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Density-matrix approach to a strongly coupled two-component Bose-Einstein condensate
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The time evolution equations for average values of population and relative phase of a strongly coupled
two-component Bose-Einstein condensate~BEC! are derived analytically. The two components are two hyper-
fine states, which are coupled by an external laser that drives fast Rabi oscillations between these states.
Specifically, this derivation incorporates the two-mode model proposed in J. Williamset al., e-print cond-mat
9904399 for the strongly coupled hyperfine statesu1,21& andu2,1& of 87Rb. The fast Rabi cycles are averaged
out and the rate equations so derived represent the slow dynamics of the system. These include the collapse and
revival of Rabi oscillations and their dependence on detuning and trap displacement as reported in experiments
of J. Williams. A procedure for stabilizing vortices is also suggested.

PACS number~s!: 03.75.Fi, 74.50.1r, 32.80.Pj, 05.30.Jp
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I. INTRODUCTION

Observations of Bose-Einstein condensation in trapped
lute alkali-metal atoms have opened up both experime
and theoretical challenges to understand the propertie
such systems. The dynamical properties of a single cond
sate such as its collective excitations in a trap due to a t
dependent drive has been one such area of research@1,2#.
The experimental realization of simultaneous creation
confinement of Bose-Einstein condensates~BECs! in several
hyperfine states of a given species of atom@3–5# has led to
investigations on dynamics of two or more overlapping co
densates by coupling them with an externally applied la
field. In particular experimental realization of binary mi
tures of two hyperfine states namely,u1,21& and u2,1& of
87Rb has established the following properties of this coup
condensed system@6,7#:

~i! These two states have magnetic moments which
same to the first order. However, due to other small effe
such as gravity, the nuclear magnetic moment and nonlin
ity in the Zeeman shifts, the location of minima for the tw
states in the trap can be adjusted to be slightly differen
exactly coincident.

~ii ! Spontaneous interconversion from one state to
other is not seen due to the large difference in internal e
gies between these two states. The hyperfine energy is
GHz. This makes the two condensates distinguishable. T
can be selectively imaged by choice of an appropriate la

~iii ! These condensate states possess a relative qua
phase that can be measured. This phase evolves with tim
rate being proportional to the chemical potential differen
between the two condensates.

~iv! An external laser drive couples these two systems
helps to coherently transfer population from one state to
other.
The mixed condensates thus offer an ideal experimental
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paratus to look for macroscopic realizations of dynami
effects like standard Josephson effects@8#.

Theoretical calculations on such Josephson like osc
tions in these coupled boson Josephson junctions~BJJ!
@9,10# have shown several interesting dynamical effects. R
cently, however@11#, an experimental observation of an u
expected behavior of these coupled systems was reporte
the limit of sustained and large field strengths of the exter
coupling laser, that is whenV, the Rabi frequency, was five
to ten times larger than the trap frequency in the verti
direction, along which the two condensates sit displac
@12#, the Rabi oscillations between the hyperfine states w
found to collapse and revive. This occurred on a time sc
which is large compared to the Rabi period. These sl
varying modulations of the fast Rabi oscillations vanish
zero trap displacement. These were also seen to vanish w
d50, whered5v2vd is the detuning of the external lase
frequency (vd) from the transition frequency~v! between
the hyperfine states. It was shown subsequently in the s
paper that this phenomenon was due to a weak coup
between the low lying motional states of the trap. In partic
lar a simplified two-mode model was suggested. In this tw
mode model the trap ground state and first excited dip
state were coupled and couplings to all higher motio
states were neglected. Thus Ref.@11# demonstrates the pos
sibility of quantum state engineering of topological excit
tions, through the interplay between the internal and m
tional degrees of freedom of a BEC in a time orbitin
potential trap. Numerical simulations by solving the Gros
Pitaeskii~GP! equations for the coupled system were carr
out in @11#, which reproduced the experimental features.

