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Hybrid approach to relativistic Gaussian basis functions: Theory and applications

Rajat K. Chaudhurf, Prafulla K. Pandd,and B. P. Das
Non-Accelerator Particle Physics Group, Indian Institute of Astrophysics, Bangalore 500034, India
(Received 28 August 1998

We present a hybrid method to solve the relativistic Hartree-Fock-Roothan equations where the one- and
two-electron radial integrals are evaluated numerically by defining the basis functions on a grid. This procedure
reduces the computational costs in the evaluation of two-electron radial integrals. The orbitals generated by this
method are employed to compute the ionization potentials, excitation energies, and oscillator strengths of
alkali-metal atoms and elements of group IlIA through second-order many-body perturbation theory. The
computed properties are in excellent agreement with the experiment and other correlated theories.
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[. INTRODUCTION its extension to molecules is straightforward. Also, the gen-
eration of occupied and virtual orbitals do not require sepa-
The two most critical choices in the application of many-rate computations.
body perturbation theoryMBPT) [1-3] (relativistic as well The success of the relativistic FBSE method lies in its
as nonrelativisticto atomic and molecular systems involve proper imposition of kinetic-balance conditip®2] between
the appropriate selection of basis functions and the partitionthe large and small component spinor which in essence can
ing of the full HamiltonianH into a zeroth-order Hamil- be regarded as a proper boundary condition upon the basis
tonianH, and a perturbatiol [4—6]. These choices become set. Several papers by Grant and co-worké&gj and Parpia
extremely important when highly accurate estimates of vari{23], among others, document the success of the relativistic
ous properties are demanded from low-order perturbativEBSE method. However, in their finite basis set calculation
computations. Intensive research has focused on developidgr light to heavy atoms (Z2-50 and 8§ Grant and co-
appropriate basis sets and meth¢8s-8] to minimize the  workers[13] employed kinetically balanced Slater-type or-
error between the theoretically computed properties and itbitals (STO’s) which have the correct functional behavior
experimental value. The strong dependence of the convebut are particularly unsuitable for analytical self-consistent-
gence of MBPT on the choice &1, was first demonstrated field (SCPH molecular calculations. Gaussian-type orbitals
by Kelly [4] in his pioneering work on the beryllium atom. (GTO’s) or contracted Gaussian-type orbité3GTO’s), on
Using aVN~1 instead of the traditionaV/N potential for the the other hand, are suitable in the evaluation of multicenter
excited orbitals, Kelly obtained a vast improvement in theintegrals in molecules. It was shown by Ishikawa, Baretty,
perturbative convergence for that atom. He also demonand Binning[24] that GTO’s can give rise to a natural de-
strated that more rapid convergence can be achieved fromszription of the relativistic wave functions within a finite
shifted denominator that corresponds to the summation of aucleus.
certain class of diagrams to all order. The most important feature of the FBSE method in the
It is well known that a theoretical treatment of heavy at-STO[exp(—{r)] or GTO[exp(—¢r?)] framework is to deter-
oms must incorporate certain special features that are nehine the appropriate exponential parameteibecause the
essential for light atoms. This is largely due to the fact thatquality of the wave function largely depends upon this pa-
the relativistic effects are so large for heavy atoms that it isameter, and in recent years there has been an increased in-
imperative to treat them by using the relativistic Dirac equa-erest in finding out the appropriate exponential parameter
tion. Despite its enormous computational complexity andand contraction coefficientdor CGTO's) that can provide
cost, tremendous progress has been made over the past derrect functional behavior of the relativistic wave-functions
cade and a half in solving the four-component Dirac equaat the nucleug15,25—-28. For instance, Matsuoka and co-
tions for many-electron systems using numerical Dirac-Fockvorkers[26] have reported accurate configuration average
(DF) and the finite basis set expansidRBSE) method DF energies for various atoms through the FBSE method
[9-21]. The numerical atomic DF self-consistent-field calcu-using a kinetically balanced well-tempered basis set in the
lation is more compact and accurate, but its extension téramework of the finite nuclear size approximation. While
molecular systemgmulticenter many-electron systemis  Matsuoka and co-workef26] used a well-tempered Gauss-
cumbersome. Moreover, the generation of a virtual orbital i9an basis set in computing DF energies, Clementi and Coro-
tedious and frequently encounters convergence difficultiemgio [15] employed a kinetically balanced geometric-type
The FBSE method, on the other hand, is rather simple, andxponent for the Gaussian primitives, and obtained DF ener-
gies for various atoms that are comparable to the numerical
DF value[29]. Later Malli and StyszynsKi28] reported all-
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and Hess[27] employed a relativistic CGTO basis set in 0 & )
their relativistic coupled cluster calculation for the nuclear &:( . ) BZ( ) (2.2
guadrupole moment of CsF. Though the slai®mTO) and o 0 0 '

