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ABSTRACT
We examine the excitation of transverse (kink) and longitudinal (sausage) waves in magnetic Ñux tubes

by granules in the solar photosphere. The investigation is motivated by the interpretation of network
oscillations in terms of Ñux tube waves. We model the interaction between a granule, with a speciÐed
transverse velocity, and a vertical Ñux tube in terms of the Klein-Gordon equation, which we solve ana-
lytically as an initial value problem for both wave modes, assuming the same external impulse. The cal-
culations show that for magnetic Ðeld strengths typical of the network, the energy Ñux in transverse
waves is higher than in longitudinal waves by an order of magnitude, in agreement with the chromo-
spheric power spectrum of network oscillations observed by Lites, Rutten, & Kalkofen. But for weaker
Ðelds, such as those that might be found in internetwork regions, the energy Ñuxes in the two modes are
comparable. This result implies that if there are internetwork oscillations in magnetic Ñux tubes, they
must show the cuto† periods of both longitudinal and transverse modes at 3 minutes and at 7 minutes
or longer. We also Ðnd that granules with speeds of about 2 km s~1 can efficiently excite transverse
oscillations in frequent short-duration (typically 1 minute) bursts that can heat the corona.
Subject headings : MHD È Sun: magnetic Ðelds È Sun: oscillations

1. INTRODUCTION

It is well known from observations that the solar photo-
sphere is threaded with strong (kilogauss) vertical magnetic
Ðelds in the form of Ñux tubes, which occur preferentially in
the Ca network at the boundaries of supergranular cells on
the disk (e.g., StenÑo 1994). These magnetic elements or Ñux
tubes occur in intergranular lanes, where they are observed
as small bright points (Dunn & Zirker 1973 ; Mehltretter
1974 ; Muller 1983, 1985 ; Muller et al. 1994 ; Berger et al.
1995) with diameters of typically 100 km. Observations with
subarcsecond spatial resolution have revealed that these
network bright points (NBPs) are in a highly dynamical
state (Tarbell et al. 1989 ; Muller et al. 1992 ; Muller &
Roudier 1992 ; Title et al. 1992 ; Muller et al. 1994 ; Berger et
al. 1998 ; van Ballegooijen et al. 1998), exhibiting random
motions with a broad velocity distribution. A histogram of
NBP velocities by Muller et al. (1994), shows a mean speed
of around 1.5 km s~1, but they also Ðnd several instances
when the velocities can intermittently become as high as 3
km s~1. From an analysis of G band observations van Bal-
legooijen et al. (1998) found that the temporal variation of
the bright point velocity had a correlation time of about 100
s. It is likely that the motions associated with NBPs can
excite oscillations in magnetic Ñux tubes, which could con-
tribute toward coronal heating.

Several observations have shown that the chromosphere
in the magnetic network of the quiet Sun oscillates with a
period of around 7 minutes 1983 ; Lites, Rutten, &(Dame�
Kalkofen 1993, hereafter LRK93; Curdt & Heinzel 1998).
In order to analyze the oscillations and deduce the proper-
ties of the atmosphere, the nature of the waves and the
origin of the periods must be known. A model of network
bright points must explain the wave period and the heating.
Furthermore, it must be compatible with the observational
data regarding the power spectrum at the line center of the
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Ca` H line (LRK93, Fig. 6) and the velocity phase coher-
ence spectrum between the base of the chromosphere and
the layer of formation of (LRK93, Fig. 7). The powerH3spectrum shows a peak at 7 minutes, and the coherence
spectrum shows very low coherence at all periods, implying
that the waves giving rise to the Doppler motion at disk
center do not come from below.

Two explanations have been proposed for the above
oscillations : in terms of internal gravity waves forming
standing waves in a chromospheric cavity (e.g., Deubner &
Fleck 1990) and in terms of kink or transverse waves in
magnetic Ñux tubes oscillating at their cuto† period
(Kalkofen 1997 ; hereafter K97). For internal gravity waves,
the wave period is determined by the temperature structure
of the photosphere and chromosphere ; for kink waves, the
observed period is equal to the cuto† period, which depends
on the temperature itself and on the strength of the mag-
netic Ðeld in the photosphere. The above idea by Deubner
& Fleck in terms of gravity waves may explain the observed
wave periods (Lou 1995a, 1995b) but fails to account for the
heating of the chromosphere (K97). Transverse waves in the
scenario of K97 can dissipate and heat the chromosphere,
but only after conversion to longitudinal modes.