In the present paper, we derive the essential experime
features analytically, using the density-matrix approa
Equations for the fractional population~Z! in the hyperfine
states and their relative phase~u! as a function of time have
been obtained. Averaging over the Rabi period, these eq
tions represent the slow dynamics of the system. Colla
and revivals of Rabi oscillations and their dependence
detuning and trap displacement are seen to match qua
©2000 The American Physical Society02-1
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tively with the experimental results described in@11#. A pro-
posal for combining this strongly coupled regime to t
weakly coupled Josephson regime is presented and its ro
increasing the stability of vortices@14–16# is also speculated

II. A DENSITY-MATRIX METHOD

The total wave-function of the two-component condens
is denoted byc(r ,t). Initially this wave-function just repre-
sents the total population (NT) in the ground stateu1,21&.
An external laser drives the transition from this state to
u2,1& state coherently. So we can write

c~r ,t !5c1~r ,t !1c2~r ,t !.

These two states are of the form@11#

uc1&5~a1~ t !c0~ t !uf0&1a2~ t !d1~ t !uf1&)u1&, ~1!

uc2&5~a2~ t !c0~ t !uf0&1a1* ~ t !d1~ t !uf1&)u2&. ~2!

Here u1& and u2& refer to the hyperfine~internal! states and
uf0& and uf1& refer to the motional~external! states, and

a1~ t !5cosS Ve f ft

2 D2 i S d

Ve f f
D sinS Ve f ft

2 D ,

a2~ t !52 i S V

Ve f f
D sinS Ve f ft

2 D ,

Ve f f5Ad21V2

c0~ t !5cosS V01t

2 D2 i S De01

V01
D sinS V01t

2 D ,

d1~ t !52 i S 2b^z&
V01

D sinS V01t

2 D ,

V015A4b2^z&21De01
2 ,

^z& i j 5E f izf jdz,

b5
z0dV

Ve f f
2

,

De015e12e0 .

Hered is the detuning,De01 is the energy difference be
tween the two trap states, namely, the ground state and
first excited dipole state. This energy difference is held fix
through the derivation, while in actuality they will vary wit
time. z0 is the displacement between the two condensa
and ^z& i j is the dipole matrix element which couples th
ground and excited states of the trap. In this derivation^z& i j
is held fixed at^z&01. The higher couplings are weak an
hence neglected.

Taking Eqs.~1! and ~2! as starting points, we point ou
that theuc1& anduc2& individually satisfy the following nor-
05560
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malized coupled Gross-Pitaeskii~GP! equation in the
Thomas-Fermi limit in an isotropic trap:

dc1~ t !

dt
5

1

i H F2z0^z&1l1N11N21
d

vz
Gc1~ t !1

V

vz
c2~ t !J ,

~3!

dc2~ t !

dt
5

1

i H F22z0^z&1l2N21N12
d

vz
G

3c2~ t !1
V

vz
c1~ t !J , ~4!

NT5N11N2 ,

a'5A \

mv
,

a5a11;a22,

l15
a11

a12
,

l25
a22

a12
.

In writing the above set of coupled equations, time is in un
of trap frequencyvz and the spatial variables are scaled
a' . a11 and a22 are respectively thes wave scattering
lengths for the two hyperfine species of the condensates
a12 is the interspecies scattering length. The various ene
terms are given with respect to the trap energy level\vz .
Due to a near degeneracy ofa11 anda22 scattering lengths in
the case of87Rb the approximation that they are equal can
safely carried out. The system is characterized then b
single scattering lengtha and a singlel5l1;l2. In deriv-
ing these equations, the spatial dependence of the GP w
functions are integrated out~adiabatic approximation! with
respect to the trap wave-functions, namely,uf0(z)& and
uf1(z)& and treated as constants. This assumes that the
cific changes in the shape of the trap wave function is
playing a major role in the time evolution of the system. Th
happens when the trap displacementz050 is small such that
the coupling~in the fast moving frame! between the motiona
states and the internal states as given by the parameterb is
weak. That is, we are in thelinear regime as given in@17#.
This assumption is an approximation over what is actua
experimentally seen@11,7# since we are only interested in th
dynamics of the fractional population of the hyperfine stat

We proceed to derive the population fractions and
relative phase differences between the two hyperfine st
by noting that

u1&5AN1~ t !eiw1(t), ~5!

u2&5AN2~ t !eiw2(t), ~6!
2-2
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Z5
N12N2

NT
, ~7!

u5w22w1 . ~8!