Gaussian(GTO) types of basis functions are most widely _

used in atomic many-body calculations, this choice is, inwhereo stands for the Pauli matrices, ahé the 2< 2 unit
principle, arbitrary. Since it is beyond the scope of thismatrix.

present work to discuss this aspect at length, we refer the In the central field approximation, the SCF equations are
review articles by Granf30] and Sapirsteif31] for details.  determined by minimizing the energy functiorialwith re-

We have developed a numerical procedure to solve thepect to®, whereE is given by
atomic relativistic DF-SCF equations using the FBSE N
method. This approach is basically a hybrid of numerical and I
analytical DF (FBSE) methods. Here, the large and small E:<q)|i=21 [Cai it (Bi= )M+ Vi dri)]
component radial functions are expanded in terms of Gauss-
ian primitives on a grid using appropriate constraints on the 1
small component radial basis to impose the kinetic-balance +§ Zj IFi—r | @), 23
condition. While the large- and small-component parts of the o
radial functions are generatedn a grig through the FBSE  and the determinantal wave functigantisymmetri¢ u is
procedure, the one- and two-electron radial integrals ar@yit from single-particle orbitals
evaluated numerically to avoid the complicated analytical
expressions for the two-electron direct and exchange radial F P (N X em( 6, &)
integrals(the analytical evaluation of one-electron radial in- u(r, 6, ¢):(ir1Q (r) (0.0))" (2.9
tegral is rather straight forwaydThis is the part which dif- el DX = el 2
SCF or Hartree-Fock-SCF  equations. This = procedurgomponent radial wave functions, respectively, that satisfy
(numerical computation of two-electron integiaidso pro-  the orthonormality condition
vides an easy way to reduces tNéN+1)/2 operations to
N, operations N andN, correspond to the number of basis o
set and occupied orbitals, respectiyaly DF-SCF computa- fo dr[Pno(r)Prr (1) + Qnu(r)Qnr ()= 8npr - (2.5)
tion, and, thereby, reduces the computational time of relativ-
istic self-consistent-field calculations for heavy atoms. In th%ere, the quantum number classifies the orbital according
perturbative computations of ground- and excited-state propy, their symmetry, and is given by
erties, the two-electron radial integrals are also directly com-
puted (numerically wherever they appear to avoid the two- k==2(j—-D(j+3), (2.6)
electron integral storage problem. In this paper, we present
some pilot calculations of the ionization potentials and exciwherel is the orbital quantum number arjé=1+ 3 is the
tation energies of alkali-metal and elements of group lllAtotal angular quantum number. Here the spinggs (6, ¢)
computed through second order MBPT using relativisticare given as
wave functions obtained from the hybrid DF-SCF approach.

In Sec. I, we describe the hybrid DF-SCF method that .
has been used to generate the relativistic single-particle Xwem™=
atomic orbitals for post-Dirac-Fock computations. Section IlI
briefly reviews the background of the MBPT approach forypnere C(ij;m—o,0) and Y, ,_,(6,¢) represent the
computing ionization potentials, electron affinities, and exci-c|apsch-Gordon coefficients and the normalized spherical

tation energies. The numerical results are presented in Sefarmonics respectively, and;, stands for the two-
IV and compared with other perturbative calculations, Wherecomponen:t spinors. ’ 7

available. We make some concluding remarks in Sec. V.

e2

A C(l%j;m_UvU)Yl,m—a(0!¢)nU! (27)

[o=n

With these definitions, it can be easily shown that the
application of the variation principle to EqR.3) leads to a
coupled integrodifferential equations By,(r) andQ,,,(r).
Therefore, to obtain the numerical wave functions, we have
to solve these two coupled integrodifferential equati@#.

