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Excitation energies and oscillator strengths of CaI using multireference
many-body perturbation theory

Sonjoy Majumder, B. P. Das, and Rajat K. Chaudhuri
Indian Institute of Astrophysics, Bangalore 560 034, India
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Excitation energies and oscillator strengths of neutral calcium~CaI! are calculated through third order using
a variant of the multireference many-body perturbation theory, known as the effective valence-shell Hamil-
tonian (Hv) method. Transition energies, oscillator strengths, and binding energies of various states are com-
puted and compared with experimental and other theoretical data. These quantities are in favorable agreement
with the experiment and other correlated calculations. The basis and valence space dependence of theHv

scheme are addressed with some illustrative examples.@S1050-2947~99!06905-X#

PACS number~s!: 32.70.Cs, 32.30.Jc
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I. INTRODUCTION

Atomic transition lines of neutral calcium were first foun
in solar spectrum as early as the middle of the 19th cent
when the 4227-Å line was identified along with the famo
singly ionized H and K lines@1#. Neutral calcium lines have
also been observed in all types of stellar and interstellar s
tra, such as late-type dwarf stars. The crude abundanc
CaI (l56717.7 Å ) has been observed in Am binaries@2#.
To confirm those identifications and to find new lines, o
has to depend on atomic experimental data or computati
data based on theoretical models of the calcium atom.
abundances of neutral calcium in these astronomical bo
depend on the oscillator strengths of those lines, which co
from the excitation energies of various levels and transit
moments among those levels.

The difficulty in accurately estimating transition energi
and oscillator strengths of neutral calcium atom ari
mainly due to the following reasons:~a! The precise compu
tation of transition energies and oscillator strengths requ
a balanced description of the ground and excited states~b!
The use of an inadequate basis leads to difficulties in
scribing the excited states and an unbalanced treatmen
dynamical correlation and polarization effects. The proble
due to basis set inadequacy can be removed partially by
larging the basis for small and moderate-sized atomic
molecular systems. Here, the size extensivity@3# of the
theory plays an important role in handling the proper tre
ment of electron correlation, and in that way it prope
treats the differential correlation energies of the interact
~initial and final states! zeroth-order states. It ensures that t
state energies scale linearly with the number of electrons
rigorous way.

The accuracy of the computed excitation energy depe
mostly upon the quality of the unoccupied valence orbitals
which excitation occurs. The traditional choice of some u
occupied valence orbitals from a ground-state s
consistent-field~SCF! computation introducesVN orbitals
that are best suited for describing negative ions, and not l
lying excited states. Thus the valence orbitals, those that
not occupied in the ground-state SCF, should be taken
more representative orbitals suitable for excited states.
PRA 591050-2947/99/59~5!/3432~8!/$15.00
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possible choice emerges from the restricted single excita
configuration interaction procedure@4#, where excitations are
only permitted from the highest occupied orbitals. A simp
and often equivalent approaches involves using impro
virtual orbitals~IVO’s! @5# in the Hv valence space or refer
ence space. Here the IVO’s are generated by single orb
SCF optimization in which the Fock operator is defined
promoting an electron from the highest occupied orbital
the orbital being optimized, while all the previously dete
mined orbitals are kept frozen. Alternatively this can be a
complished by a unitary transformation@6#. The IVO orbital
energies obtained in this way are lower than those evalu
from the traditional SCF procedure due to the absence o
extra Coulomb operator in the former procedure. For
ample, in a neutral calcium atomHv calculation, the two-
orbital (4s,4p) minimal reference space is produced by t
sequence

~1! 1s22s22p63s23p64s2 1 1S0
~2! @1s22s22p63s23p64s1#4p1 1 3P1.

The first step is a SCF calculation for the ground state
step~2! requires only a single orbital optimization in whic
the orbitals shown in square brackets are frozen like th
determined in the previous steps, i.e., step~1!. The excited
orbitals are then obtained by diagonalizing the 11S0 state
Fock operator in the orbital space complementary to
union of the core and reference spaces.