An alternative model that is consistent with the obser-
vational data is based on the excitation of kink tube waves
generated in the photosphere through the impulse imparted
by granules to magnetic Ñux tubes. The basis of this model
is the observation of Muller et al. (1992, 1994) of inter-
mittent, rapid motions of NBPs, which has been modeled
by Choudhuri, Au†ret, & Priest (1993, hereafter CAP93)
and Choudhuri, Dikpati, & Banerjee (1993) as footpoint
displacement of Ñux tubes, which results in upward-
propagating transverse or kink waves. They reasoned that
these waves could in principle carry sufficient energy to heat
the corona. Other studies on the excitation of kink waves
through periodic and turbulent footpoint motions in the
convection zone have been undertaken by Ulmschneider,

& Musielak (1991) and by Musielak et al. (1994),Za� hringer,
Huang, Musielak, & Ulmschneider (1995), Musielak et al.
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(1995), and Zhugzhda, Bromm, & Ulmschneider (1995). The
above investigations were carried out using a one-
dimensional treatment based on the thin Ñux tube approx-
imation. The generation of transverse waves through
granular bu†eting has also been found in the two-
dimensional numerical simulations of Steiner et al. (1998).
All these studies indicate that impulsive or turbulent foot-
point motions can in principle excite sufficient energy in
transverse waves for coronal heating. We should also
mention that these e†ects are also present in three-
dimensional numerical simulations of magnetoconvection
(Nordlund & Stein 1989, 1990 ; Stein, Brandenburg, &
Nordlund 1992 ; Nordlund et al. 1992).

A fundamental difficulty associated with the transverse
wave scenario is that these waves are invisible at disk center.
However, it should be borne in mind that, owing to the
rapid decrease in density with height, the velocity amplitude

of upwardly propagating waves grows exponentiallyv
Mwith heightÈas exp (z/4H) in the isothermal limit (e.g.,

Spruit 1981), where H is the density scale height. In the
chromosphere the velocity amplitude becomes comparable
to the tube speed of kink waves leading to an efficient coup-
ling of the transverse waves to longitudinal or sausage Ñux
tube waves and consequently to a transfer of power to the
latter. The longitudinal waves, which are compressive, can
dissipate by forming shocks. Support for this hypothesis
comes from the calculations by Zhugzhda et al. (1995 ; see
also Ulmschneider et al. 1991), which is based on impulsive
footpoint displacement analogous to that studied by
CAP93.

The impulsive excitation of waves in a Ñux tube in general
leads to the formation of a pulse that propagates away at
the kink tube speed followed by a wake in which the Ñuxci,tube oscillates at the cuto† period of kink waves (cf.PiSpruit & Roberts 1983). This characteristic signature will be
preserved even after the transformation of the transverse
waves into longitudinal waves.

The aforementioned scenario of network bright point
oscillations and heating is compatible with observations. As
already noted, the transverse waves, generated in the photo-
sphere, give a negligible contribution to the Doppler signal
at disk center. However, in the chromosphere they are
detected after transformation into longitudinal waves with
the same period. The transfer of power between the modes
takes place in the nonlinear regime and hence is very noisy.
In addition, the longitudinal waves are excited by trans-
verse waves whose cuto† period is much longer than that of
the longitudinal waves. This corresponds to the long-period
driving of acoustic waves (they are also described by the
Klein-Gordon equation), which also results in a noisy wave
spectrum (Kalkofen et al. 1994, Fig. 11). This noisy wave
spectrum is consistent with the broad intensity maxima as a
function of time shown by the Ca H line core (LRK93,
Fig. 2). Furthermore, the value of the kink wave cuto†
period, which depends on the strength of the magnetic Ðeld,
is consistent with the observed magnetic Ðeld strength of
magnetic Ñux tubes et al. 1992 ; StenÑo 1994).(Ru� edi

The present investigation is based on an examination of
the hypothesis, described above, of the excitation of trans-
verse waves by the rapid motion of magnetic Ñux tubes,
based on the observations by Muller et al. (1992, 1994) of
rapid granular motion near photospheric bright points and
modeled by CAP93. This model implicitly assumes that the
velocities associated with bright points solely excite trans-

verse waves, whereas in principle there may also be slowly
varying motions (with frequencies below the kink cuto†
frequency) that do not efficiently generate transverse waves
(van Ballegooijen et al. 1998). Furthermore, the observed
motions may also lead to the generation of sausage oscil-
lations, which represent an axisymmetric compression of
the Ñux tube. Thus, it would be more appropriate to deter-
mine the motion of the network bright points as a response
to granular bu†eting by posing the question as an inter-
action problem and calculating the amplitude of the
resulting transverse and longitudinal motions, in contrast
to the approach adopted by CAP93 and Muller et al. (1994).

