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Excitation energies and oscillator strengths of neutral cal¢iDen) are calculated through third order using
a variant of the multireference many-body perturbation theory, known as the effective valence-shell Hamil-
tonian (H") method. Transition energies, oscillator strengths, and binding energies of various states are com-
puted and compared with experimental and other theoretical data. These quantities are in favorable agreement
with the experiment and other correlated calculations. The basis and valence space dependené¥ of the
scheme are addressed with some illustrative exam#d€950-29479)06905-X

PACS numbegps): 32.70.Cs, 32.30.Jc

[. INTRODUCTION possible choice emerges from the restricted single excitation
configuration interaction procedulré], where excitations are
Atomic transition lines of neutral calcium were first found only permitted from the highest occupied orbitals. A simpler
in solar spectrum as early as the middle of the 19th centuryand often equivalent approaches involves using improved
when the 4227-A line was identified along with the famousVirtual orbitals(IVO's) [5] in the H” valence space or refer-
singly ionized H and K line§1]. Neutral calcium lines have ©nce space. Here the IVO's are generated by single orbital
also been observed in all types of stellar and interstellar speCF Optimization in which the Fock operator is defined by
tra, such as late-type dwarf stars. The crude abundance fomoting an electron from the highest occupied orbital to

Cal (67177 A) has been observed n Am binais_ 12 O beng optiied whie 3 e previousl deter:
To confirm those identifications and to find new lines, one P ) y

has to depend on atomic experimental data or computationgpmp“ShEd by a unitary transformatigl. The IVO orbital

data based th ical dels of th ci : Thenergies obtained in this way are lower than those evaluated
ata based on theoretical models of the caiciuim atom. om the traditional SCF procedure due to the absence of an

abundances of neutral calcium in these astronomical bOdieéxtra Coulomb operator in the former procedure. For ex-
depend on the oscillator strengths of those lines, which Comﬁmple in a neutral calcium atol® calculation thé two-

from the excitation energies of various levels and transition, it (4s,4p) minimal reference space is produced by the
moments among those levels. sequence

The difficulty in accurately estimating transition energies s 2o BB p 2 N
and oscillator strengths of neutral calcium atom arises (1) 15°25°2p°3s°3p~4s® 1°S,
mainly due to the following reason@) The precise compu- (2 [1s25°2p°3s3p°4st]dpt  1°P,.
tation of transition energies and oscillator strengths requires The first step is a SCF calculation for the ground state and
a balanced description of the ground and excited stéit®s. step(2) requires only a single orbital optimization in which
The use of an inadequate basis leads to difficulties in dethe orbitals shown in square brackets are frozen like those
scribing the excited states and an unbalanced treatment determined in the previous steps, i.e., st&ép The excited
dynamical correlation and polarization effects. The problem®rbitals are then obtained by diagonalizing théSg state
due to basis set inadequacy can be removed partially by efrock operator in the orbital space complementary to the
larging the basis for small and moderate-sized atomic andnion of the core and reference spaces.
molecular systems. Here, the size extensii] of the SuccessfulH” computations for Mg-like iong7] have
theory plays an important role in handling the proper treatstimulated us to try this scheme for a neutral calcium atom
ment of electron correlation, and in that way it properly (Cal) and, in this paper, we present the theoretically com-
treats the differential correlation energies of the interactingouted excitation energies, binding energiesergy relative
(initial and final stateszeroth-order states. It ensures that theto first ionization threshold and oscillator strengths and
state energies scale linearly with the number of electrons in &ransition probabilities of Cafor a wide range of configura-
rigorous way. tions (nonrelativistically allowed transitionsAs mentioned

The accuracy of the computed excitation energy dependabove, these computations are based on the effective
mostly upon the quality of the unoccupied valence orbitals irvalence-shell HamiltonianH”) method proposed by Freed
which excitation occurs. The traditional choice of some un{5]. TheH” method has been found to be quite successful in
occupied valence orbitals from a ground-state self-accurately assigning the electronic spectrum of atomic and
consistent-field[SCPH computation introduce®/™ orbitals  complex molecular systems, such as open-shell atoms like
that are best suited for describing negative ions, and not lowReutral carbor{8] and closed-shell atom@vhere strongly
lying excited states. Thus the valence orbitals, those that aiieteracting correlations are presghke conjugated polyenes
not occupied in the ground-state SCF, should be taken asnd inorganic moleculd¥,9-11. By virtue of being a mul-
more representative orbitals suitable for excited states. Onireference approach, th¢’ method incorporates the nondy-
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namical correlation necessary to describe open shells and.