SuccessfulHv computations for Mg-like ions@7# have
stimulated us to try this scheme for a neutral calcium at
~CaI! and, in this paper, we present the theoretically co
puted excitation energies, binding energies~energy relative
to first ionization threshold!, and oscillator strengths an
transition probabilities of CaI for a wide range of configura
tions ~nonrelativistically allowed transitions!. As mentioned
above, these computations are based on the effec
valence-shell Hamiltonian (Hv) method proposed by Free
@5#. TheHv method has been found to be quite successfu
accurately assigning the electronic spectrum of atomic
complex molecular systems, such as open-shell atoms
neutral carbon@8# and closed-shell atoms~where strongly
interacting correlations are present! like conjugated polyenes
and inorganic molecules@7,9–11#. By virtue of being a mul-
tireference approach, theHv method incorporates the nondy
3432 ©1999 The American Physical Society
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namical correlation necessary to describe open shells
hence, possesses distinct advantages over the tradit
single-reference many-body perturbation theory.

Section II briefly reviews the background theory, wh
Sec. III describes the computational details. The compu
results and discussions are presented in Secs. IV and V
spectively.

II. THEORY

Perturbative methods proceed by first partitioning the
act HamiltonianH into a zeroth-order partH0 and a pertur-
bationV,

H5H01V, ~2.1!

whereH0 contains all one-electron Fock operators.~The de-
composition ofH, in principle, is arbitrary, butin practice,
proper care must be exercised to avoid introducing numer
instabilities into the perturbative expansions.! The full many-
electron Hilbert space is decomposed into a model spac~P
space! with a projectorP and its orthogonal complemen
space~Q space! with a complement projectorQ512P. The
P space spans the model space~also called reference or va
lence space! of all distinct configuration state function
which have all core orbitals doubly occupied, and the
maining electrons are distributed in the valence orbitals in
possible ways, thereby ensuring the ‘‘completeness’’ of
P space. TheQ space contains all basis functions with
least one core hole and/or one occupied excited orbital.
Hv method proceeds by transforming the full Schro¨dinger
equation

HC i5EC i ~2.2!

into theP-space effective valence-shell Schro¨dinger equation

HvC i
v5EC i

v , ~2.3!

where the projected wave function isC i
v5PC i , andE is the

exact eigenvalue of the full Hamiltonian. TheHv method
gives the unique lowest-order approximation,

Hv5PHP1 1
2 (

f,f8

3@P~f!VQ~Ef2H0!21QVP~f8!1H.c.#,

~2.4!

where P(f) is the projector onto the valence space ba
function f, and H.c. denotes the Hermitian conjugate of t
preceding term. The computations of excitation energies p
ceed to the next order~third! in V.

The matrix elements of an operatorD are transformed by
the Hv theory into

^C i uDuC j&→^C i
vuDvuC j

v&, ~2.5!

whereDv is effective valence-shell operator which is com
puted fromD by
d,
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Dv5PDP1 1
2 (

f,f8

3@P~f!VQ~Ef2H0!21QDP~f8!1H.c.#.

~2.6!

Many-body theory techniques can be applied to reduce
pressions~2.5! and ~2.6! to represent the matrix elements
Dv in the valence orbital basis. The resulting equations m
be written alternatively in terms of core-, one-, two-, . .
electron valence-shell operatorsDc

v , Di
v , Di j

v , . . . , respec-
tively, in the operator representation

Dv5Dc
v1(

i
Di

v1 1
2 (

i , j
Di j

v 1•••, ~2.7!

whereD is a dipole operator, andDv is an effective dipole
operator that acts only on theP space. It should be noted tha
although the dipole operator is a one-electron operator, t
electron effective termsDi j

v appear in the nontrivial lowest
order perturbation expansion of Eq.~2.6!. This nonclassical
two electron term is necessary to obtain accurate dipole t
sition moments. Figure 1 shows typical one- and two-bo
diagrams that are zero- and first-orderV.

In the actual computation, the effective HamiltonianHv is
first diagonalized to obtain the desired eigenvalues
eigenfunctions. The latter are then used to compute expe
tion values and transition moments of some operatorD. In
the length gauge, the absorption oscillator strength~f ! is
defined as

f i→ f5
2DE

3
ZK C fU(

k
r kUC i L Z2 ~2.8!

whereDE5Ef2Ei is the transition energy, and̂C f ur uC i&
is the transition moment.