Our paper, based on the above hypothesis, examines the
linear response of a vertical magnetic Ñux tube under the
action of an impulse in the ambient medium. It should be
noted that the linear interaction between a monochromatic
acoustic wave or p-mode and a Ñux tube has been studied
very extensively for an unstratiÐed atmosphere (e.g., Ryutov
& Ryutova 1976 ; Spruit 1982 ; Bogdan & Zweibel 1985 ;
Zweibel & Bogdan 1986 ; Ryutova & Priest 1993 ; see also
the reviews by Bogdan 1992, 1994, and references therein).
Recently, the problem has been extended to include the
e†ects of gravity by Bogdan et al. (1996) for a polytrope and
by Hasan (1997) for an isothermal atmosphere. These
papers essentially determined the coupling of p-modes with
Ñux tube waves in the asymptotic time limit. The time-
dependent interaction of a pulse in the external medium
acting on a Ñux tube does not appear to have received
adequate attention. We exclude treatments in which the
problem involves the response of a tube to a speciÐed
motion of its footpoints or to a pressure perturbation at the
base ; rather we are concerned with the response of a tube
under the driving action of a known force in the ambient
medium.

SpeciÐcally, we examine the proposition that for intense
Ñux tubes encountered in the magnetic network, the e†ect of
an impulse delivered horizontally on the sides of the tube
yields mainly transverse waves, and that for the weaker
Ðelds in the cell interior, a larger fraction of the wave Ñux
appears in the form of longitudinal waves. We determine
which modes are preferentially excited by calculating the
partitioning of energy in the two wave modes, for the same
external impulse. The theoretical results obtained in this
paper support the inference drawn from chromospheric
power spectra that the magnetic Ñux tubes show mainly
transverse waves. For bright points our results,K2vtogether with the absence of long-period oscillations from
the cell interior chromosphere, imply that bright pointsK2vare powered by pure acoustic waves and not by longitudi-
nal magnetoacoustic waves. In addition we also examine
the excitation of transverse waves due to footpoint motion
to compare with the earlier work of CAP93.

The plan of the paper is as follows : in ° 2 we present the
linear wave equations for the interaction of transverse and
longitudinal modes with an external impulse ; the analytic
solutions for kink and longitudinal wave modes along with
expressions for the energy Ñux are given in ° 3. We present
results for some illustrative cases in ° 4 and discuss their
salient features in ° 5. Finally, the main conclusions of the
work are summarized in ° 6.

2. EQUATIONS FOR A THIN FLUX TUBE

We consider a vertical magnetic Ñux tube extending
through the photosphere. If the tube is sufficiently thin so
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that radial variations can be neglected to leading order, the
analysis is considerably simpliÐed. We adopt this approx-
imation for mathematical tractability and examine linear
displacements of the Ñux tube, which are described by kink
or transverse (Spruit 1981) and sausage or longitudinal
waves (Roberts & Webb 1978). We also include the e†ect of
perturbations in the external medium, since our aim is to
study the excitation of tube oscillations due to the forcing
action of granules. The relevant linear equations for both
wave modes are well known and given in Appendix A for
convenience.

Since we are primarily concerned in this paper with the
photospheric layers of the Ñux tube, it is reasonable to
assume that the atmosphere is isothermal. Although in the
higher layers this assumption is not so good, we adopt it
nonetheless for reasons of mathematical tractability. We
work in terms of the ““ reduced ÏÏ displacement Q(z, t) which
is related to the physical Lagrangian displacement m(z, t) by

Qi(z, t)\ m
M
(z, t)e~z@4H

for kink or transverse oscillations and by

Qj(z, t)\ m
A
(z, t)e~z@4H

for sausage or longitudinal oscillations, where H denotes
the scale height of the atmosphere.

Starting from equations (A1) and (A11), it can be shown
that the reduced displacement (a \ i for transverseQawaves and a \ j for longitudinal waves) in an isothermal
and magnetized medium satisÐes the Klein-Gordon equa-
tion

L2Qa
Lz2 [ 1

ca2
L2Qa
Lt2 [ ka2Qa\ Fa , (1)

where is the cuto† frequency for the wave,ka\ ua/ca, uaand is the wave propagation speed in the medium. Thecaspeeds for the transverse and longitudinal waves are, respec-
tively,

ci2\ 2
c

c
s
2

1 ] 2b
,

cj2\ c
s
2

1 ] cb/2
,

where is the sound speed, c is the ratio of speciÐc heatsc
s(c\ 5/3), b \ 8np/B2, p is the gas pressure inside the tube,

and B is the magnitude of the vertical component of the
magnetic Ðeld on the tube axis.