hence, possesses distinct advantages over the traditiona m

) ) N
single-reference many-body perturbation theory. d \g/'

Section 1l briefly reviews the background theory, while —=x | ___5 i

Sec. Il describes the computational details. The computed

results and discussions are presented in Secs. IV and V, re-
spectively. ) _ _

FIG. 1. Typical one- and two-bodi® dipole diagrams. Here
the line going up(down) refers to the virtualcore orbital. The
Il. THEORY valence orbitals are represented by a line with a double arrow, and

Perturbative methods proceed by first partitioning the exd line with an arrow inside a circle can be a valence or virtual

act HamiltonianH into a zeroth-order paitl, and a pertur-  °!
bationV,

D'=PDP+1
H=Hy+V, 2.0 %,

whereH, contains all one-electron Fock operatdiBhe de- X[P(¢)VQ(E4—Ho) 'QDP(¢")+H.c].
composition ofH, in principle, is arbitrary, butin practice (2.6)
proper care must be exercised to avoid introducing numerical
instabilities into the perturbative expansioriBhe full many- ~ Many-body theory techniques can be applied to reduce ex-
electron Hilbert space is decomposed into a model sface pressiong2.5 and(2.6) to represent the matrix elements of
space with a projectorP and its orthogonal complement DY in the valence orbital basis. The resulting equations may
space(Q space with a complement projectdp=1—P. The be written alternatively in terms of core-, one-, two-, ...
P space spans the model spdatso called reference or va- electron valence-shell operatd$, D{, Djj, ... , respec-
lence space of all distinct configuration state functions tively, in the operator representation
which have all core orbitals doubly occupied, and the re-
maining electrons are distributed in the valence orbitals in all
possible ways, thereby ensuring the “completeness” of the
P space. TheQ space contains all basis functions with at
least one core hole and/or one occupied excited orbital. Th@hereD is a dipole operator, anB? is an effective dipole
H” method proceeds by transforming the full Safirger  operator that acts only on thiespace. It should be noted that
equation although the dipole operator is a one-electron operator, two-
electron effective term®;; appear in the nontrivial lowest-
HWY;=EV; (220 order perturbation expansion of E@.6). This nonclassical
two electron term is necessary to obtain accurate dipole tran-
into the P-space effective valence-shell Scimger equation  sition moments. Figure 1 shows typical one- and two-body
diagrams that are zero- and first-ordér
HYW/=EW/, (2.3 In the actual computation, the effective Hamiltonlahis
first diagonalized to obtain the desired eigenvalues and

where the projected wave functionls = P¥;, andE is the eigenfunctions. The latter are then used to compute expecta-
exact eigenvalue of the full Hamiltonian. Thé® method  tion values and transition moments of some operatotn

DU:D@+Ei Di”+%i2j Dij+- -, 2.7

gives the unique lowest-order approximation, the length gauge, the absorption oscillator streng@this
defined as
H'=PHP+3 2AE 2
2%’ fii=—3— <‘I’f Ek M ‘I’i> (2.9

X[P($)VQ(E,—Ho) 'QVP(¢')+H.c], . -
where AE=E;—E; is the transition energy, an@V|r|¥;)

2.4 is the transition moment.

where P(¢) is the projector onto the valence space basis
function ¢, and H.c. denotes the Hermitian conjugate of the l. COMPUTATIONAL DETAILS

preceding term. The computations of excitation energies pro- appropriate selections of the basis set, orbitals, and va-

ceed to the next ordethird) in V. lence space are difficult, but comprise the most essential task
The matrix elements of an operatorare transformed by  in a1 ab initio many-body methods, because the perturbative
the H" theory into convergence of a finite-order calculation strongly depends
upon these factors. A prior knowledge of the system of in-
(Wi[D|W))—(W}|D*|V¥]), (2.5  terest may reduce the computational effort to find an optimal

basis set and reference space; otherwise some trial and error
whereDV is effective valence-shell operator which is com- are required to achieve this goal. We employ a variety of
puted fromD by basis sets and reference spaces to study their effect on the
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-0.23