III. COMPUTATIONAL DETAILS

Appropriate selections of the basis set, orbitals, and
lence space are difficult, but comprise the most essential
in all ab initio many-body methods, because the perturbat
convergence of a finite-order calculation strongly depe
upon these factors. A prior knowledge of the system of
terest may reduce the computational effort to find an optim
basis set and reference space; otherwise some trial and
are required to achieve this goal. We employ a variety
basis sets and reference spaces to study their effect on

FIG. 1. Typical one- and two-bodyHv dipole diagrams. Here
the line going up~down! refers to the virtual~core! orbital. The
valence orbitals are represented by a line with a double arrow,
a line with an arrow inside a circle can be a valence or virt
orbital.
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computed excitation energies through the third-orderHv

method.
We emphasize that there exists a significant differenc

the choice of both orbitals and orbital energies between
Hv method and the traditional multireference many-bo
perturbation theory~MR-MBPT! scheme@5,12–18#. In the
MR-MBPT method all orbitals and orbital energies are o
tained from a singleVN Fock operator~the ground-state Fock
operator!, and, therefore, all orbitals~core, valence, and ex
cited! and their energies are evaluated from aVN potential.
The unoccupied reference orbitals are, therefore, more
propriate for describing negative-ion states than for lo
lying excited states of interest. On the other hand, theHv

method determines the unoccupied reference space orb
and their energies as IVO’s from aVN21 potential. The un-
occupied reference space orbital energies are much lo
than those evaluated fromVN potential due to the absence
an extra Coulomb operator in the former. After theHv va-
lence orbital energies are computed in this above-mentio
fashion, the reference space orbitals are replaced by
democratic average to eliminate~or reduce! the convergence
difficulties. The valence orbital energy averaging process
troduces an additional diagonal perturbation@5# which ap-
pears in the perturbation expansion from third order
wards.

Figure 2 plots the variation of the correlation ener
(Ethird2EHF) as a function of basis set obtained from 14
reference space computation~described below!, where we
find that the correlation energy decreases substantially a
number of basis function increases from 49 to 73. The va
tion in correlation energy then slows down with further i
crease in the basis set. Here we employ a moderate
calcium basis~to reduce the computational effort withou
sacrificing the accuracy! which is constructed from the
(12s9p5d/5s4p1d) contracted Gaussian basis of Dobbs a
Hehre @19#, augmented by one polarizedd function (zd
50.100) and two s (zs50.011, 0.0056), oned (zd
50.0416), and threef (z f53.0, 1.5, and 0.75) diffused
functions and this yields 73 contracted Gaussian-type or
als ~CGTO’s!. @Some third-orderHv calculations have also

FIG. 2. Variation of the third-orderHv ~with 14V reference
space! correlation energy as a function of basis set.
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been performed with 87 CGTO’s~generated by adding few
s, p, and d functions to 73 basis sets!. Here we have used
D2h symmetry. Since the perturbative convergence of
computed excitation energies and oscillator strengths for
set are close to the smaller one~73 CGTO’s!, we only report
the smaller basis set~73 CGTO’s! Hv results.#