The cuto† frequencies for transverse and longitudinal
waves are, respectively,

ui2\ g
8H

1
1 ] 2b

, (2)

uj2\ uBV2 ] cj2
H2
A3
4

[ 1
c
B2

, (3)

where is the frequency.uBV2 \ g2 (c [ 1)/c
s
2 Brunt-Va� isa� la�

2.1. Form of the Forcing Functions
The forcing functions appearing in equation (1) areFa(see eq. [A4])

Fi(z, t)\ [e~z@4H 2(b ] 1)
2b ] 1

1
ci2

LV
M,e

Lt
(4)

for the transverse wave, where denotes the trans-V
M,e(z, t)

verse component of the external granule velocity, and for
the longitudinal wave (see eq. [A13])

Fj(z, t) \ e~z@4H b ] 1
2p

e

A d
dz

] 1
cH
B
%

e
, (5)

where denotes the (Eulerian) perturbation in the external%
epressure and is the external gas pressure.p

eThe form of the granule velocity in the external medium
needs to be speciÐed. For simplicity we assume that the
granules bu†et the tube at a Ðxed level in the atmosphere
corresponding to z\ 0.

Let the external granule velocity have the form

V
M,e(z, t) \ V

M,e f (t)d(z/H) , (6)

where f (t) describes the time dependence of the impulse, V
M,edenotes the amplitude of the external velocity, and d is the

Dirac d function.
Since our aim is to compare the wave energy in trans-

verse and longitudinal oscillations we need to relate the
granule velocity to the external pressure perturbationV

M,eWe do this by using the linearized equation of motion in%
e
.

the Ðeld-free medium for the transverse component of the
velocity, viz.,

o
e

LV
M,e

Lt
\ [ L%

e
Lx

, (7)

where is the gas density in the surrounding atmosphere.o
eIntegrating equation (7) with respect to x, we Ðnd

%
e
(z, x, t) [ %

e
(z, x0, t) \ o

e
*x
TLV

M,e
Lt
U

,

where denotes the average value of the acceler-SLV
M,e/LtT

ation in the interval The latter isLV
M,e/Lt *x \x0[ x.

essentially the distance a granule travels in the horizontal
direction before impinging on the tube. Dropping the
angular brackets and assuming that at and%

e
\ 0 x \x0that *x is comparable to the pressure scale height, we have

%
e
B aHo

e
LV

M,e
Lt

, (8)

where a is a factor of order unity.

3. SOLUTIONS OF THE LINEARIZED WAVE EQUATIONS

We now develop solutions for the ““ reduced ÏÏ displace-
ments that satisfy the Klein-Gordon equation (1), using
standard techniques. For an inÐnite medium (i.e., extending
from z\ [O to z\ ]O) the solution can be written con-
veniently as follows (Morse & Feshbach 1953) :

Qa(z, t) \
P
0

t
dt0
P
~=

=
dz0Fa(z0, t0)Ga(z, z0 ; t, t0) , (9)

in terms of G, the GreenÏs function, given by

Ga(z, z0 ; t, t0) \
ca
2

J0
C
ua
S

(t [ t0)2[ (z[ z0)2
ca2

D

]H
A
t [ t0[ Â z[ z0 Â

ca

B
, (10)

where z, t and denote, respectively, the Ðeld andz0, t0source coordinates ; denotes the zeroth order Bessel func-J0tion ; H is the Heaviside function ; and is the cuto†ua
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frequency of the wave. Note that we have implicitly
assumed that and vanish at z\ ^O.Qa LQa/Lt

By substituting the functions given by equations (4)Faand (5), we can explicitly calculate the displacements forQathe di†erent wave modes.

3.1. Kink Waves
Substituting equations (4) and (10) in equation (9) and

using equation (6) for the external velocity we Ðnd that the
solution for the transverse displacement in a kink wave is
given by

Qi(z, t)\ [Di
P
0

t~z@ci
dt0 f @(t0)J0(ui fi) , (11)

where

fi \ J(t [ t0)2[ (z/ci)2 ,

and

Di \ b ] 1
2b ] 1

V
M,e
ci

H .