. been performed with 87 CGTO'generated by adding few
s, p, andd functions to 73 basis setsHere we have used
D,, symmetry. Since the perturbative convergence of the
7 computed excitation energies and oscillator strengths for this
set are close to the smaller o8 CGTO’y, we only report
the smaller basis s¢73 CGTQO’9 H results]
7 The valence orbitals are selected on the basis of their
orbital energiegto avoid the near degeneracies among the
reference and virtual space statesid their relative impor-
] tance in properly describing the excited states of interest, i.e.,
in providing an accurate first-order description to minimize
the perturbative corrections. This selection is almost manda-
. tory in all MR-MBPT method to mitigate the so-called
intruder-stateproblem[20] that arises due to the near degen-
eracy of the reference and virtual space states and their rela-
oy — Lty tive ordering[21]. The reference space must include tre 4
(the outermost occupigarbital and 4 (lowest-lying unoc-
cupied orbital for describing the lowest-lying states®and
FIG. 2. Variation of the third-ordeH” (with 14V reference  p multiplets which arises froms}- 4p transition.[Note that
space correlation energy as a function of basis set. the ground state',) of the neutral calcium atom is mostly
dominated by[Ar]4s® (91%) and [Ar]4p? configuration
computed excitation energies through the third-oréigr  state function§CSF'g [22].] Therefore, the minimal refer-
method. ence space contains only the 4nd 4p orbitals with two
We emphasize that there exists a significant difference imctive electrons in the active space. Since a minimal refer-
the choice of both orbitals and orbital energies between thence spacd4s,4p} provides an inadequate description of
H? method and the traditional multireference many-bodyexcited state$CSF's[ Ar]4s4p (80%) and[ Ar]4p3d (16%)
perturbation theorfMR-MBPT) scheme[5,12-18. In the  contribute 96% to the first excited singlet statePo$ymme-
MR-MBPT method all orbitals and orbital energies are ob-try [22]) and, moreover, since we are interested in both the
tained from a singl&/N Fock operatofthe ground-state Fock lowest-lying and higher-lying states, we extend the valence
operato), and, therefore, all orbital&core, valence, and ex- space carefully to avoid the near-degeneracy of the reference
cited and their energies are evaluated fronv" potential.  and virtual space states as much as possible in order to re-
The unoccupied reference orbitals are, therefore, more apluce the perturbative convergence problem. Thus, our first
propriate for describing negative-ion states than for low-extended valence space is made of 4p, 5s, and 5 or-
lying excited states of interest. On the other hand, ke  bitals (called 8v; according toD,, symmetryp orbitals has
method determines the unoccupied reference space orbitesgmmetry with respect to three axes, iy, py, andp,).
and their energies as IVO’s from\&'~* potential. The un-  Although the computed transition energies obtained from the
occupied reference space orbital energies are much low@V reference space matches favorably well with the experi-
than those evaluated fron' potential due to the absence of ment and other correlated calculations for the low-lying ex-
an extra Coulomb operator in the former. After tHé va-  cited states ofs and P multiplets, it fails to provide an ac-
lence orbital energies are computed in this above-mentioneceptable transition energies f@r multiplets as well as the
fashion, the reference space orbitals are replaced by theitigh-lying excited states o and P multiplets, e.g., 3S,
democratic average to eliminater reducé the convergence 41'S,, 21P, etc. The origin of this discrepancy can be traced
difficulties. The valence orbital energy averaging process inback from the earlier work of Ref22], where it was shown
troduces an additional diagonal perturbati@&) which ap- that the 3'S, excited states of neutral calcium is mainly
pears in the perturbation expansion from third order on-described by the CSFAr]4s6s (94%) whereas for the 4S,
wards. excited state the major contribution comes from the CSF's
Figure 2 plots the variation of the correlation energy[Ar]4s7s (10%), [Ar]4p? (45%), and[Ar]3d? (38%), re-
(E""—E,) as a function of basis set obtained from 14 V spectively. Since, the orbitalsd3 6s, and % are not in-
reference space computatig¢described beloyy where we cluded in 8/ HY reference space, it is expected that these
find that the correlation energy decreases substantially as thexcited states will be poorly described by thé method,
number of basis function increases from 49 to 73. The variaand so will their transition energies. Similar arguments also
tion in correlation energy then slows down with further in- apply to the transition energies bfandF multiplets. There-
crease in the basis set. Here we employ a moderate sidere, in order to improve the accuracy of the above-
calcium basis(to reduce the computational effort without mentioned problematic excited states it is necessary to in-
sacrificing the accuragywhich is constructed from the clude the &, 6s, and & orbitals. Unfortunately, little
(12s9p5d/5s4pld) contracted Gaussian basis of Dobbs andeeway exists in extending the valence space by including the
Hehre [19], augmented by one polarized function ({4 7s orbital alone, because these orbitals are near degenerate
=0.100) and twos ({s=0.011, 0.0056), oned ({4 compared to 4, 4f, 6p, and 7 orbitals, respectively. In-
=0.0416), and thred ({;=3.0, 1.5, and 0.75) diffused clusion of 4, 4f, 6s, 6p, 7s, and 7% orbitals into the
functions and this yields 73 contracted Gaussian-type orbitreference space will, of course, improve the first-order de-
als (CGTO’s). [Some third-ordeH" calculations have also scription of the excited states, but it will severely affect the
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FIG. 3. Variation of the third-ordeH” 4s?>— 4s5s('S) transi-

