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Abstract. The result of blind deconvolution is a recon-
structed image that has non positive intensities. The num-
ber of these non positive pixels has been used as an es-
timator for the departure from a perfect reconstruction.
Simulations of reconstruction of objects convolved with a
kernel having one or two parameters are shown to demon-
strate the efficiency of the estimator. We thus present a
technique of determining the unknown parameters of the
point spread function by searching for the point in param-
eter space with the lowest number of nonpositive pixels. It
is also shown that the parameters of the convolving kernel
can be obtained even in the presence of noise. This method
was validated using a long exposure image of NGC 1409.
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1. Introduction

Turbulence in the earth’s atmosphere degrades the true
object intensity distribution of astronomical sources. The
thermal gradients in the air produce random phase delays
in the wavefront that cause blurring of images.

Usually all images which are exposed for several time
scales of the atmospheric turbulence are classified as long-
exposure images. As a general rule of thumb, the exposure
times in excess of a few hundredths of a second are consid-
ered as long exposure images. In long-exposure images the
high spatial frequency information is attenuated because
the recorded image is the source convolved with the time
average of the point spread function (psf).

A straightforward method to measure the atmospheric
psf is to measure the size of the intensity profile of an
unresolved source close to the object under study. Here
we assume that the medium through which the imaging is
done behaves in the same way for both the object under
study and the point source. If one has to get the true point
spread function then the point source and the object under
study should be within an isoplanatic patch.
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For the sun, we do not have access to a point source
for comparison. Furthermore, for extended sources like the
sun, the atmospheric point spread function will not be the
same on all parts of the image. We have a problem of an
image for which each part of the object has been convolved
with different point spread functions. Hence a single point
spread function will not be a correct characterisation of
the point spread function for an extended object.

Another technique (Collados 1987) of solar image re-
construction uses the limb of the moon in the photographs
taken during partial solar eclipse. In the absence of earth’s
atmosphere the moon’s limb would be seen as a sharp
edge against the bright Sun’s surface. When imaged us-
ing a ground based telescope, the moon’s limb is blurred
because of the atmospheric point spread function. The
gradient of the blurred limb profile of the moon gives the
point spread function of the telescope and atmosphere.
The point spread function thus found is used for decon-
volving the point spread function from the entire image.
This point spread function can be used to remove blurring
only near the limb of the moon and within the isoplanatic
patch which encompasses the moon’s limb. Use of this
point spread function for deconvolution elsewhere in the
image will not give true reconstruction.

Night time observers can have single stars for deconvo-
lution. To get a reconstruction which is close to the true
object intensity distribution, the star used for determining
the point spread function of the atmosphere and the object
under study have to be within the same isoplanatic patch.
In the case of photometry of extended objects like clusters
of stars, algorithms like Daophot are used (Stetson 1987)
where nonisoplanaticity effects are not considered.

The conventional method is to make a gaussian fit to
these observed profile and the full width at half maxi-
mum of the fitted gaussian is used to characterise the point
spread function. This creates spurious features if the true
point spread function is not a gaussian. In fact, there is
theoretical and experimental evidence for the non gaus-
sian nature of the atmospheric psf (Roddier 1980).

We propose a method of estimating the point spread
function at any arbitrary part of an extended image based
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on a parameter search. We assume a class of convolving
kernels involving one or two parameters and look for the
number of zeros and negative pixel values in the recon-
struction as a function of the parameters. We show that
it is possible to retrieve the unknown parameters of the
kernel. The technique proposed here has been rigourously
tested on simulations and also on real images.

2. Technique for recovering the point spread
function

The true object spectrum is convolved with the point
spread function of the medium.

< i(x, y) >= o(x, y)× < h(x, y) > (1)

where < i(x, y) > is the time averaged intensity distri-
bution, o(x, y) is the true object intensity distribution,
< h(x, y) > is the time averaged intensity distribution
and “*” denotes convolution. Performing Fourier trans-
form on either side of Eq. (1), we get

< I(u, v) >= O(u, v) < H(u, v) > (2)

where < I(u, v) > , O(u, v), < H(u, v) > are the Fourier
transforms of < i(x, y) >, o(x, y) < h(x, y) > respec-
tively, and u, v are the spatial frequency coordinates. To
recover the true object spectrum o(x, y), we perform in-
verse filtering on the degraded image. Therefore the true
object intensity distribution will be

O(u, v) =
< I(u, v) >

< H(u, v) >
. (3)

Inverse transforming O(u, v) we get o(x, y). In our
case h(x, y) is not known. Guess psf is constructed and
inverse filtering is done. Let hg(x, y) be the guess psf. The
Fourier transform of the guess psf is Hg(u, v). Using this
psf we get,

Og(u, v) =
I(u, v)

Hg(u, v)
. (4)

The reconstructed image spectrum og(x, y) will be the
inverse Fourier transform of Og(u, v).