In order to determine the reduced velocity we di†eren-Q0 i,tiate equation (11) for the displacement with respect to t to
obtain

Q0 i(z, t)\ [Di
C

f @
A
t [ z

ci

B
[
P
0

t~z@ci
dt0 f @(t0)

]
ui(t [ t0)

fi
J1(ui fi)

D
. (12)

3.1.1. Excitation of Kink Waves Due to Footpoint Motions

It is instructive to consider the solution of kink wave
excitation when the footpoint motion is speciÐed. Mathe-
matically, this problem can be solved in terms of the veloc-
ity that satisÐes the homogeneous form of theQ0 iKlein-Gordon equation given by equation (1) for a semi-
inÐnite medium, extending from z\ 0 to z\ O, and an
inhomogeneous boundary condition at z\ 0, where Q0 i(0, t)
is speciÐed as a function of time. The solution of this initial
value problem in which for t \ 0 can onceQ0 i(0, t)\ 0
again be constructed using GreenÏs function techniques and
is (Doetsch 1956 ; see Appendix B for details)

Q0 i(z, t)\
C
Q0 i
A
0, t [ z

ci

B

[ ki z
P
0

t~z@ci
dt0Q0 i(0, t0)

J1(ui fi)
fi

D
. (13)

It can be shown that the above solution for the semi-inÐnite
medium given by equation (13) is consistent with equation
(12) for the inÐnite medium. This can be veriÐed by calcu-
lating (the footpoint velocity) from equation (12) forQ0 i(0, t)
a speciÐed form for the external granular velocity. When
this solution is substituted in equation (13), the resulting
velocity is identical to that found from equation (12). For
purposes of comparison with CAP93 it is convenient to
look at the Fourier representation of the above equation,
which is

Q0 i(z, t)\
P
0

t
dt0Q0 i(0, t0)

P
~=

=
du ei*kz~u(t~t0)+ , (14)

where the wavenumber k and the frequency u are related by
the dispersion relation,

u2 \ ci2 k2] ui2 .

The above equation (eq. [14]) agrees with equation (10)
used by CAP93 if we consider the initial time to be at
t \ [O.

3.1.2. Wave Energy Flux in Kink Waves

We now calculate the vertical wave energy Ñux. The verti-
cal component of the energy Ñux in transverse waves is
given by (Bray & Loughhead 1974 ; see also Bogdan et al.
1996)

Fi \ [B2
4n

Lm
M

Lt
Lm

M
Lz

. (15)

In terms of the reduced displacement Q and velocity weQ0
obtain (using the relation p/p

e
\ b/1 ] b)

Fi \ [ 2p
e,0

b ] 1
Q0 i
ALQi

Lz
] 1

4H
Qi
B
e~z@2H , (16)

where is the gas pressure in the ambient medium atp
e,0z\ 0. We Ðnd that the product of the energy Ñux and the

cross section area of the tube A(z), where A(z)\ A(0)ez@2H
for an isothermal tube, does not have the exponential height
dependence of the physical displacement.

We deÐne the e†ective Ñux as

Fi,eff\ nFi A/A
_

, (17)

where n denotes the number of Ñux tubes on the Sun at
z\ 0 and denotes the solar surface area. HenceA

_
nA/A

_is the fractional area on the Sun covered by magnetic Ñux
tubes. The e†ective Ñux is then given by

Fi \ [f0
2p

e,0
b ] 1

Q0 i
ALQi

Lz
] 1

4H
Qi
B

, (18)

where is the Ðlling factor at z\ 0.f0\ nA(0)/A
_

3.2. L ongitudinal Waves
The solution of the Klein-Gordon equation for the longi-

tudinal displacement is

Qj(z, t) \ [Dj
G

f @
A
t [ z

cj

B

]
P
0

t~z@cj
dt0 f @(t0)

CA3
4

[ 1
c
B cj

H
J0(uj fj)

[ kj z
fj

J1(uj fj)
DH

, (19)

where

fj \ J(t [ t0)2[ (z/cj)2 ,

and the external driving amplitude is

Dj\ b ] 1
4

ca
c
s
2 V

M,e(0)H2 .
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The solution for the velocity is

Q0 j(z, t)\ [Dj
G

f @@
A
t [ z

cj

B
] f @

A
t [ z

cj

B
uj

]
CA3

4
[ 1

c
B 1

kj H
[ kj z

2
D

]
P
0

t~z@cj
dt0 f @(t0)uj

t [ t0
fj

]
CA1

c
[ 3

4
B cj

H
J1(uj fj)

] kj z
fj

J2(uj fj)
DH

. (20)

3.2.1. Wave Energy Flux in L ongitudinal Waves

The vertical longitudinal energy Ñux in a thin Ñux tube is
(Hasan 1997)

Fj\ dpV
z

\ b
(b ] 1)(2] cb)

p
e
(0)

]
C
c(b ] 1)

%
e

p
e
[ 2c

Lm
A

Lz
] 2 [ c

H
m
A

D Lm
A

Lt
. (21)

In terms of the reduced displacement and velocityQj Q0 j,the longitudinal Ñux (for is given byzD 0)

Fj \ b
(b ] 1)(2] cb)

p
e
(0)Q0 j

]
C
[2c

LQj
Lz

]
A
2 [ 3c

2
B Qj

H
D
e~z@2H , (22)

and the e†ective longitudinal Ñux is

Fj,eff\ f0
b

(b ] 1)(2] cb)
p
e
(0)Q0 j

]
C
[2c

LQj
Lz

]
A
2 [ 3c

2
B Qj

H
D

. (23)

Once again the e†ective Ñux does not have the exponential z
dependence associated with the physical displacement.