The valence orbitals are selected on the basis of t
orbital energies~to avoid the near degeneracies among
reference and virtual space states! and their relative impor-
tance in properly describing the excited states of interest,
in providing an accurate first-order description to minimi
the perturbative corrections. This selection is almost man
tory in all MR-MBPT method to mitigate the so-calle
intruder-stateproblem@20# that arises due to the near dege
eracy of the reference and virtual space states and their
tive ordering@21#. The reference space must include thes
~the outermost occupied! orbital and 4p ~lowest-lying unoc-
cupied! orbital for describing the lowest-lying states ofSand
P multiplets which arises from 4s→4p transition.@Note that
the ground state (1S0) of the neutral calcium atom is mostl
dominated by@Ar#4s2 ~91%! and @Ar#4p2 configuration
state functions~CSF’s! @22#.# Therefore, the minimal refer-
ence space contains only the 4s and 4p orbitals with two
active electrons in the active space. Since a minimal re
ence space$4s,4p% provides an inadequate description
excited states„CSF’s@Ar#4s4p ~80%! and@Ar#4p3d ~16%!
contribute 96% to the first excited singlet state ofP symme-
try @22#… and, moreover, since we are interested in both
lowest-lying and higher-lying states, we extend the valen
space carefully to avoid the near-degeneracy of the refere
and virtual space states as much as possible in order to
duce the perturbative convergence problem. Thus, our
extended valence space is made of 4s, 4p, 5s, and 5p or-
bitals ~called 8V; according toD2h symmetryp orbitals has
symmetry with respect to three axes, i.e.,px , py , and pz).
Although the computed transition energies obtained from
8V reference space matches favorably well with the exp
ment and other correlated calculations for the low-lying e
cited states ofS and P multiplets, it fails to provide an ac-
ceptable transition energies forD multiplets as well as the
high-lying excited states ofS and P multiplets, e.g., 31S0 ,
4 1S0 , 2 1P, etc. The origin of this discrepancy can be trac
back from the earlier work of Ref.@22#, where it was shown
that the 31S0 excited states of neutral calcium is main
described by the CSF@Ar#4s6s ~94%! whereas for the 41S0
excited state the major contribution comes from the CS
@Ar#4s7s ~10%!, @Ar#4p2 ~45%!, and @Ar#3d2 ~38%!, re-
spectively. Since, the orbitals 3d, 6s, and 7s are not in-
cluded in 8V Hv reference space, it is expected that the
excited states will be poorly described by theHv method,
and so will their transition energies. Similar arguments a
apply to the transition energies ofD andF multiplets. There-
fore, in order to improve the accuracy of the abov
mentioned problematic excited states it is necessary to
clude the 3d, 6s, and 7s orbitals. Unfortunately, little
leeway exists in extending the valence space by including
7s orbital alone, because these orbitals are near degen
compared to 4d, 4f , 6p, and 7p orbitals, respectively. In-
clusion of 4d, 4f , 6s, 6p, 7s, and 7p orbitals into the
reference space will, of course, improve the first-order
scription of the excited states, but it will severely affect t
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perturbative convergence due to the presence ofintruder
statesand large diagonal perturbation that appears from
third order onwards due to the valence orbital degener
condition.~Note that, as the number of valence space orbi
increases, the quasidegeneracy among the valence or
decreases sharply, with a consequent increase in the diag

FIG. 3. Variation of the third-orderHv 4s2→4s5s(1S) transi-
tion energy as a function of number of valence orbitals in the
erence space.
e
y

ls
tals
nal

perturbation.! Moreover, the presence of a large number
valence orbitals in the reference space will reduce the c
putational efficiency of the post Hartree-Fock calculatio
Therefore, an optimal set of valence orbital spaces is
quired which will neither reduce the computational ef
ciency of the post-Hartree-Fock calculation nor introduce
serious convergence problemat leastat low order. Based on
the earlier work of Ref.@22# on a neutral calcium atom, we
construct a complete activeHv reference space~to ensure the
size extensivity! by allocating the two active electrons of 4s
orbitals among 4s, 4p, 3d, 5s, 5p, and 6s (14V) in all
possible way. Some typical results obtained from a serie
third-order Hv calculations with varying reference are d
picted in Fig. 3, which displays the variation of third-ord
Hv excitation energies as a function of the valence spa
respectively. Figure 3 indicates that the accuracy of the co
puted transition energies sharply increases with the incr
ing size of the reference space.

IV. RESULTS AND DISCUSSION

The third-orderHv binding energies~energy relative to
the first ionization potential! are compared with the exper
mental data and with other theoretical values which w
obtained by using multiconfiguration Hartree-Fock~MCHF!
@22#, configuration interaction~CI! @23#, Spline-Galerkin
~SG! @24#, and model-potential~MP! methods@25# in Table
I. This table clearly demonstrates that the accuracies of

f-
.28

.32
9

.19
66
36
.48

5

6
3

7
2

TABLE I. Low-lying binding energies~in cm21) of CaI.

Terms States Expt.a MCHF b CI c SGd MP e Hv

Singlet states
4s2 1S 49 306.0 47 649.0 47 600.5 48 930.31 49 278.3 48 420
4s5s 1S 15 988.7 15 729.3 15 720.5 15 935.28 15 966.5 15 989
4s6s 1S 8615.5 8277.6 8270.5 8599.40 8536.0 7625.8
4p2 1S 7519.7 6709.7 6585.1 7887.13 7606.2 10 231
4s4p 1P 25 653.7 24 689.2 24 667.6 25 472.25 257 20.
4s5p 1P 12 574.3 12 160.1 12 143.3 12 683.80 12 127.
4s3d 1D 27 456.3 24 869.2 24 404.7 27 478.99 27 365.8 26 123
4p2 1D 8586.1 7402.9 8802.75 8992.11