tion energy as a function of number of valence orbitals in the ref-
erence space.

perturbative convergence due to the presencentifider
statesand large diagonal perturbation that appears from thenental data and with other theoretical values which were
third order onwards due to the valence orbital degeneracgbtained by using multiconfiguration Hartree-FAqdkCHF)
condition.(Note that, as the number of valence space orbital$22], configuration interaction(Cl) [23], Spline-Galerkin
increases, the quasidegeneracy among the valence orbitd8G) [24], and model-potentialMP) methodg 25] in Table
decreases sharply, with a consequent increase in the diagonalThis table clearly demonstrates that the accuracies of our

perturbation. Moreover, the presence of a large number of
valence orbitals in the reference space will reduce the com-
putational efficiency of the post Hartree-Fock calculation.
Therefore, an optimal set of valence orbital spaces is re-
quired which will neither reduce the computational effi-
ciency of the post-Hartree-Fock calculation nor introduce a
serious convergence probleahleastat low order. Based on
the earlier work of Ref[22] on a neutral calcium atom, we
construct a complete acti’ reference spacgo ensure the
size extensivity by allocating the two active electrons of 4
orbitals among 4, 4p, 3d, 5s, 5p, and & (14V) in all
possible way. Some typical results obtained from a series of
third-order H” calculations with varying reference are de-
picted in Fig. 3, which displays the variation of third-order
HY excitation energies as a function of the valence space,
respectively. Figure 3 indicates that the accuracy of the com-
puted transition energies sharply increases with the increas-
ing size of the reference space.

IV. RESULTS AND DISCUSSION

The third-orderH” binding energiegenergy relative to
the first ionization potentialare compared with the experi-

TABLE |. Low-lying binding energiegin cm™?) of Cal.

Terms States Expt. MCHF P cle sGH MP € HY

Singlet states

4s? s 49306.0 47649.0 476005  48930.31  49278.3  48420.28
4s5s s 15988.7 15729.3 15720.5 15935.28 15966.5 15989.32
4365 s 8615.5 8277.6 8270.5 8599.40 8536.0 7625.89
4p? s 7519.7 6709.7 6585.1 7887.13 7606.2 10231.19
4s4p p 25653.7  24689.2 24667.6  25472.25 257 20.66
4s5p p 12574.3 12160.1 12143.3 12 683.80 12127.36
4s3d D 27456.3  24869.2 244047 2747899  27365.8 26123.48
4p? D 8586.1 7402.9 8802.75 8992.11
Triplet states

4s5s s 17 766.0 17 461.4 17765.7 17 590.5
4365 s 8831.2 8714.0 8831.1 8355.2
4s4p 3p 340425 34076.7  34851.67 33986.6
4s5p 3p 12740.3 12570.2 12899.61 12334.3
4p? p 10797.7 11120.1 11675.8
302 SF 5811.7 835.7 5811.6 5381.1
3d4p 5k 13474.2 10797.9 14 032.06 12 244.7
4s3d D 28948.9 24293.0 28096.19 27413.2
3d4p ’p 9967.6 7148.3 9866.51 7392.3
3d4p D 11073.1 6881.8 8218.1
8Referencd29].

bReferencd22].

