverse cascade of energy in a helically turbulent universe? 
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