Triplet states
4s5s 3S 17 766.0 17 461.4 17 765.7 17 590.
4s6s 3S 8831.2 8714.0 8831.1 8355.2
4s4p 3P 34 042.5 34 076.7 34 851.67 33 986.
4s5p 3P 12 740.3 12 570.2 12 899.61 12 334.
4p2 3P 10 797.7 11 120.1 11 675.8
3d2 3F 5811.7 835.7 5811.6 5381.1
3d4p 3F 13 474.2 10 797.9 14 032.06 12 244.
4s3d 3D 28 948.9 24 293.0 28 096.19 27 413.
3d4p 3P 9967.6 7148.3 9866.51 7392.3
3d4p 3D 11 073.1 6881.8 8218.1

aReference@29#.
bReference@22#.
cReference@23#.
dReference@24#.
eReference@25#
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calculations of the third-orderHv binding energies for sin-
glets ~average deviation'855 cm21) are better than thos
of the MCHF~average deviation'1027 cm21) and CI cal-
culations ~average deviation'1103 cm21), though the
number of configurations used in the latter calculations
much larger than ours. This demonstrates the power of
MR-MBPT approach in general and theHv method in par-
ticular. This approach is computationally more efficient th
the MCHF and CI methods, since it includes strongly int
acting configurations in the model space and relating wea
interacting configurations which lie in the complementa
space are treated perturbatively. The SG and MP calculat
for the binding energies are in general in better agreem
with experimental than ours. Table I clearly indicates th
our results are consistently better than those obtained by
CI method. For example, for the triplet states the aver
deviation for our calculations is 1061 cm21, while for the
CI calculations it is 2026 cm21. This suggests that theHv

method treats the differential correlation more accurat
than the MCHF and CI methods. Despite the fact that theHv

method provides accurate estimate of the binding ener
for most of the excited states, it fails to produce an accu
binding energy for the 41S excited states~it deviates by
2711.5 cm21 from experiment!. The underlying reason fo
this large deviation in the estimated binding energy of
4 1S excited state becomes transparent when we analyze
composition of the 41S excited state in terms of CSF’s. Th
MCHF calculation of Ref.@22# and other calculations show
that this particular singlet excited state is multiconfigurat
in nature, where the major contribution comes from t
CSF’s @Ar#4p2 ~46%!, @Ar#3d2 ~39%!, @Ar#4s7s ~10%!,
@Ar#4s2 ~1.9%!, and @Ar#4d2 ~1.6%!. Since 4d and 7s or-
bitals are not included in theHv reference space in order t
maintain the quasidegeneracy of the valence orbital and
hance the perturbative convergence rate, this particular
cited state (41S) is inaccurately described by theHv

method, and hence, is poorly estimated. Inclusion of 4d, 4f ,
6p, 7s, and 7p orbital into the valence space will definitel
improve the first-order description of the 41S excited state,
but the perturbative convergence and the accuracy of h
order MBPT ~third order! may deteriorate due to the pre
ence of a large number of intruder states, and a huge di
nal perturbation which exerts an opposing force to the p
turbative convergence.

Table II compares the first few excitation energies o
tained through a third-orderHv calculation with MCHF and
CI values as well as experimental data. Like the bind
energies, here we also find that all the low-lying excit
states transition energies are in excellent agreement with
periment, while there exists a small but non-negligible er
in the estimation of the high-lying states. We expect t
trend from the binding-energy calculation as well as fro
previousHv computation on Mg-like ions@7#. As explained
above, it is the 4d and 7s orbitals whose absence in th
valence orbital space inaccurately describes the 41S excited
states and, hence, poorly estimates this transition ene
Likewise, the absence of 4d, 4f , 6p, and 7p orbitals af-
fects the computation of high-lying excited states forP, D,
andF multiplets. For instance, it was shown in Ref.@22# that
the major contribution to the 21D and 31D excited states
comes from the CSF@Ar#4s4d, while the CSF@Ar#4s4 f
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contributes about 80% to the 11F excited state. Since, we
have not included these orbitals (4d, 4f , and 7s) in our
reference space, the above-mentioned excited states, an
their state energies, are expected to be poorly described
have also the estimated excitation energy for the 3d2(1G!
state (46 422.8 cm21). There is no experimental data ava
able for this, but our result is in fair agreement with th
results of Brage and Fischer@24# (46 164.24 cm21) and
Laughlin and Hansen (46 075.4 cm21).