The point spread function of the atmosphere which
blurs the object intensity distribution is (Tatarski 1961;
Fried 1966)

H(u, v) = exp[−3.44(
λ(u+ v)

ro
)α] (5)

where u is the spatial frequency vector, λ is the mean
wavelength of observation, ro is the Fried’s parameter (see-
ing parameter) and α the power index which was derived
to have a value of 5/3 in the case of astronomical obser-
vations. In practice there could be deviations in the value
of α. The behaviour of the point spread function in the
tail of the profile depends on α and ro is a measure of

the core of the point spread function profile. In our pro-
posed technique we use the Fried’s coherence function in
its functional form but both α and ro are left as free pa-
rameters.

The degraded image is deconvolved using a series of
point spread functions with different ro and α. The num-
ber of elements N , equal to and less than zero is found in
each reconstruction. In this two parameter space we search
for the minimum of number of zeros and negative values.
The corresponding ro and α at which the minimum occurs
are the true point spread function parameters.

In the presence of noise, Eq. (1) is written as

< i(x, y) >= o(x, y)× < h(x, y) > +n(x, y) (6)

where n(x, y) is the noise in the image plane which gets
added to the blurred object intensity distribution. Since
noise is additive, it is not convolved with the atmospheric
psf, but is effectively convolved with a delta function,
which in turn, can be considered as a psf with very large
Fried’s parameter, say rn, where rn � ro

< i(x, y) >= o(x, y)× < h(x, y) > +n(x, y)×hn(x, y)(7)

with hn(x, y) approaching a delta function. For obtaining
the parameters of the psf the above equation is Fourier
transformed and inverse filtering is performed.

< I(u, v) >= O(u, v) < H(u, v) > +N(u, v)Hn(u, v).(8)

Inverse filtering,

< I(u, v) >

Hg(u, v)
=
O(u, v) < H(u, v) >

Hg(u, v)
+
N(u, v)Hn(u, v)

Hg(u, v)
.(9)

This equation is inverse transformed and the number of
non positive pixels are found. Similarly for other ro values
Hg(u, v) is constructed and the number of non positive
pixels found. Since rn is always greater than ro, the num-
ber of non-positive pixels N contributed by the second
term is not expected to go through a minimum. Therefore
even in the presence of noise the minima in N is expected
to occur when the guess psf parameters matches with the
true ro and α values and hence ro and α can be found
by looking for the deepest minima in N in the parameter
space of α and ro.

This makes the proposed technique more general and
could be used when the functional form of the point spread
function of the intervening medium is of the Fried’s coher-
ence function type.

3. Simulations

3.1. Object intensity distribution

Simulations were carried out on single sources as well as
on multiple sources. The technique has been tested on
objects with intensity distribution with smooth edges as
well as on objects with sharp edge. Here we discuss the
case of an object with multiple sources and sharp edges.
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3.2. Search for minima in N in the absence of noise

The true object consists of two sources with unequal in-
tensities. The object plane has a plate scale of ≈ 0.06′′ per
pixel. The angular size of source A and B is 0.4′′ and 0.5′′

respectively. The two sources are seperated by a angular
distance of around 1′′. Figure 1 shows the true object in-
tensity distribution and Fig. 2 is the atmospheric psf. The
convolution of the object intensity distribution with the
atmospheric psf yields the degraded image. Figure 3 is the
convolved image. Fried derived the expression for the co-
herence function H(u, v) and obtained a value of 5/3 for
α. No departures are seen in the value of α = 5/3 under
the conditions of astronomical observations. Assuming α
is known, for each values of ro the degraded image is de-
convolved and N is obtained. The plot of N for various
ro is given in Fig. 4. We see that when the deconvolving
psf’s ro is equal to the true ro, N is a minimum.

However experimental evidence for departures from
5/3 power law has been reported in the case of horizontal
propogation near the ground (Bouricius & Clifford 1970;
Clifford et al. 1971; Buser 1971).

Therefore assuming that α is unknown, we do the fol-
lowing. For different values of α, the reconstruction is done
for a range of ro. Figure 5 is a plot of N vs. α at a given
ro. Here again we see that when the deconvolving psf’s α
becomes equal to the true psf’s α, N goes to a minimum.