‘Referencd23].

dReferencd 24].

®Referencd 25]
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calculations of the third-orded” binding energies for sin- TABLE . Third-order H” excitation energiesin rydberg for
glets (average deviation=855 cni'!) are better than those S, P, D, andF multiplets of Ca. A=|Ecac— Eexpl-
of the MCHF (average deviatior=1027 cm !) and ClI cal-

culations (average deviation~1103 cni'l), though the T€ms State Expf  oE° SES  SE(HY)
number of configurations used in the latter calculations arey multiplets

much larger than ours. This demonstrates the power of thg.. 1g 0.000 0.000  0.00000 0.00000
MR-MBPT approach in general and ti# method in par- 4555 35 0.28741 001276  0.00646
ticular. This approach is computationally more efficient than4553 1S 030361 001289 0.01310 000807

acting configurations n the model space and relating weaKy>e> s 0seaes 001447 000373

intergcting gonfigurations which Iiepin the compler%entary¥l863 'S 037079 001218 001239  0.00095
2 1

space are treated perturbatively. The SG and MP calculationd S 038078 000733 000702 0.03298

for the binding energies are in general in better agreement _

with experimental than ours. Table | clearly indicates that” Multilets

our results are consistently better than those obtained by tHt4P P 013813 0.01489  0.00620
Cl method. For example, for the triplet states the averagéS4P P 0.21553 0.00651 0.00655 0.00867
deviation for our calculations is 1061 crh while for the  4SSP °P 0.33305 0.01377  0.00421
ClI calculations it is 2026 cm'. This suggests that thg”  4S5p P 033711 0.01398 0.01400 0.00638
method treats the differential correlation more accurately*p P 0.35052 0.01808  0.01567
than the MCHF and CI methods. Despite the fact thatthe  3d” P 0.44231 0.02162 0.00266
method provides accurate estimate of the binding energie3d4p °P  0.35845 0.01018 0.01542
for most of the excited states, it fails to produce an accurat&d4p P 033472 0.05740 0.09362

binding energy for the 4S excited stategit deviates by
2711.5 cm! from experiment The underlying reason for D multiplets

this large deviation in the estimated binding energy of the3d4s 5D  0.18543 0.02696  0.00600
41S excited state becomes transparent when we analyze tfgel4s D  0.19911 0.01155 0.01226 0.00407
composition of the 4S excited state in terms of CSF’s. The 3d5s D 0.43264 0.01491
MCHF calculation of Ref[22] and other calculations show 4p2 1D  0.37106 0.01176
that this particular singlet excited state is multiconfigurationzg4p 3D 0.34864 0.01770
in nature, where the major contribution comes from thezgsp ID  0.32655 0.00464

CSF's [Ar]4p? (46%), [Ar]3d? (39%), [Ar]4s7s (10%),
[Ar]4s? (1.9%), and[Ar]4d? (1.6%. Since 4 and & or- multiplets

bitals are not included in thEl” reference space in order to 3d4p 3 0.32637 0.00328
maintain the quasidegeneracy of the valence orbital and 4 IE 036941 0.04254
hance the perturbative convergence rate, this particular eX%5y2 3 039630 0.00409
cited state (4S) is inaccurately described by thel’ ' '
method, and hence, is poorly estimated. Inclusionaf 4f, *Referencd 30].

6p, 7s, and 7 orbital into the valence space will definitely °Referencd22].

improve the first-order description of the'8 excited state, C°Referencd23].

but the perturbative convergence and the accuracy of high

order MBPT (third orde) may deteriorate due to the pres- contributes about 80% to the'E excited state. Since, we

ence of a large number of intruder states, and a huge diagtvave not included these orbitals d44f, and &) in our

nal perturbation which exerts an opposing force to the perreference space, the above-mentioned excited states, and so

turbative convergence. their state energies, are expected to be poorly described. We
Table Il compares the first few excitation energies ob-have also the estimated excitation energy for t(3G)

tained through a third-ordéd® calculation with MCHF and  state (46422.8 cimt). There is no experimental data avail-