The Dirac-Coulomb Hamiltonian for a many-electron sys-Alternatively, a pseudoeigenvalue equati@hartree-Fock-
tem can be conveniently written as Roothan [33] can be obtained by using an analytic

expansion-type wave function and minimizing the energy
5 functionalskE with respect to the expansion coefficients.
€ It has been found that the numerical wave functions have
_;j| k more accurate asymptotic behavior than the analytical ones,
(2.1) though both provide total energies of comparable accuracy.
The accuracy of the total energy and wave function obtained
) through the Dirac-Fock-Roothan equatiotthe FBSE
in which the Dirac operatora and 8 are expressed by the method canin principle be enhanced to any degree by in-
matrices creasing the number of basis functions, uteality only a

Il. HYBRID RELATIVISTIC HARTREE-FOCK-ROOTHAN
EQUATION

>

=1

N| =

N
H:_Zl [Cai-pi+(Bi— 1M+ Vpudr) ]+
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finite number of basis can be used because the computationahere F is the Fock matrix, and5 C, and e are overlap,
time increases very rapidly with the increasing number ofeigenvector, and eigenvalue matrices, respectively. This
basis functions. Moreover, the use of large basis functionpseudoeigenvalue equation is first transformed into an eigen-
severely impedes the efficiency of the post-Dirac-Fock comvalue equatiorF'C’=C'e¢, which on diagonalization pro-
putations. duces the desired eigenvalues) (and eigenvectors @

In the present paper, we introduce a hybrid scheme te=S~%2C’). Since the detailed derivation of the relativistic
solve the DF equation through the pseudoeigenvalue apHartree-Fock-Roothan equation and its matrix elements
proach where basis functions are defined on a grid and on€analytical as well as numerical fojrhas been discussed in
and two-electron radial integrals are evaluated numericallyletail by several authof®,13], we conclude this section by
as opposed to the conventional relativistic Hartree-Fockreiterating that the DF matrix elements appearing in the hy-
Roothan equations. Since the basis functions are defined orbaid relativistic Hartree-Fock-Roothan equations are evalu-
grid and the matrix elements appearing in the relativisticated numerically to avoid the evaluation of a complicated
Hartree-Fock-Roothan equations are evaluated numericallgnalytical expression of two-electron matrix elements, and to
this scheme can be regarded as a combination of numerichprove the accuracy of the orbital properties. The present
and analytical approaches to the solution of DF-SCF equaprocedure also provides an easy route to implergniN,
tion. Here, like the traditional analytical basis set expansiorspecifies the number of occupied orbijadperations instead
approach, the large and small components of the radial wavef N> (N denotes the number of basis functipder the
functions are expressed as linear combination of basis funevaluation of the two-electron radial integrals that appear in
tions, i.e., the DF-SCF equation. A brief outline of the scheme is the
following.

In the SCF procedure, the integrals and matrices are
evaluated over the members of the basig{gef rather than
over the members of the set of solutiohg;} because the
and atomic or molecular orbital&olutions of SCF equatiopare
not known until the calculation is complete. Since these two
sets of functions are related by

Pril(r)= E Chp0kp(r) (2.9

Qnilr)= Z Cogrn(r), (2.9
(2.15

where the summation indqxruns over the number of basis ‘”i—;l Cri®u
functionsN, ng(r) andng(r) are basis functions belong-

ing to the large and small components, respectively, @i}ﬂ the two-electron matrix element &f (the Hartree-Fock po-
and CS are the corresponding expansion coefficientstential term) in the{¢} basis can be written as

Though any basis functions can be used, we have chosen
GTO’s that has the following form for the large component:

=2 (il — |¢ o)
gLy (N=Nirmee o, (2.10
with =2 2 2 CLCuldidl |¢J¢> (216
ap=aoBP (21D which involves a two-index tranformation. However, this

) - two-index transformation process can be easily avoided by
wherea, 3 are user-defined constants, specifies the or-  evaluating theJ;; matrix elements in a mixed basis, i.e., in a
bital symmetry(1 for s, 2 for p, etc), and\'; is the normal- 14 41 pasis. This is trivial, because the occupied orbitals can
ization factor for the large component. The small componenpe updated(like density matrix during the SCF iteration
part of the basis function is obtained by imposing the kineticand, therefore, the two-electron matrix element
balance and has the form (i Lir 17 ;) can be directly computed at each iteration
without invoking two two-index transformation.