Since a wide variety of reference spaces are used in
present calculation, it is important to study the low-ord
convergence behavior of the different choices. We ha
demonstrated the importance of the 3d orbital in the calcu-
lation. In Table III, we present the results obtained fro
typical 13V ~defined below! third-order Hv computations
where the computed transition energies are close to the
periment, but the relative order of the singlet and triplet e
cited states are incorrect.

As pointed out in Ref.@22#, the low-lying excitedS mul-
tiplet states of CaI are dominated by the CSF’s@Ar#4sns,
and we construct aHv reference space by allocating tw

TABLE II. Third-order Hv excitation energies~in rydberg! for
S, P, D, andF multiplets of CaI. D5uEcalc.2Eexptu.

Terms State Expt.a dE b dE c dE(Hv)

S multiplets
4s2 1S 0.000 0.000 0.00000 0.00000
4s5s 3S 0.28741 0.01276 0.00646
4s5s 1S 0.30361 0.01289 0.01310 0.00807
4s6s 3S 0.36883 0.01447 0.00373
4s6s 1S 0.37079 0.01218 0.01239 0.00095
4p2 1S 0.38078 0.00733 0.00702 0.03298

P multiplets
4s4p 3P 0.13813 0.01489 0.00620
4s4p 1P 0.21553 0.00651 0.00655 0.00867
4s5p 3P 0.33305 0.01377 0.00421
4s5p 1P 0.33711 0.01398 0.01400 0.00638
4p2 3P 0.35052 0.01808 0.01567
3d2 3P 0.44231 0.02162 0.00266
3d4p 3P 0.35845 0.01018 0.01542
3d4p 1P 0.33472 0.05740 0.09362

D multiplets
3d4s 3D 0.18543 0.02696 0.00600
3d4s 1D 0.19911 0.01155 0.01226 0.00407
3d5s 3D 0.43264 0.01491
4p2 1D 0.37106 0.01176
3d4p 3D 0.34864 0.01770
3d4p 1D 0.32655 0.00464

F multiplets
3d4p 3F 0.32637 0.00328
3d4p 1F 0.36941 0.04254
3d2 3F 0.39630 0.00409

aReference@30#.
bReference@22#.
cReference@23#.
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active electrons of 4s orbital among 4s, 4p, 5s, 5p, 6s, 6p,
and 7s (13V) orbitals. The computed third-orderHv transi-
tion energies are collected in Table III, and compared w
experimental data. From Table III we find thatE2 3S.E3 1S
and E3 3S.E4 1S instead ofE2 3S,E3 1S and E3 3S,E4 1S .
This incorrect ordering of the excited states ofS multiplets
most probably arises due to absence of the 3d orbital in
valence space, because this peculiar problem does not
in our 14V Hv calculation, where the 3d orbital is included
in the valence space.

Effective dipole operator calculations have also been p
formed to compute the transition probability and the osci
tor strengths of states. These calculations take the ma
element of the second-order effective dipole operator
tween theHv eigenvectors as determined by the third-ord
calculations. While our estimated oscillator strengths a
transition probabilities for ground to excited states~low ly-
ing! are reasonably close to the MCHF, CI, and experime
data, oscillator strengths for the excited to excited state t
sition are somewhat off~see Tables IV and V!. The inferior

TABLE III. Transition energies~in rydberg! for S multiplets of
CaI, obtained from the third-orderHv method using the
13V (4s,5s,6s,7s,4p,5p,6p) valence space.

Terms State Expt. Hv

4s6s 3S 0.36883 0.368218
4s6s 1S 0.37079 0.368004
4s7s 3S 0.40078 0.400079
4s7s 1S 0.40348 0.396437
h
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quality of the oscillator strengths and probabilities for t
ground to high-lying excited state and excited to excited s
can be anticipated because the reference space lacks im
tant configurations like@Ar#4s7s, @Ar#4s4d, etc., that not
only contribute to energies but also exert a strong influe
on dipole properties@7#. ~Note that oscillator strength an
transition probability depends upon the transition energy
transition moment. Therefore, an error in the estimation
either of the two can yield a poor value for transition pro
ability and oscillator strength.! The accuracy of the transition
energies, oscillator strengths, and transition probabilities

TABLE V. Transition probabilities~in 108 sec21) computed
through the thirdHv method forS, P, D, andF multiplets of CaI.