Now assuming both α and ro are unknown, N is found
at each value of α and ro. Figure 6 is the surface plot of
N as a function of ro and α.

Wrong estimation of one of the parameters, α or ro
leads to inaccurate photometric values and also generates
spurious features in the reconstructed image. Figure 7 is
an example of an image degraded by a psf with α = 1.67,
but reconstructed using α = 1.7, ro = 5.0 cm and Fig. 8
is reconstruction done with correct value of α but with a
ro = 5.5 cm instead of the true ro = 5.0 cm. We can clearly
see spurious features in both the reconstructions.

In the presence of noise we need to reduce the grid size
of the parameters in order to get the correct ro or α.

3.3. Parametric search in the presence of noise

The above simulations were repeated with different kinds
of noise added to the blurred image.

Figure 9 is the image degraded by the atmospheric psf
with ro = 5.0 cm and α = 1.67. A uniform distribution
noise is added to the degraded image. The signal to noise
ratio in all the noisy images is around 5.0.

Figure 10 is the plot of the number of non positive
pixels N for various values of Fried’s parameter ro in the
presence of additive noise and Fig. 11 is the plot of the
number of non positive pixels N in each reconstructed
image for different values of α. In both the plots we see
that at the minima in N occurs at the true α and ro.
Figure 12 is the surface plot of N as a function of α and
ro. A search for the minima in N gives the exact values of
ro and α of the true psf.

Figure 13 is the convolved image to which zero mean
Gaussian white noise has been added. Figure 14 is the
plot of the number of non positive pixels N in each recon-
structed image for different values of Fried’s parameter ro.
Figure 15 and Fig. 16 are the plots of N against ro for re-
duced grid size of ro, 0.5cm and 0.1 cm respectively. It is
seen that the minima in N occurs at a ro close to the true
ro.

Figure 17 is the surface plot of the number of non pos-
itive pixels N in the ro, α parameter space. The minima
in N gives the true ro and α.

Figure 18 is the image intensity distribution with ad-
ditive Poisson noise. Figures 19, 20 and 21 are the plots
of the number of non positive pixels N against the Fried’s
parameter ro with grid size in ro equal to 1.0 cm, 0.5 cm
and 0.1 cm respectively. We can see that for a grid size
in ro equal to 1.0 cm the minima in N occurs at 2.0 cm.
When the grid size is reduced to 0.5 cm the minima in
N shifts to 5.5 cm and the minima in N stays at 5.5 cm
when the grid size is reduced to 0.1 cm. Hence in the pres-
ence of noise reduction of grid size helps to identify the
parameters ro and α more accurately.

Figure 22 is the surface plot of N in the parameter
space of ro and α. The minima in N occurs at the true ro
and α.

However, any deconvolution performed on these im-
ages will not give the correct reconstruction unless the
noise is filtered.

4. Conclusions

The technique we have proposed in this paper is very gen-
eral and is applicable for images of arbitrary shape. It can
also provide a decent reconstruction for features that are
several hundred times more intense than noise. However,
the problem of image reconstruction still remains for low
contrast features with noise. We believe that the knowl-
edge of the actual point spread function, as gained by
the parametric search described in this paper, will pro-
vide tight constraints on iterative deconvolution schemes
for very noisy images which can start with a guess for the
noise distribution and converge to the true distribution
of noise. This belief is yet to be verified. On the other
hand, there are a number of applications where the deter-
mination of the psf itself would be of vital importance.
One example is the determination of daytime “seeing”
at a new astronomical site. All that would be required
is a sequence of long exposure pictures of the sun taken
through a filter of reasonable bandwidth like 5 nm or
10 nm. Another example is the need to determine the
broadening mechanisms of spectral lines. We hope that
this technique would be able to detect small departures
from a gaussian profile, which has great implications for
the detection of non-thermal or supra-thermal distribu-
tions. The quality of spectra that are expected from
SOHO, for example, would perhaps be good enough for
such investigations.
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This technique was used to estimate the Fried’s pa-
rameter in the image of the globular cluster. The results
are discussed in Appendix 1. The main result in appendix
is the practical demonstration of the successful working of
the parameter search method. The choice of a star cluster
to test the method is very appropriate because the en-
tire object occupies several isoplanatic patches while each
stellar member of the cluster provides a point source to
provide an unambiguous psf. We see here that the conven-
tional method of fitting a Gaussian profile and FWHM of
the Gaussian fit used as a measure of the Fried’s parame-
ter matches well with the Fried’s parameter obtained using
the parameter search method.
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Fig. 1. A) Contour map of globular cluster NGC 1409 ob-
served using the 2.34 m optical telescope at Vainu Bappu
Observatory, Kavalur. The mean wavelength of observation is
5656 Å

Appendix 1

Parametric search for Fried’s parameter on
globular cluster

We compare the results obtained using parameter search
method with the Fried’s parameter obtained using a con-
ventional method and show that the results obtained using
two different methods are in good agreement.