d «
Gen(N) =Nl g + 7/ 91, (2.12

IIl. THEORY
where A. Overview of multireference MBPT method

Multireference many-body perturbation theofyIBPT)

may be regarded as a reformulation of the exact Stihger

equation into a small reference space that is a subspace of the

full Hilbert space. This reduction is achieved by first sepa-

Using the above definitions, the Dirac-Fock-Roothan equarating the atomic or molecular orbitals into three sets—the

tion for a closed-shell system can be cast into a pseudoeigenere {c}, valence{v}, and excited orbital§e}—and then

value equation of the form introducing projection operator® for the reference space
(also called valence or model spaesedQ for its orthogonal

FC=SCe, (2.14  complement or virtual space:

Ny= \/Zn—[4(K2+K+n) 1. (213
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d tomatically vanish for this particular choice. The present
Pzz |a)(«af (3.1 second-order MBPT computation employs MP partitioning,
=1 where the zeroth-order energy is constructed from the

and Hartree-Fock potential.

Q=1-P= > |m)ml, (3.2 S o .
m=d+1 The relativistic Dirac-Coulomb Hamiltoniaipresented in

) Sec. l) for a many-electron system may also be partitioned
where the set$a} and{m} are, respectively, reference and jntq H=Hqy+V, where

complementary space functions, athdis the dimensionality

of the reference space. With the aid of these two projectors, N NCZ( 0 N

the exactN-electron time-independent Scidinger equation  Ho=2, [ca;-pi+(8—1)m]— >, r—+2 u(r)
can be transformed into the equation =1 = =1

B. Relativistic many-body perturbation theory

(3.7
Her W3) =E|W}) (33 _ _ _
which subsequently redefines the perturbatipn
involving the effective Hamiltoniam
_ 1 e? N
Her=PHP+PHQ(E-QHQ) 'QHP, (349 V=3 E 9|—2 u(r,), (3.9
1#] I’i - I’J i=1

whereH is the exact Hamiltonian, anld . acts only on the

reference space spanned fay} and produces the exact ei- \here the single-particle operatoi(r;) is introduced to ac-
genvalues for the selected states as given by the full-spaceount the effectiveor averagg potential experienced by an
Schralinger equation. electron due to the presence of other electrons, and is known
Certain approximations are necessary to solve Bdl),  as the Hartree-Fock potential. The Safirger equation of
since the right-hand side involves the unknown eigenvBlue the zeroth-order Hamiltoniaki, provides a set of orbitals
andQ space states, which, in principle are of infinite dimen-that are first partitioned into core, valence, and excited orbit-
sion. The expansion of the denominator about the zerothy|s and then two projectoBandQ are introduced to cast the
order eigenvalue transforms the Brillouin-Wigner tydes  N-electron Schidinger equation into an effective Hamil-
[Eq. (3.4] to the Rayleigh-Schitinger-type effective tonian equation[Eq. (3.5]. Finally, the effective Hamil-
Hamiltonian Hf) tonian matrix is diagonalized to obtain the desired positive
_ and negative eigenvalug$lote that while carrying out rela-
Hetr= PHP+PHQ(Eg—Ho) 'QHP+---. (3.5 tivistic 9l]\/IBPT c%lculations, negative energyystgtes are ex-
cluded from sum over intermediate statgm)) to avoid

The exact HamiltonianH is partitioned intoH, (the . . :
continuum dissolutior

zeroth-order Hamiltonignand V (the perturbatiopy where The th tical ionizai . v d ibed
the zeroth-order Hamiltonian is taken to be diagond end e+ eoretical lonization process 1s ustafly described as
1—M™ +e. However, the ionization process may also be

Q subspaces, and may be written as a sum of diagonal on! 4 . SR
electron operatorh, defined by represented aM ™ +e—M. That is to say, the ionization

potential (IP) can be computed either by estimating the en-
ergy required to remove an electron from the neutral atomic
ho=2 &li)il, (3.6 or molecular system or evaluating the energy released during
' the electron attachmen(EA) process to its positively
wherei runs over all orbitals, ane| is theith orbital energy. charged counterpart. Though in principle the computed ener-
The partitioning of the orbitals must ensure a well-defineddi€s Will be the same, in practice the theoretical treatment of
separation of the orbital energies between core, valence, ag€Se Wo processess are not equally convenient. For alkali-
excited orbitals. Failure to meet this requirement introduce&n€tal atoms or systems with one electron in the outermost
numerical instabilities into the perturbative computations Sn€ll: it is convenient to estimate the ionization potential by
Although, in the above, we have chosen the zeroth-ordefOMPuting the energy released due to the addition of an elec-
energy to be the “sum over orbitals,” this choiceisprin- 0N tO its positively charged species closed-shell coelt
ciple, at our disposal, anih practiceit strongly affects the IS to be emphasized that a_\ltho_ugh,_ theoretically, the above
convergence properties of the perturbative expansions. Thef¥© Processes should provide identical numbers, for a trun-
are two general categories known as the generalizéteMo ~cated many-body calculation they need not be the same, be-
PlessetMP) [34] and the generalized Epstein-NeskeN) cause the orbitals and their corresponding energies are not