Transition Multiplet Wavelength Expt.a Hv

4s2→4s4p 1S21P 4227.9 2.18 2.011
4s2→4s5p 1S21P 2722.5 0.0027 0.022
4s4p→4p2 1P21S 5514.5 1.1 2.64
4s4p→4s5s 3P23S 6123.9 0.354 1.452
4s4p→4s6s 3P23S 3958.2 0.175 0.392
4s3d→4s5p 3D23P 6163.1 0.19 0.698
4s3d→4s5p 1D21P 6717.7 0.12 0.102
4s3d→4p3d 3D23P 5271.7 0.50 1.758
4s3d→4p3d 3D23D 5596.0 0.49 0.886
4s3d→4p3d 3D23F 6465.6 0.53 0.348
4s3d→4p3d 1D21P 4526.9 0.41 1.923
4s4p→4p2 3P23P 4303.7 1.36 1.586
4s4p→4p2 1P21D 5859.1 0.66 0.353

aCompiled in Ref.@31#. ~The estimated uncertainty is'10–50 %.!
4

TABLE IV. Third-order Hv oscillator strengths forS, P, D, andF multiplets of CaI.

Transition Multiplet Wavelength Expt.a MCHF b CI c Hv

4s2→4s4p 1S21P 4227.9 1.75 1.89 1.820 1.74824
4s2→4s5p 1S21P 2722.5 0.0009 0.0174 0.00101 0.0073
4s5s→4s5p 1S21P 29288.1 0.9968 0.926 1.03968
4s4p→4s5s 1P21S 10346.6 0.3975 0.118 0.34376
4s4p→4s6s 1P21S 5869.2 0.0029 0.0009 0.07591
4s5p→4s6s 1P21S 25260.0 0.6567 0.168 0.93595
4s4p→4p2 1P21S 5514.5 0.17 0.4449 0.120 0.25685
4s5p→4p2 1P21S 19783.7 0.0211 0.0153 0.02999
4s4p→4s5s 3P23S 6123.9 0.121 0.156 0.4508
4s4p→4s6s 3P23S 3958.2 0.0248 0.187 0.0524
4s3d→4s5p 3D23P 6163.1 0.076 0.0407 0.030
4s3d→4s4p 1D21P 55473.3 0.0007 0.0014 0.00017
4s3d→4s5p 1D21P 6717.7 0.049 0.0916 0.0585 0.04237
4s3d→4p3d 3D23P 5271.7 0.15 0.201 0.46996
4s3d→4p3d 3D23D 5596.0 0.23 0.346 0.36092
4s3d→4p3d 3D23F 6465.6 0.42 0.364 0.29119
4s3d→4p3d 1D21P 4526.9 0.075 0.0585 0.28348
4s3d→4p3d 1D21F 5350.9 0.1087 0.0925 0.08844
4s4p→4p2 3P23P 4303.7 0.377 0.529 0.4756
4s4p→4p2 1P21D 5859.1 0.57 0.4706 0.550 0.31677
4p2→3d4p 1D21F 0.4998 0.00008 0.05281

aCompiled in Ref.@31#. ~The estimated uncertainty is'10–50 %.!
bReference@22#.
cReference@23#.
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TABLE VI. Variation of the third-order ground-state correlation energy~in a.u.! as a function of reference
space.

Correlation contribution No. reference space orbitals
from SR-MBPT 4V 10V 14V

Core-core 20.27166 20.27166 20.27166 20.27166
All electron 20.33179 20.32201 20.31174 20.30808
Core-valence1 valence-valence 0.0 20.05034 20.04200 20.03664

aThe approximate contribution of the 4s valence orbital to the ground-state correlation energy
20.060 128 a.u.
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the ground to high-lying excited states and excited to exc
states may be enhanced by including important CSF’s in
reference space, and research in this direction is in prog

We have seen that our result for thel56717.7 Å line
@i.e., the 4s3d (1D) to 4s5p (1P) transition# is in good
agreement with the experimental values for both the exc
tion energy and the transition dipole moment. Thus the
served crude abundances of neutral calcium@2# most prob-
ably arise because of some other property of the Am bina
which is presently not understood.