By taking appropriate inner products ofuc1& and uc2&
with uf0& anduf1& and substituting foruc1& anduc2& in the
GP equations, the form given in equations~1! and ~2!, the
following rate equations for average values of fraction
population^Z& and relative phasêu& in the two hyperfine
states can be derived:

^Ż&5S b2^z&2

V01
sin~V01t ! DZ, ~9!

^u̇&54S De01

b2^z&2

V01
2

sin2~V01t !D
3F 1

cos2S V01t

2 D1S De01

V01
D 2

sin2S V01t

2 D G . ~10!
05560
l

In deriving the above equations the orthonormal relations
trap wave-functions are assumed to be

^f i uf j&5d i j . ~11!

Equations~10! and~11! are obtained after averaging over th
fast time period namely that ofV in the problem. So these
equations do not explicitly containV. An analytical expres-
sion for ^Z& can then be derived.

^Z&5Z0 expS b2^z&2

V01
2 @12cosV01t# D . ~12!

In the limit of small detuningd (d!V), this is of the form

^Z&5Z0F112
b2^z&2

V01
2

sin2S V01

2
t D G . ~13!

HereZ0 is the initial value of the population at timet50.
FIG. 1. This plot shows the change in^Z& as a function of detuningd. The parameters are~a! d50, ~b! d52p350 Hz, ~c! d
52p*100 Hz. The values of other parameters are given in Table I.
2-3
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III. RESULTS AND DISCUSSION

Equation~13! has all the essential features which are
ported by the experiments and subsequent numerical in
tigation in @11#.

~1! The ^Z& remains a constant whend goes to zero or
whenz0 goes to zero. That is, in the laboratory frame the f
Rabi oscillations remain unmodulated.

~2! Equation~13! is derived with the implicit assumption
that the condensate has a well defined overall phase w
can be measured relative to a reference. A decoupling of^u&
and ^Z& in the time averaged frame over the fast varia
occurs as this phase~both the slow and fast varying par!
averages to zero.

~3! Though the mean-field term does not explicitly en
the expression~13!, we can see that the amplitude of mod
lation increases with decreasingDe01, a result which is con-
firmed by numerical simulations in@11# which predicts a
decrease inDe01 for enhanced mean-field effects.

~4! This form of Eq.~13! does not give rise to the chaot
behavior with high values ofz0 reported in@11#.

Figure 1 gives a typical curve for the parameters give
In Ref. @13#, a preparation of the vortex mode is presen

in this very two-component system. In this contest it
tempting to think of the following scheme for stabilizin
such vortices. Starting from the strong coupling regimeV

TABLE I. Parameter values used to plot Fig. 1 are given he

NT 105 nz 65 Hz
a11 1.0 a21 a' 1.3 mm
a22 1.0 a21 a21 5.5 nm
y
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.vz), the strength of the external laser field could be gra
ally decreased over time. At sometime then, whenV,vz ,
the population in a particular state~which is a combination
of motional and internal states! gets trapped in that stat
itself, due to macroscopic quantum state trapping~MQST!
effects @10#, applicable in this regime. More specifically,
such trapping should occur in the first excited motional sta
which could be a vortex state, then there seems to be a
mendous improvement achieved in the stability of the vort

IV. CONCLUSIONS

In this paper we have analytically derived an express
for the rate of change of fractional population of the hyp
fine statesu1,21& and u2,1& of 87Rb in the strong coupling
regime using the density-matrix approach. The derivat
gives analytical results for population evolution after avera
ing out the fast dynamical variable, namely, the Rabi per
in the problem. This derivation is based on a two-mo
model for the trap states as proposed in@11#. The main result
of our analytical approach is presented in Eq.~13!. This
equation reproduces most of the essential features of the
mode model presented in@11#. Also the possibility to in-
crease the stability of vortex state by modulatingV is also
discussed.
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