partitioning schemef35]. The generalized MP partitioning identical in these two situations. In the first case the core and
utilizes a “sum over orbitals” treatment. whereas the gener_virtual orbitals experience the potential due to the valence

alized EN pursues a “sum over states” formulation in con-€lectron(singly occupied orbita) but this potential is not

structing the zeroth-order Hamiltoniath,. Different poten- present in the second. case. .
tials may also be invoked to construgt, and a wide range The second quantized representation of electron attach-

of potentials have been chosgh5] with varying degrees of MeNt process to a closed-shell core is
success. The Hartree-Fock potential is the most widely used 0 . SNt
potential for MBPT computations, because many terms au- [Ty =a,|®o)=a,(ITc_;ac)[0). (3.9
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Here |0) and |®,) represent the true and closed-shell
vacuum states, respectively. Operatagsand a;r denote the
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Koopmans’ EA/IP value. The second and third terms of Eqs.
(3.15 and(3.16 are the correlation and relaxation contribu-

valence and core creation operators, respectively. For a N&ion to the second order EA/IP, respectively.

like system, the core orbitals ares},,2s;5,2p4, and
2ps3,, and the valence orbitals will besg,,3p1,, and

3psp. For convenience, we introduce the notation
a,B,v, ... for core orbitalsp,q,r, ... for excited orbitals,
u,v,w, ... for valence orbitals, anth and n for valence

and/or excited orbitals.

The second quantized representation of the zeroth-order

HamiltonianHy and the perturbatiol’ are

Ho=2, hjala;+U;ala (3.10
T
and
VZ%% gija ajaac—Ujala;, (3.11
]
where
N B S B Z(ry)e
hij= [ dr ¢i(r) Cai'pi+(ﬁi_1)m02—— (1),
(3.12
=fd3r¢i(F>TU<F>w,-<F>, (3.13

and

ow-e| [ =

'//u(rl) 'r//j(rZ) (1) ().
(3.19

Using these definitions, the second-order effective Hamil-

tonian matrix[Eq. (3.5)] for electron attachmentEA) and
detachment(IP) processes can be expressed in terms o
single particle orbitalfor the Hartree-Fock potentiahs

2)_6 + 2 JevmnImnav _ gaﬂumgvmaﬂ
amn €, €, €En— €y A Bm €, T Eg—€,~ €
(3.195
and
IP@=_¢ 98yapYapsy
Y A €gte,—€,~€p
9papady

+ 2 Bapqdpgpa ’ (316)

Apa €at €g— €p €

where €'s are the single-particle orbital energies, ﬁgd
represents

ajklzgijkl_gijlk- (3.17

While the first term of Eqg3.15 and(3.16) accounts for the
PHP of Eq.(3.5), the second and third terms of E(8.15
and (3.16 represents the second term of E8.5). The first
terms of EQs.(3.195 and (3.16 are generally called the

The problems of continuum dissolution first occurs at sec-
ond order because of the appearance of the energy denomi-
nator. Unless the restriction of the summation over only
positive energy states is in place, this could lead to a vanish-
ing energy denominator.

IV. RESULTS

A. lonization potentials of neutral alkali-metal atoms
and group-llIA elements

We present the ionization potentials of alkali-metal atoms
computed through second-order MBPT in Table I, and com-
pare with experimenti6] and with the second-order pertur-
bative calculations of Johnson and co-worKdrg|. The only
difference between these two theoretical calculations lie in
the choice of basis function@part from the dimension of
the basis function While Johnson and co-workers generated
the basis through thB-spline method, we employ geometric
Gaussian functioriwith ay=0.0052 andB3=2.75) to con-
struct the atomic orbital basis. The entire computation is per-
formed with a basis that ranges from sA®p15d15f (for
lithium) to 28s24p20d16f10g (for francium).