Cl values as well as experimental data. Like the bindingable for this, but our result is in fair agreement with the

energies, here we also find that all the low-lying excitedresults of Brage and Fischg¢R4] (46 164.24 cm?') and

states transition energies are in excellent agreement with ex-aughlin and Hansen (46 075.4 cH).

periment, while there exists a small but non-negligible error Since a wide variety of reference spaces are used in the

in the estimation of the high-lying states. We expect thispresent calculation, it is important to study the low-order

trend from the binding-energy calculation as well as fromconvergence behavior of the different choices. We have

previousHY computation on Mg-like ion§7]. As explained demonstrated the importance of thd 8rbital in the calcu-

above, it is the d and 7% orbitals whose absence in the lation. In Table Ill, we present the results obtained from

valence orbital space inaccurately describes ths dxcited  typical 13/ (defined below third-order H’ computations

states and, hence, poorly estimates this transition energywhere the computed transition energies are close to the ex-

Likewise, the absence ofd4 4f, 6p, and % orbitals af- periment, but the relative order of the singlet and triplet ex-

fects the computation of high-lying excited states RyrD, cited states are incorrect.

andF multiplets. For instance, it was shown in RgZ2] that As pointed out in Ref[22], the low-lying excitedS mul-

the major contribution to the ¥D and 3'D excited states tiplet states of Caare dominated by the CSF[#Ar]4sns

comes from the CSFAr]4s4d, while the CSH Ar]4s4f and we construct &1¥ reference space by allocating two
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TABLE lIl. Transition energiegin rydberg for S multiplets of TABLE V. Transition probabilities(in 10° sec!) computed
Cal, obtained from the third-orderH” method using the through the thirdtd” method forS, P, D, andF multiplets of Ca.
13V (4s,5s,6s,7s,4p,5p,6p) valence space.

Transition Multiplet ~ Wavelength Expt. HY
Terms State Expt. H*
4s?— 4s4p 1s-1p 4227.9 2.18 2.011
4s6s 3s 0.36883 0.368218 4s?— 4s5p 1s-1p 27225 0.0027  0.022
4s6s s 0.37079 0.368004 4s4p—4p? p-1s 5514.5 1.1 2.64
4s7s 3s 0.40078 0.400079 4s4p—4s5s 3p-3s 6123.9 0.354  1.452
4s7s 's 0.40348 0.396437 4s4p— 4s6s 3p—3s 3958.2 0.175  0.392
4s3d—4s5p SD-3%p 6163.1 0.19 0.698
) ) 4s3d—4s5p Ip-1p 6717.7 0.12 0.102
active electrons o_fdorbltal among 4, 4pZ 5s, 5p, 6s, 6p_, 4s3d—4p3d 3p_3p 5271.7 0.50 1.758
and & (13V) orbitals. The computed third-ordet’ transi- 4s3d—4p3d 3p_3p 5596.0 0.49 0.886

tion energies are collected in Table III,_ and compared W|th4$3dH4p3d 3p_3F 6465.6 053 0348
experimental data. From Table Il we find thaj s> E; 15

) 4s3d—4p3d Ip-1p 4526.9 0.41 1.923

and E3 3S> E4 1s instead Osz 33< E3 1g and E3 3S< E4 1g. - pz 3 3
This incorrect ordering of the excited statesSMmultiplets 4s4p—4p p—P 4303.7 1.36 1.586
4s4p—4p? p-1p 5859.1 0.66 0.353

most probably arises due to absence of tlk d@bital in
valence space, because this peculiar problem does not ari&ompiled in Ref[31]. (The estimated uncertainty is 10~50 %)
in our 14/ HY calculation, where the@orbital is included
in the valence space. quality of the oscillator strengths and probabilities for the
Effective dipole operator calculations have also been perground to high-lying excited state and excited to excited state
formed to compute the transition probability and the oscilla-can be anticipated because the reference space lacks impor-
tor strengths of states. These calculations take the matritant configurations likg¢ Ar]4s7s, [Ar]4s4d, etc., that not
element of the second-order effective dipole operator beenly contribute to energies but also exert a strong influence
tween theH" eigenvectors as determined by the third-orderon dipole propertie$7]. (Note that oscillator strength and
calculations. While our estimated oscillator strengths andransition probability depends upon the transition energy and
transition probabilities for ground to excited staté&sw ly-  transition moment. Therefore, an error in the estimation of
ing) are reasonably close to the MCHF, Cl, and experimentagither of the two can yield a poor value for transition prob-
data, oscillator strengths for the excited to excited state trarability and oscillator strengthThe accuracy of the transition
sition are somewhat offsee Tables IV and )/ The inferior  energies, oscillator strengths, and transition probabilities for

TABLE IV. Third-order HY oscillator strengths fo, P, D, andF multiplets of Ca.