4. RESULTS

We now consider the explicit evaluation of Q, and FQ0 ,
for the di†erent modes when the external granule velocity is
speciÐed. For the time dependence, which enters through
the function f(t), we follow CAP93 and take the form

f (t)\ e~(t@q)2 , (24)

where q denotes the interaction time between a granule and
the Ñux tube. This is related to the time deÐned byT

fCAP93 for the footpoint motion through the relation T
f
\

n1@2q.
We choose a value of the pressure ratio b that is represen-

tative for the solar photosphere. From observations and
empirical modeling (e.g., et al. 1992 ; Kneer, Hasan, &Ru� edi
Kalkofen 1996 ; Hasan, Kneer, & Kalkofen 1998 ; and Kalk-
ofen 1997) a value of the magnetic Ðeld strength corre-
sponding to b \ 0.3 (which is constant with z) appears

appropriate. Taking a temperature of T \ 6650 K, which
corresponds to a scale height H \ 155.4 km and a sound
speed of 8.4 km s~1, the transverse and longitudinal wave
speeds are km s~1 and km s~1, respec-ci \ 7.3 cj \ 7.5
tively. When b \ 0.3 the longitudinal waves have a slightly
larger phase speed than the transverse waves. For the exter-
nal granule we choose km s~1 and an interactionV

M,e\ 1
time of q\ 50 s. The results can easily be scaled to di†erent
values of since this parameter enters linearly in theV

M,eexpressions for Q and and quadratically in the e†ectiveQ0
Ñux. We use the above values as the default parameters,
although we shall also study the e†ect of varying b and q.

Figure 1 shows the variation with time of the transverse
(solid lines) and longitudinal (dotted lines) reduced velocities

in the Ñux tube at two di†erent heights (z\ 500 km andQ0
z\ 1250 km), using the default parameters. It should be
noted that needs to be scaled by the factor exp (z/4H) toQ0
determine the true velocity. Consequently, the actual veloc-
ity at z\ 1250 km is a factor of about 3.3 larger than the
velocity at z\ 500 km. The external impulse imparted by
the granule to the Ñux tube at z\ 0, starting at t \ 0, gener-
ates a wave that propagates away in both directions. We
consider solely the upward-propagating pulse, which travels
with the phase speed (a \ i or j) and arrives at a height zcaafter a time The Ðrst maximum in for the two modesz/ca. Q0
is associated with the impulse due to the bu†eting action of
granules. This impulse arrives earlier for longitudinal waves
than for transverse waves (for b \ 0.3) since the former have
a slightly higher phase speed. After the passage of the
primary impulse, the atmosphere oscillates as a whole with
a single frequency. An inspection of Figure 1 reveals that the
period of the oscillation is in fact the cuto† period associ-
ated with the wave. From equations (2) and (3), the cuto†
periods for the kink and longitudinal waves are, respectively
(assuming c\ 5/3),

Pi \ P
a
J2c(1] 2b) , (25)

and

Pj \ P
a
J(60] 50b)/(63 ] 48b) , (26)

where is the acoustic cuto† frequency of anP
a
\ c

s
/2H

unmagnetized isothermal atmosphere. For a sound speed of

FIG. 1.ÈVariation with time of the transverse (solid lines) and longitu-
dinal (dotted lines) reduced velocity in the Ñux tube at two di†erentQ0
heights (z\ 500 km and z\ 1250 km) for b \ 0.3 (where b is the ratio of
gas to magnetic pressure), an interaction time q\ 50 s, and horizontal
granular speed km s~1. Note that needs to be scaled by expV

M,e \ 1 Q0
(z/4H) to determine the actual velocity.
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km s~1, the cuto† periods are s,c
s
\ 8.4 P

a
\ 231 Pi \ 534

s, and s. Note that the cuto† period of the longitu-Pj\ 227
dinal wave is practically the same as that of a sound wave in
an unmagnetized medium. We also Ðnd that the amplitude
of the primary peak is about twice as large for kink waves as
for longitudinal waves.

Figure 2 shows the time variation of the wave energy Ñux
in the vertical direction, (where denotes the ÐllingFwave/f0 f0factor of magnetic Ñux tubes at z\ 0), in transverse (solid
lines) and longitudinal (dotted line) modes at two di†erent
heights, using the default parameters. Note that the energy
Ñux in longitudinal waves is measured by the scale on the
right. The time behavior is similar to that in the previous
Ðgure. The impulse delivered to the tube at z\ 0 creates an
oscillation that transports energy to the higher layers.