Table | clearly demonstrates that the accuracy in the ion-
ization potential estimated through Koopmans'’ theoféi
of alkali-metal atoms decreases with increasing atomic num-
ber. For instance, the Koopman ionization potential for the
Sy, State starts off with an accuracy of 1% fos,2 state of
lithium, and finally ends up with 12% for thesy,, state of
francium. We also observe similar trends foy, and ps,
states, where separation betwepy), and p;, states in-
creasegdegenerate in lithiupnwith increasing atomic num-
ber.

Apart from sodium, inclusion of the second-order MBPT
}erms (relaxation and correlation contributipsignificantly
improves the agreement with the experiment, especially for
the heavy alkali metals. While the accuracy of our computed
ionization potential for lighter atoms is similar to that of
Johnson and co-workef49], the accuracy in the estimated
IP for heavy atomgcesium and franciuinis better than
theirs. In particular, our computed IP values for cesium are
comparable to the CCSIxoupled cluster calculation with
singles and double®f Eliav et al.[20]. This small but non-
negligible difference in computed IP for cesium and fran-
cium between our results and that of Johnsbal. clearly is

a basis set effect. However, it should be noted that while
pursuing higher-order MBPT calculations, the use of such a
large basis will be highly computer intensive unless some
deep-lying core and high-lying virtual orbitals are discarded
from the calculations.

Table Il compares the ionization potentials of group-Ill1A
elements computed through second-order MBPT with the ex-
perimentq 36]. We found several interesting features for this
series. First of all, unlike the alkali-metal atoms, the Koop-
mans’ IP values do not change appreciably down the series.
Second, the second-order MBPT provides a less accurate IP
value for these elements compared to the alkali-metal atoms.
The deviation in computed IP values for these elements is
quite expected because the nondynamical correlation effects
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TABLE |. Second-order ionization potentiéh a.u) of alkali-metal atoms.
This work Otherg Experiment’

Atom lonizing orbital KT AC Second order Abs. errapo)

Li 2sy, 0.19631 0.00162 0.19793 0.11 0.19797 0.19814
2P 0.12862 0.00134 0.12996 0.22 0.13001 0.13024
2Pz 0.12862 0.00134 0.12996 0.22 0.13001 0.13024
3Sy0 0.07370 0.00034 0.07404 0.18 0.07415 0.07418

Na 3s10 0.18204 0.00558 0.18762 0.65 0.18790 0.18886
3pip 0.10947 0.00168 0.11115 0.40 0.11123 0.11160
3pase 0.10939 0.00167 0.11106 0.41 0.11119 0.11152
4sy), 0.07003 0.00120 0.07123 0.49 0.07141 0.07158

K 45, 0.14751 0.01181 0.15932 0.13 0.15994 0.15952
4py 0.09568 0.00436 0.10004 0.31 0.10033 0.10035
4ps) 0.09547 0.00430 0.09977 0.11 0.10005 0.10009
55150 0.06095 0.00268 0.06363 0.13 0.06395 0.06371

Rb 5S4/ 0.13939 0.01393 0.15333 0.12 0.15430 0.15351
5p1s 0.09078 0.00497 0.09575 0.48 0.09626 0.09619
5pa 0.08995 0.00474 0.09469 0.44 0.09518 0.09511
6S1/» 0.05861 0.00315 0.06176 0.00 0.06216 0.06177

Cs 651/» 0.12753 0.01519 0.14272 0.27 0.14511 0.14310
6P 0.08556 0.00642 0.09198 0.15 0.09253 0.09212
6Pz 0.08374 0.00567 0.08941 0.23 0.08996 0.08962
7S/ 0.05515 0.00341 0.05856 0.19 0.05939 0.05867
7P 0.04177 0.00219 0.04396 0.001 0.04393
P32 0.04106 0.00202 0.04308 0.001 0.04310
8s1» 0.00419 0.00962 0.01381

Fr 7Sy 0.13184 0.01926 0.15110 0.96 0.15271 0.14967
P12 0.08584 0.00788 0.09327 0.69 0.09431 0.09392
TPz 0.08041 0.00542 0.08583 0.46 0.08656 0.08623
8sy)n 0.05605 0.00411 0.06016 0.06074

3Referencd 31].

bReferencd 36].