Transition Multiplet Wavelength Expt. MCHF® o HY

45’ 4s4p 1s-1p 4227.9 1.75 1.89 1.820 1.74824
45’ 4s5p s-1p 27225 0.0009 0.0174 0.00101 0.00734
4s55—4s5p s-1p 29288.1 0.9968 0.926 1.03968
4s4p— 4s5s p-1s 10346.6 0.3975 0.118 0.34376
4s4p—4s6s p-1g 5869.2 0.0029 0.0009 0.07591
4s5p—4s6s p-1g 25260.0 0.6567 0.168 0.93595
4s4p—4p? p-1s 5514.5 0.17 0.4449 0.120 0.25685
4s5p—4p? p-1s 19783.7 0.0211 0.0153 0.02999
4s4p— 4s5s 3p-3s 6123.9 0.121 0.156 0.4508
4s4p—4s6s Sp-3s 3958.2 0.0248 0.187 0.0524
4s3d—4s5p SD-3p 6163.1 0.076 0.0407 0.030
4s3d—4s4p pD-p 55473.3 0.0007 0.0014 0.00017
4s3d— 4s5p p-1p 6717.7 0.049 0.0916 0.0585 0.04237
4s3d—4p3d Sp-3p 5271.7 0.15 0.201 0.46996
4s3d—4p3d D-°D 5596.0 0.23 0.346 0.36092
4s3d—4p3d SD-3F 6465.6 0.42 0.364 0.29119
4s3d—4p3d p-1p 4526.9 0.075 0.0585 0.28348
4s3d—4p3d ID-1F 5350.9 0.1087 0.0925 0.08844
4s4p—4p? p-3p 4303.7 0.377 0.529 0.4756
4s4p—4p? P-1p 5859.1 0.57 0.4706 0.550 0.31677
4p?—3d4p ID-'F 0.4998 0.00008 0.05281

&Compiled in Ref[31]. (The estimated uncertainty is 10—50 %)
bReferencd 22].
‘Referencd23].



3438 SONJOY MAJUMDER, B. P. DAS, AND RAJAT K. CHAUDHURI PRA 59

TABLE VI. Variation of the third-order ground-state correlation enefigya.u) as a function of reference

space.

Correlation contribution No. reference space orbitals
from SR-MBPT &~ 1ov 14v
Core-core —0.27166 —0.27166 —0.27166 —0.27166
All electron —0.33179 —0.32201 —0.31174 —0.30808
Core-valencet valence-valence 0.0 —0.05034 —0.04200 —0.03664

&The approximate contribution of thes4valence orbital to the ground-state correlation energy is
—0.060128 a.u.