Table VI displays the contribution to the correlation e
ergy arising from the core-core, core-valence, valen
valence, and all-electron interactions. Unlike the core-c
correlation energy computation, it is not straightforward
our MR-MBPT approach to separate out the core-vale
and valence-valence contributions, and we therefore o
quote the sum total of those two contributions which can a
be obtained by subtracting the core-core contribution fr
the all-electron correlation energy. It is evident from Tab
VI that the core-valence and valence-valence correla
contributions decrease with the increasing dimension of
reference space. This variation in the correlation ene
~core-valence plus valence-valence contributions! is simply a
consequence of the imposition of the valence orbital deg
eracy condition. It can easily be shown that the forced
lence orbital degeneracy condition enlarges the gap betw
the core and valence orbital energies which increases
the increasing size of the nondegenerate reference s
@21,28#. Consequently, the correlation contribution fro
core-valence and valence-valence interactions decreases
increasing size of the reference space.

It has been observed that the second-orderHv computa-
tions often overestimate or underestimate the state ener
and this eventually is counterbalanced by the third-orderHv

contributions. Thus the low-order perturbative converge
of the Hv method sometimes exhibits an oscillatory patte
that arises mainly because of the valence orbital energy
eraging procedure, especially when the zeroth-order orb
eigenspectrum is highly nonquasidegenerate. For exam
the error in the computed 4s→4p resonant transition energ
rapidly drops from 35% to 2.5% as the perturbation ord
increases from 1 to 3. However, for a nonresonant transi
the perturbative convergence shows a somewhat oscilla
behavior. This type of convergence pattern is quite comm
and has also been observed in earlier calculations where
triplet state is described more accurately than the singlet s
with a minimal reference spaceHv computation. A system-
atic increase of the valence space, for instance, the inclu
of 3d and 6s orbitals into the reference, improves the low
d
e
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order perturbative convergence of theHv method, and this
way reduces the error in the computed third-order excitat
energy from 8.5% to 3.5% for a resonant transition and fr
10.7% to 3.17% for a nonresonant transition without sa
ficing the second-order accuracy of transition energy, wh
is small compared to the above. The inclusion of the 3d and
6s orbitals not only improves the accuracy ofHv transition
energies, but also improves the oscillator strengths.

We reiterate that the use of a large valence space
provide a very good first-order description of the excit
states of interests, but eventually it may destroy the per
bative convergence because it involves a trade-off. The s
cess of theHv method largely depends upon the relati
importance of the competing factors. The large refere
space provides a better first order description of the stat
interest, and, thereby, accelerates the convergence rate,
the diagonal perturbation that rises from the orbital aver
ing procedure destroys the perturbative convergence. T
care should taken during the selection of the reference sp
In fact, the success of theHv scheme lies largely in the
appropriate selection of the valence space, a process
requires some trial and searching and ana priori knowledge
of the most important configurations.

V. CONCLUSION

The effective shell Hamiltonian method is applied to co
pute the excitation energies and oscillator strengths for CI.
The accuracy of the computed low-lying~and some high-
lying! excited-state energies, binding energies, oscilla
strengths, and first ionization potential demonstrate
power of the method. The accuracy of the computed prop
ties through theHv method are in good agreement with th
other correlated theoretical calculations and experime
data. This work highlights a number of unique and desira
features of theHv method. For instance,Hv calculations pro-
vide a uniform accuracy for more excited states than is
tained with some other schemes, such as the MCHF and
methods.

The present calculations suggest that a minimal refere
space is sufficient for an accurate estimation of the excita
energies of the triplet states, while a large reference spac
necessary to treat the singlet states. Since our computa
have covered a wide range of reference spaces, it migh
possible to use different set of reference spaces for exc
states of different symmetries. This kind of approach h
been found to be quite successful in generating poten
energy surfaces@26#.

On the whole theHv method improves the agreeme
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between theory and experiment, but a number of proble
still remain. It has been argued over the past few years
ever present intruder states can affect the numerical stab
of the large-scaleHv calculations. However, this assumptio
has been dispelled by extensive studies of the converg
behavior@26–28#. It should be emphasized that a large~com-
plete! reference invariably leads to the situation where
zeroth-order eigenspectrum of the reference space ove
with that of the virtual space states, i.e., the large~complete!
reference space MR-MBPT computations must ultimat
s.

s
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become plagued by the intruder states, and, conseque
yield divergent perturbative expansion. However, when p
suing a large-scale low-order perturbative computation,
generally neither know nor care whether the series is tr
convergent or not, since this information has no practi
value. TheHv approach uses physical and mathematical c
siderations to produce acceptable accurate results in low
der. The present computations for neutral calcium reinfor
our prior assertions that this method can be used as a u
alternative scheme for the calculations of atomic and m
lecular properties.
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