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Density-matrix approach to a strongly coupled two-component Bose-Einstein condensate
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The time evolution equations for average values of population and relative phase of a strongly coupled
two-component Bose-Einstein condend@EC) are derived analytically. The two components are two hyper-
fine states, which are coupled by an external laser that drives fast Rabi oscillations between these states.
Specifically, this derivation incorporates the two-mode model proposed in J. Wilka@ls e-print cond-mat
9904399 for the strongly coupled hyperfine stafgs 1) and|2,1) of 8’Rb. The fast Rabi cycles are averaged
out and the rate equations so derived represent the slow dynamics of the system. These include the collapse and
revival of Rabi oscillations and their dependence on detuning and trap displacement as reported in experiments
of J. Williams. A procedure for stabilizing vortices is also suggested.

PACS numbses): 03.75.Fi, 74.50+r, 32.80.Pj, 05.30.Jp

[. INTRODUCTION paratus to look for macroscopic realizations of dynamical
effects like standard Josephson effd@k
Observations of Bose-Einstein condensation in trapped di- Theoretical calculations on such Josephson like oscilla-
lute alkali-metal atoms have opened up both experimentaions in these coupled boson Josephson junctid®3)
and theoretical challenges to understand the properties 9,10 have shown several interesting dynamical effects. Re-
such systems. The dynamical properties of a single condemrently, howevef11], an experimental observation of an un-
sate such as its collective excitations in a trap due to a timexpected behavior of these coupled systems was reported. In
dependent drive has been one such area of res¢arZh  the limit of sustained and large field strengths of the external
The experimental realization of simultaneous creation an@oupling laser, that is whef), the Rabi frequency, was five
confinement of Bose-Einstein condensgd®ECs in several to ten times larger than the trap frequency in the vertical
hyperfine states of a given species of at@n5] has led to  direction, along which the two condensates sit displaced
investigations on dynamics of two or more overlapping con{12], the Rabi oscillations between the hyperfine states was
densates by coupling them with an externally applied lasefound to collapse and revive. This occurred on a time scale
field. In particular experimental realization of binary mix- which is large compared to the Rabi period. These slow
tures of two hyperfine states namelgt,—1) and [2,1) of  varying modulations of the fast Rabi oscillations vanish at
8’Rb has established the following properties of this coupledzero trap displacement. These were also seen to vanish when
condensed systef®,7]: 6=0, whereS=w— wy is the detuning of the external laser
(i) These two states have magnetic moments which arrequency (,) from the transition frequencyw) between
same to the first order. However, due to other small effectshe hyperfine states. It was shown subsequently in the same
such as gravity, the nuclear magnetic moment and nonlineapaper that this phenomenon was due to a weak coupling
ity in the Zeeman shifts, the location of minima for the two between the low lying motional states of the trap. In particu-
states in the trap can be adjusted to be slightly different ofar a simplified two-mode model was suggested. In this two-
exactly coincident. mode model the trap ground state and first excited dipole
(i) Spontaneous interconversion from one state to thatate were coupled and couplings to all higher motional
other is not seen due to the large difference in internal enerstates were neglected. Thus Refl] demonstrates the pos-
gies between these two states. The hyperfine energy is 6gbility of quantum state engineering of topological excita-
GHz. This makes the two condensates distinguishable. Thesi®ns, through the interplay between the internal and mo-
can be selectively imaged by choice of an appropriate lasetional degrees of freedom of a BEC in a time orbiting
(iii) These condensate states possess a relative quantyatential trap. Numerical simulations by solving the Gross-
phase that can be measured. This phase evolves with time titaeskii(GP) equations for the coupled system were carried
rate being proportional to the chemical potential differenceout in[11], which reproduced the experimental features.
between the two condensates. In the present paper, we derive the essential experimental
(iv) An external laser drive couples these two systems an¢katures analytically, using the density-matrix approach.
helps to coherently transfer population from one state to th&quations for the fractional populatigi@) in the hyperfine
other. states and their relative pha&® as a function of time have
The mixed condensates thus offer an ideal experimental afpeen obtained. Averaging over the Rabi period, these equa-
tions represent the slow dynamics of the system. Collapse
and revivals of Rabi oscillations and their dependence on
*Email address: andal@rri.ernet.in detuning and trap displacement are seen to match qualita-
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tively with the experimental results described ii]. A pro-  malized coupled Gross-PitaeskiiGP) equation in the
posal for combining this strongly coupled regime to theThomas-Fermi limit in an isotropic trap:
weakly coupled Josephson regime is presented and its role in