the ground to high-lying excited states and excited to exciteadrder perturbative convergence of th& method, and this
states may be enhanced by including important CSF’s in thevay reduces the error in the computed third-order excitation
reference space, and research in this direction is in progressnergy from 8.5% to 3.5% for a resonant transition and from
We have seen that our result for the=6717.7 A line  10.7% to 3.17% for a nonresonant transition without sacri-
[i.e., the 43d (D) to 4s5p (*P) transitior] is in good ficing the second-order accuracy of transition energy, which
agreement with the experimental values for both the excitais small compared to the above. The inclusion of tleaBd
tion energy and the transition dipole moment. Thus the ob6s orbitals not only improves the accuracy idf transition
served crude abundances of neutral calc[@hmost prob- energies, but also improves the oscillator strengths.
ably arise because of some other property of the Am binaries We reiterate that the use of a large valence space may
which is presently not understood. provide a very good first-order description of the excited
Table VI displays the contribution to the correlation en- states of interests, but eventually it may destroy the pertur-
ergy arising from the core-core, core-valence, valencebative convergence because it involves a trade-off. The suc-
valence, and all-electron interactions. Unlike the core-coreess of theH” method largely depends upon the relative
correlation energy computation, it is not straightforward inimportance of the competing factors. The large reference
our MR-MBPT approach to separate out the core-valencgpace provides a better first order description of the state of
and valence-valence contributions, and we therefore onlynterest, and, thereby, accelerates the convergence rate, while
quote the sum total of those two contributions which can alsahe diagonal perturbation that rises from the orbital averag-
be obtained by subtracting the core-core contribution frorming procedure destroys the perturbative convergence. Thus
the all-electron correlation energy. It is evident from Tablecare should taken during the selection of the reference space.
VI that the core-valence and valence-valence correlatiomn fact, the success of thel” scheme lies largely in the
contributions decrease with the increasing dimension of theppropriate selection of the valence space, a process that
reference space. This variation in the correlation energyequires some trial and searching andaapriori knowledge
(core-valence plus valence-valence contributiegasimply a  of the most important configurations.
consequence of the imposition of the valence orbital degen-
eracy condition. It can easily be shown that the forced va-
lence orbital degeneracy condition enlarges the gap between
the core and valence orbital energies which increases with The effective shell Hamiltonian method is applied to com-
the increasing size of the nondegenerate reference spapeate the excitation energies and oscillator strengths far Ca
[21,28. Consequently, the correlation contribution from The accuracy of the computed low-lyif@nd some high-
core-valence and valence-valence interactions decreases wilfling) excited-state energies, binding energies, oscillator
increasing size of the reference space. strengths, and first ionization potential demonstrate the
It has been observed that the second-otdércomputa-  power of the method. The accuracy of the computed proper-
tions often overestimate or underestimate the state energiasgs through theH" method are in good agreement with the
and this eventually is counterbalanced by the third-otdler  other correlated theoretical calculations and experimental
contributions. Thus the low-order perturbative convergencelata. This work highlights a number of unique and desirable
of the H” method sometimes exhibits an oscillatory patternfeatures of théd” method. For instancé]® calculations pro-
that arises mainly because of the valence orbital energy awide a uniform accuracy for more excited states than is ob-
eraging procedure, especially when the zeroth-order orbitahined with some other schemes, such as the MCHF and ClI
eigenspectrum is highly nonquasidegenerate. For examplejethods.
the error in the computeds4-4p resonant transition energy The present calculations suggest that a minimal reference
rapidly drops from 35% to 2.5% as the perturbation orderspace is sufficient for an accurate estimation of the excitation
increases from 1 to 3. However, for a nonresonant transitioenergies of the triplet states, while a large reference space is
the perturbative convergence shows a somewhat oscillatonyecessary to treat the singlet states. Since our computations
behavior. This type of convergence pattern is quite commorhave covered a wide range of reference spaces, it might be
and has also been observed in earlier calculations where thmssible to use different set of reference spaces for excited
triplet state is described more accurately than the singlet stattates of different symmetries. This kind of approach has
with a minimal reference spadé’ computation. A system- been found to be quite successful in generating potential-
atic increase of the valence space, for instance, the inclusioenergy surfaceg26].
of 3d and 6 orbitals into the reference, improves the low- On the whole theH” method improves the agreement

V. CONCLUSION
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between theory and experiment, but a number of problembecome plagued by the intruder states, and, consequently
still remain. It has been argued over the past few years thatield divergent perturbative expansion. However, when pur-

ever present intruder states can affect the numerical stabilit§uing @ large-scale low-order perturbative computation, we
of the large-scalél” calculations. However, this assumption generally neither know nor care whether the series is truly

has been dispelled by extensive studies of the Convergen%nvergent or not, since this information has no practical
. X lue. TheH” approach uses physical and mathematical con-
behavio{26-2§. It should be emphasized that a lakgem- Pb bhy

. ; e siderations to produce acceptable accurate results in low or-
plete reference invariably leads to the situation where theger, The present computations for neutral calcium reinforces

zeroth-order eigenspectrum of the reference space overlapsir prior assertions that this method can be used as a useful
with that of the virtual space states, i.e., the lafgemplet¢  alternative scheme for the calculations of atomic and mo-
reference space MR-MBPT computations must ultimatelylecular properties.
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