Correlation and relaxation contribution to the ionization potential.

are quite large for these elements due to the quasidegeneracy-workers[19]. It is also evident from Table | that correla-

of the highest-lying occupied orbitals. For example, thetion and relaxation effects are important for inner orbitals,
2s155,2p12, and 2oy, orbitals of Boron are quasidegenerate which indicates that the contribution of correlation and re-
and hence, a multireference MBPT treatment is absolutelyaxation term will be large for deep-lying core orbitals. The
necessary for this system to improve the accuracy and lowprecise estimation of correlation and relaxation effects for

order perturbative convergence rate.

ation effects tend to cancel each otlisee Fig. ], and the
success of the theoretical treatment depends upon the relatiys,i-ation.

| the deep-lying(or innep core, therefore, requires higher-
Generally, the theoretical treatment of the electron attachgrger many-body effects and, hence, it is imperative that

ment process is difficult because the correlation and re|axhigh-order perturbative computatiofie the coupled clus-

importance of these two effects. For alkali-metal atoms, the

relaxation effect is small compared to the correlation effect
(especially for heavy alkali metalsnd, hence, they do not

cancel each other. Figure 1 also illustrates that while the _ _ _ o
contribution from the relaxation part is small and roughly the ~ The direct computation of hole-particle excitation energy
same for all the alkali metals beyond sodium, the correlatiorinvolves the matrix eIementS—l(fg), which through second-

contribution steadily increases with the increasing atomicorder MBPT can be written as

number. This pattern, however, may change at higher-order

MBPT and, in fact, has also been observed by Johnson and

and elements of group IlIA

ter method are necessary for the accurate estimation of core

B. Excitation energies of neutral alkali-metal atoms

HEI=(DYH R DR =(DolafaH R ala,l o). (4.)
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TABLE Il. Second-order ionization potentiéh a.u) of group-lll1A elements.

This work Experimerit
Atom lonizing orbital KT AP Second order  Abs. errdpb)
B 2p1p 0.27587  0.02984 0.30571 0.25 0.30494
2P 0.27579  0.02983 0.30562
3S1p0 0.11451 0.00596 0.12047
434/ 0.05172 0.00168 0.05340
Al 3pip 0.19522 0.02444 0.21966 0.15 0.21998
3pasn 0.19472  0.02439 0.21911
4s,), 0.09709 0.00646 0.10355
5Sy 0.04563  0.00224 0.04787
Ga 44 0.19609 0.02569 0.22178 0.59 0.22046
4pay, 0.19275  0.02576 0.21851
5S4/ 0.09996 0.00697 0.10693
6510 0.04670 0.00231 0.04901
In 5p1p 0.18881 0.02666 0.21541 1.30 0.21263
5P, 0.17974  0.02544 0.20518
6512 0.09383 0.00822 0.10205
7S10 0.04422 0.00307 0.04729
TI 6p1 0.19863 0.02397 0.22260 0.80 0.22446
6P 0.16602  0.02300 0.18902
7S 0.09647 0.00789 0.10436
85y 0.04526  0.00279 0.04805
%Referencd 36).

bCorrelation and relaxation contribution to the ionization potential.

001

T T T T T
------ variation of correlation energy
—— variation of relaxation energy

10 20 30 40 50

Atomic Number

60 70

80

FIG. 1. Variation of correlatioridotted ling and relaxation en- S, € ' ter
ergy (solid line) as a function of atomic number for alkali-metal Sponds to two-body effective interaction for excitation pro-

atoms.

Appropriate expansion dfi{?) yields
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4.2

Here the first two terms of the right-hand side of KE4.2)
corresponds to the matrix elements for electron attachment
and detachment processes, and the next two terms corre-

cess. In Eq.(4.2) the last sum excludes=«a and p=r.
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TABLE Ill. Second-order excitation energi¢®m cm 1) and oscillator strengths of alkali-metal atoms.

This work Experiment
Atom Transition Energy Abs. err(%o) Osc. str. Energy Osc. str.
Li 2S1—2P1j 14915 0.08 0.770 14903 0.753
251 2P3p 14916 0.08 14904
25— 3S1pp 27188 0.07 27206
Na 3510~ 3P1p 16783 1.00 1.041 16956 0.982
3S1—3P3p 16801 1.00 16973
351/2—> 451/2 25544 008 25739
K 4S1;5— 4P 13010 0.19 1.231 12985 1.02
45— 4p3) 13068 0.19 13043
45,581 21101 0.36 21026
Rb 551/5—5P12 12636 0.45 1.338 12579
551,—5p3 12868 0.40 12817
551/2—> 651/2 20097 018 20134
Cs 651/,— 6pP1)2 11178 0.40 1.414 11134
651/246[)3/2 11700 027 11732
61— 7S1)2 18469 0.36 18535
Fr 78]_/2H 7p1/2 12692
751/2*> 7p3/2 14324
731/24> 851/2 19957
3Referencd 38].