The vertical energy Ñux in transverse waves is about 15
times larger than the energy Ñux in longitudinal waves. In
order to understand this behavior, consider the solutions in
the limit b > 1, when we Ðnd from equations (11) and (12)
that From equations (16) and (23) we see thatQi DQj. which shows that for small values of b, theFj,eff/Fi,effD b,
longitudinal energy Ñux is much smaller than the energy
Ñux in transverse waves. From Figure 1, the ratio of veloci-
ties in the primary pulse is and the ratio of theQ0 i/Q0 jB 2,

FIG. 2.ÈVariation with time of the wave energy Ñux in the vertical
direction (where denotes the Ðlling factor of magnetic Ñux tubesFwave/f0 f0at z\ 0) in transverse (solid lines) and longitudinal (dotted line) modes at
two di†erent heights (z\ 500 km and z\ 1250 km) for b \ 0.3.

displacements is approximately the same. For b \ 0.3, we
thus Ðnd which is in good agree-Fi,eff/Fj,eff D 4/0.3 \ 13.3,
ment with the value seen in Figure 2.

We now examine the e†ect of varying b on the velocity of
the transverse and longitudinal waves. Figure 3a shows the
time variation of the transverse velocity in the Ñux tubeQ0 iat z\ 500 km for various values of b. The Ðrst maximum of

associated with the initial impulse, increases graduallyQ0 i,with b, although the amplitude of the subsequent maxima
and minima exhibit little variation. The reason for the slow
increase is evident from equations (11) and (12), which show
that when b ? 1. The period of the oscil-Qi DQ0 iD b1@2
lation after the passage of the primary pulse is the cuto†
period and from the Ðgure we Ðnd that increases withPi, Pib. This can be seen from equation (25), which yields Pi Db,
when b ? 1.

Figure 3b depicts the time variation of the longitudinal
velocity in the Ñux tube at z\ 500 km for various valuesQ0 jof b. The maximum of associated with the initialQ0 j,impulse, increases with b. In contrast to the case of kink
waves, increases more rapidly with b. From equationQ0 j(20) we Ðnd that in the limit b ? 1, The period ofQ0 jD b.
the oscillation after the passage of the initial impulse,
however, does not vary with b in view of the fact that the
longitudinal cuto† period given by equation (26), isPj,practically independent of b.

Figure 4a shows the time variation of the vertical energy
Ñux in transverse waves at z\ 500 km for variousFi/f0values of b (where is the magnetic Ðlling factor at z\ 0).f0We Ðnd that the maximum value of the Ñux associated with
the primary pulse increases gradually with b. For b ? 1 we
have already shown that (and Db1@2, whereasQi Q0 i)(noting that when b ? 1).LQi/LzDQi/ciD b ci D 1/b1@2
Therefore, from equation (18), we Ðnd that for b ? 1

Fi,effD
1
b

bJb D Jb .

Figure 4b shows the variation with time of the verti-Fj/f0,cal energy Ñux in longitudinal waves at z\ 500 km for
various values of b. The primary maximum in the Ñux
(associated with the initial impulse) increases sharply with
b. The rapid increase of with b can be understood fromFjequation (23). Noting that for b ? 1,LQj/LzDQj/cj Db3@2
we Ðnd that in this limit the longitudinal Ñux behaves

FIG. 3a FIG. 3b

FIG. 3.ÈVariation with time of the (a) reduced transverse velocity and (b) reduced longitudinal velocity in the Ñux tube at z\ 500 km for variousQ0 i Q0 jvalues of b, assuming an interaction time q\ 50 s and horizontal granule speed km s~1.V
M,e \ 1
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FIG. 4a FIG. 4b

FIG. 4.ÈVariation with time of the (a) vertical transverse energy Ñux and (b) vertical longitudinal energy Ñux at z\ 500 km for various valuesFi/f0 Fj/f0of b, assuming an interaction time of q\ 50 s and a horizontal granule speed of km s~1.V
M,e \ 1

approximately as

Fj,effD b3@2 .

For b º 2.0, the energy Ñux in longitudinal waves becomes
comparable to that in transverse waves.