increasing the stability of vorticdd4—14 is also speculated. dyy(t) 1 6 Q
gt i1 2zo(z) + N1N1+ Np+ . ’/fl(t)+w—¢2(t) ;
Il. A DENSITY-MATRIX METHOD ’ )
The total wave-function of the two-component condensate
is denoted byy(r,t). Initially this wave-function just repre- difo(t) :_} — 220(2) + ANy Ny — i}
sents the total populatiorNg) in the ground stat¢l,—1). dt i w,
An external laser drives the transition from this state to the Q
|2,1) state coherently. So we can write X (1) +— iy (D) |, (4)
w
z
P(r 1) =i (r, )+ o(r,1).
These two states are of the fofrhl] Nr=Ni+No,
|1) = (a1(t)Co(D)] do) + ax(D)d1 (D] p1))[1), (D) . [ &
L7 Vmo'
|¢h2) = (aa()Co(D)] o) + a7 (Dd1 ()| #1))[2).  (2)
Here|1) and|2) refer to the hyperfindinterna) states and a=ap~an,
| o) and|¢,) refer to the motionalexterna) states, and
a
)= Qert) [ 0 ) [ Qe 1:a_11’
ay(t)=co 5 i Ourr sin > | 12
a
| Q ) Qefft )\2:_22.
ay(t)= ﬂ(ﬁ) sm( 5> | a,
— /52102 In writing the above set of coupled equations, time is in units
Qer=Vo"+ 0 of trap frequencyw, and the spatial variables are scaled by
Ot Ae Ot a, . a;; and a,, are respectively thes wave scattering
Co(t)zcos( 21 )—i a 01)5 n( ;1 ) lengths for the two hyperfine species of the condensates and
01

a,, is the interspecies scattering length. The various energy
26(2) Ot terms are given with respect to the trap energy Ie‘w«aL._
dy(t)=—1i ( )sin( i) , Due to a near degeneracy &@f, anda,, scattering lengths in
Qo1 2 the case of’Rb the approximation that they are equal can be
safely carried out. The system is characterized then by a
Qo= V4B%(2)%+ Aed,, single scattering length and a single\ =X\;~\,. In deriv-
ing these equations, the spatial dependence of the GP wave-

_ functions are integrated oyadiabatic approximatignwith
(2)ij= f $iz¢;dz, respect to the trap wave-functions, namely,(z)) and
|$1(2)) and treated as constants. This assumes that the spe-
2060 cific changes in the shape of the trap wave function is not
= Q2. playing a major role in the time evolution of the system. This
eff

happens when the trap displacemeg 0 is small such that
the coupling(in the fast moving framebetween the motional
states and the internal states as given by the paramBdter
weak. That is, we are in thiénear regime as given if17].

Here é is the detuningAey, is the energy difference be- Thi ton i imai hat i tuall
tween the two trap states, namely, the ground state and thé"IS assumption 1S an approximation over what 1S actually

first excited dipole state. This energy difference is held ﬁxeogxperir'nent?lz%/ s?e[ilt'l,ﬂ slince v:/et'are Ofrltlr)]/ int;[eres]'f.ed inttk;e
through the derivation, while in actuality they will vary with ynamics ot Ih€ fractional population of tn€ hypertine states.