However, the computation of excitation energies for alkali- Excitation energies and oscillator strengths computed
metal atoms involving the highest singly occupiét the through second-order MBP(lising second-order energy and
Dirac-Fock level orbitalis rather simple, because the effec- an unperturbed dipole matrix elemgfur alkali-metal atoms
tive two-body interactions do not appear. For example, theand group-llIA elements are compared with the experiment
281/, 2py; transition process for the lithium atom can be [38] in Tables Ill and IV. These tables demonstrate that the

expressed as second-order MBPT estimates thg,— p4, transition ener-
Ao Ly ) gies more accurately thasy,,— ps, for alkali-metal atoms.
| ®2p,,)=15°2p12) =gy, Az, |15°25) Here we also find that the error in the estimationsh

— 8y, transition energies is legen an averagecompared to
S1o— P12 @nd sy o— pgpp for alkali-metal atoms. While the
second-order single-reference MBPT provides an accurate
estimate for the excited states of alkali-metal atoms, it yields
somewhat inaccuratgcompared to alkali-metal atoms
excited-state energies for the group-IlIA elements. This de-
viation in the estimation of the excitation energies for ele-
ments of group IlIA is not unexpected, since the highest
occupieds and p orbitals are fairly close lying for these
—(132|a231/2H(ﬁa231/2| 18?). (4.4)  elements, configurations likes’np(J=3) andnp3(J=13)
interact strongly with each oth¢B9]. Therefore, these two
Oconfiguration state function&CSF’s should be included in

—a£p1/2a251/2 251/2|132> azp J1s%). (43
Therefore, the &;,,— 2p,,, transition energy through second
order MBPT reduces to

AE251/2H2F’1/2:<¢)2Pl/2|H(2)|q)2’31/2> <(1)251/2|H |(D251/2>

=(18%|ag,, HGa}, |15)

A careful analysis shows that the quantity on the right-han e
side of Eq.(4.4) is nothing but the difference in the ioniza- the reference space for an accurate description of the ground

tion potential value(in terms of the neutral lithium atom and excited states. In other words, a multireference MBPT

orthe difference in the electron affinity valtie terms of the treatment is necessary for an accurate description of the
positively charged lithium atom Therefore, once the va- ground and excited states for these elements. Since our
lence ionization potentials are known for these alkali-metasecond-order single reference space MBPT for the ground-
atoms, the excitation energies involving the highest smglyand excited-state energy computations do not treat the CSF
occupied orbital(at the Dirac-Fock level can be easily np® as reference space states, these CSF’s act as intruder
evaluated by computing the difference in the ionization po-stateg40], and, thereby, affect the perturbative convergence.
tential value. An extensive study of this problem is underway.
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TABLE IV. Second-order excitation energiéis cm™ 1) of group-IlIA elements.

Atom Transition This work Abs. erréio) Others? Experiment’
B 2p12— 381 40656 1.54 40040
2p3o—3S1)2 40635 1.53 40024
351/2*> 451/2 14720 1.66 14969
AI 3 p1/24> 431/2 25483 0.51 25347
3p3/24> 431/2 25362 0.51 25234
451/2—7 531/2 12220 099 12342
4p3/2—> 551/2 24489 220 23962
5Sl/Z_> 651/2 12712 066 12796
In 5p1/2*> 631/2 24880 208 24373
5p3/24> 631/2 22634 214 22160
6S1/5— 7S 12018 0.75 11929
Tl 6pP1/o— 7S 25951 1.99 27048 26478
6P3— 7Sy 18581 0.56 19196 18685
751/2—> 851/2 12359 070 12268
aReferencd41].
bReferencd 38].
V. CONCLUSION with some modifications, can also be applied to molecular

L . . _systems.
We have presented valence ionization potentials, excr[a—y

tion energies, and oscillator strengths of alkali-metal atoms

and group-llIA elements computed through single-reference

second-order MBPT, where the single-particle orbitals are ACKNOWLEDGMENTS
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