Parametric search on a globular cluster
(NGC 1409)

We were looking for an image with many point sources
in order to estimate the Fried’s parameter using con-
ventional methods like fitting a Gaussian and using its
FWHM as a measure of the Fried’s parameter ro. We chose
an image of the globular cluster NGC 1409 (observed by
Prof. Ram Sagar and Mr. Alok Gupta at the Vainu Bappu
Observatory using the 2.34 m Optical telescope) for this
purpose.

Fig. 2. A) Plot of seeing estimate obtained using parametric
search and seeing estimated using average of FWHM ×1.12
(the factor of 1.12 is multiplied with the FWHM to take care
of the non Gaussian nature of the Fried’s coherence function)

The image is a 1024 × 1024 pixel CCD image with
a plate scale of 0.6′′. The mean wavelength of obser-
vation is 5656 Å. The contour of the globular cluster
NGC 1409 is shown in Fig. 1A. The field is approximately
10 arcmin × 10 arcmin. The isoplanaticity of the sky is
not expected to be of that size. We divide the observed
image into smaller sections, each of 50 arcsec × 50 arcsec.
The parametric search algorithm is run on each such small
sub images and the Fried’s parameter is estimated. Since
the plate scale and the mean wavelength of observation
is known, the Fried’s parameter can be now converted to
“seeing” in arcseconds in the real domain.

On each subimage there are several point sources. A
best fit Gaussian is made for each point source in the sub
image and the average FWHM is estimated. This directly
gives the seeing in pixel units. The plate scale is known
and hence seeing is calculated in terms of arcseconds. A
factor of 1.12 needs to be multiplied to these values to take
care of the non-gaussian nature of the Fried’s coherence
function.

Figure 2A gives the plot of the seeing estimated both
using the parameter search method and also using the
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average FWHM of the Gaussians (corrected for the non-
gaussian nature of the atmospheric psf) in each sub image.
We see a similar trend in the seeing estimated using the
two different methods. The values obtained using the two
different methods agree within the error limits.

Seeing estimated using Seeing estimated using
Average FWHM Parametric Search

Frame of Gaussian fit
number × 1.12

(in arcsec) (in arcsec)

1 2.29 ± 0.22 2.28
2 2.32 ± 0.12 2.50
3 2.27 ± 0.33 2.28
4 2.40 ± 0.07 2.40
5 2.32 ± 0.09 2.27
6 2.53 ± 0.04 2.50
7 2.27 ± 0.23 2.28
8 2.32 ± 0.14 2.45
9 2.35 ± 0.46 2.67
10 2.33 ± 0.14 2.57
11 2.50 ± 0.10 2.85
12 2.36 ± 0.09 2.40
13 2.44 ± 0.33 2.76
14 1.96 ± 0.21 2.26
15 2.05 ± 0.30 2.92
16 2.65 ± 0.26 3.42
17 2.11 ± 0.14 2.31
18 2.50 ± 0.20 2.85

References

Bouricius G.M.B., Clifford.S.F., 1970, J. Opt. Soc. Am. 60,
1484

Buser R.G., 1971, J. Opt. Soc. Am. 61, 488
Clifford S.F., Bouricius G.M.B., Ochs G.R., Ackley M.H., 1971,

J. Opt. Soc. Am. 61, 1279
Clifford S.F., Ochs G.R., Lawerence R.S., 1974, J. Opt. Soc.

Am. 64, 148
Fried D.L., 1966, J. Opt. Soc. Am. 56, 1372
Goodman J.W., 1985, Statistical Opt. McGraw Hill, New York
Peter B.Stetson., 1987, PASP 99, 191
Roddier., The Effects of Atmospheric Turbulence in Optical

Astronomy. In: Wolf E. (ed.) Prog. Opt., p. 281
Tatarski V.I., 1961, Wave Propogation in Turbulent Medium.

McGraw Hill Book Co., New York
Collados M., Vasquez M., 1987, A&A 180, 223-228