time. z, is the displacement between the two condensaterselzgeepr?:;izd dJ'[f?‘e(rjeer:I(\:/; tggt\sgepﬁl?r:'gq f;aﬁt'ogff.r?gdsggs
and (z);; is the dipole matrix element which couples the Ve p : wo hyperti

ground and excited states of the trap. In this deriva{ion by noting that
is held fixed at(z)o;. The higher couplings are weak and

A601= el_ eO .

hence neglected. |1)= VN, (t)e'e1®, 5
Taking Egs.(1) and (2) as starting points, we point out .
that the| ;) and|y,) individually satisfy the following nor- |2)=Ny(t)ele2®) (6)
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N;—N,
Z_ NT ) (7)
0=~ 1. (8)

By taking appropriate inner products 6f) and |i,)
with | ) and|¢,) and substituting fofy,) and|#,) in the
GP equations, the form given in equatiofiy and (2), the
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In deriving the above equations the orthonormal relations of
trap wave-functions are assumed to be

(dild))= 6 . (11

Equationg10) and(11) are obtained after averaging over the
fast time period namely that & in the problem. So these
equations do not explicitly contaift. An analytical expres-

following rate equations for average values of fractionalsion for(Z) can then be derived.

population{Z) and relative phaséd) in the two hyperfine

states can be derived:

2< >2
@=| sz ©
( e )
<9> 4| Aegy———Simf(Qoqt)
(053
X ! (10
Qoit Aeg\? [ Qott
0052( > )+ Qm) sm2( > )

(2)=2, exp( ;< 2* ) (12)

In the limit of small detunings (§<(), this is of the form

2< >2
(2)=2, 142P 02

(13

a3

2

01

Here Z, is the initial value of the population at tinte=0.
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FIG. 1. This plot shows the change {Z) as a function of detuning. The parameters ar@ §=0, (b) §=27X50 Hz, (c) §
=27*100 Hz. The values of other parameters are given in Table I.
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TABLE I. Parameter values used to plot Fig. 1 are given here.>w,), the strength of the external laser field could be gradu-
ally decreased over time. At sometime then, wiier w,,

Nt 10° vz 65 Hz the population in a particular statevhich is a combination
an 10an a, 1.3 um of motional and internal stategets trapped in that state
ay 1.0ay ap 5.5 nm itself, due to macroscopic quantum state trappiNST)

effects[10], applicable in this regime. More specifically, if
such trapping should occur in the first excited motional state,
which could be a vortex state, then there seems to be a tre-

Equation(13) has all the essential features which are re-mendous improvement achieved in the stability of the vortex.
ported by the experiments and subsequent numerical inves-
tigation in[11]. IV. CONCLUSIONS

(1) The (Z) remains a constant whe# goes to zero or
whenz, goes to zero. That is, in the laboratory frame the fast In this paper we have analytically derived an expression
Rabi oscillations remain unmodulated. for the rate of change of fractional population of the hyper-

(2) Equation(13) is derived with the implicit assumption fine state§1,—1) and|2,1) of ®Rb in the strong coupling
that the condensate has a well defined overall phase whidiegime using the density-matrix approach. The derivation
can be measured relative to a reference. A decouplif@)f gives analytical results for population evolution after averag-
and(Z) in the time averaged frame over the fast variableing out the fast dynamical variable, namely, the Rabi period
occurs as this phasgoth the slow and fast varying part in the problem. This derivation is based on a two-mode
averages to zero. model for the trap states as proposedlifil. The main result

(3) Though the mean-field term does not explicitly enterof our analytical approach is presented in Ef3). This
the expressioril3), we can see that the amplitude of modu- equation reproduces most of the essential features of the two-
lation increases with decreasinge,,;, a result which is con- mode model presented ii1]. Also the possibility to in-
firmed by numerical simulations ifil1] which predicts a crease the stability of vortex state by modulatiflgis also
decrease inm\ey, for enhanced mean-field effects. discussed.

(4) This form of Eq.(13) does not give rise to the chaotic
behf_;lvior With_ high valu_es af, reported in[11]. _ ACKNOWLEDGMENTS
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