We now examine the consequence of varying the inter-
action time q between an external granule and the Ñux tube.
To illustrate this, we treat only the case of transverse waves.
Figure 5 shows the variation with time of the transverseQi,displacement, at z\ 500 km for various values of q. We
again Ðnd the general behavior discussed earlier, viz., the
arrival of the impulse generated at z\ 0 followed by an
oscillation at the kink wave cuto† period. The amplitude of
the oscillation decreases with increasing q, but as noted
earlier, the period of the oscillation is the same. For u

k
q> 1

we Ðnd from equation (11) that is practically indepen-Qident of q, whereas for On the otherui q? 1, Qi D 1/q.
hand, the velocity associated with the primary pulse isQ0 iessentially given by the Ðrst term in equation (12), so that

Similarly, Thus, from equation (16),Q0 i D 1/q. LQi/LzD 1/q.
for small values of q. The rapid decrease of theFi D 1/q2

peak value of the Ñux can be seen in Figure 6, which shows

FIG. 5.ÈVariation with time of the vertical energy Ñux in trans-Fi/f0,verse waves, at z\ 500 km for various values of the interaction time q and
a horizontal granule speed km s~1.V

M,e \ 1

the time variation of the vertical energy Ñux in trans-Fi/f0,verse waves, at z\ 500 km for various values of q.
It is of some interest to consider the situation when the

footpoint motion of the Ñux tube is the same as that of the
granules. This is the approach adopted by CAP93. Figure 7
shows the variation with time of the transverse displace-Qi,ment, at z\ 500 km for various values of q when the foot-
point motion is speciÐed as follows :

Q(0, t) \ Q0 f (t)H(t) , (27)

where is chosen such that the total displacement of theQ0footpoint is the same as that of a granule. We normalize Q0with respect to the distance traveled by a granule, with an
interaction time q\ 50 s and a speed km s~1. ForV

M,e\ 1
small values of q (i.e., when the displacementui q> 1),
shows a peak followed by an oscillation, with an amplitude
that decreases in time. As q increases, the kink in the dis-
placement decreases. For large times, the tube is displaced
from its original equilibrium position to a Ðnal position that
is independent of q. Also, when q is comparable or greater
than the cuto† period, there is essentially no kink, but the
whole tube is slowly displaced instead from its initial loca-
tion at all heights. This result is in agreement with the one

FIG. 6.ÈVariation with time of the transverse displacement, atQi,z\ 500 km for various values of q and a horizontal granule speed V
M,e \ 1

km s~1.
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FIG. 7.ÈVariation with time of the transverse displacement atQi,z\ 500 km for various values of q, when the footpoint motion of the Ñux
tube is speciÐed according to eq. (27).

given by CAP93. We also Ðnd that the regimes where waves
are excited or where a Ñux tube is merely displaced are
separated by an interaction time of the order of half the
cuto† period. Our integral expression for (see eq. [13])Q0
shows this clearly, as can be seen by replacing the Bessel
function by a sine function, which is its asymptotic approx-
imation and also a fair approximation everywhere.

In contrast, when the footpoint motion of the tube is
determined from the granular motion through equation (1)
we Ðnd that for all values of q the tube oscillates about its
equilibrium position. The main di†erence is that when q
becomes large, the peak value of the displacement becomes
negligibly small.

5. DISCUSSION

We have examined the generation of waves in vertical
Ñux tubes in the magnetic network through the impulsive
excitation by granules. Our treatment has included both
transverse and longitudinal waves. The generic behavior is
the same for both waves : the bu†eting action of a granule
on a Ñux tube at a certain level excites a pulse that travels
away from the source region with the kink or longitudinal
tube speed. After the passage of the pulse, the atmosphere
oscillates at the cuto† period of the mode, with an ampli-
tude that slowly decays in time. The initial pulse carries
most of the energyÈsubsequently the atmosphere oscillates
as a whole in phase, without energy transport. We interpret
the wave period observed in the magnetic network as the
cuto† period of transverse waves, which leads naturally to
an oscillation at this period (typically in the 7 minute range).

Our results indicate that the velocities in transverse and
longitudinal waves excited by granules in the photosphere
are comparable in magnitude for values of b that are typical
of the magnetic network (i.e., when b > 1). However, the
vertical energy Ñux in transverse waves is an order of mag-
nitude larger than that in longitudinal waves for network
Ðeld strengths. The energy Ñux increases more rapidly with
b for longitudinal waves than for transverse waves, and the
Ñuxes are comparable for b º 2. Furthermore, the displace-
ments Q and velocities scale linearly and the energy ÑuxesQ0
F scale quadratically with the applied external velocity.

The analytic results for the energy Ñux generated by an
impulse show that, for strong magnetic Ðelds, most of the

energy goes into transverse waves and only a much smaller
fraction into longitudinal waves. Physically, this appears
reasonable as it is harder to excite sausage waves for small
values of b since the compression of the Ñux tube is resisted
by the strong magnetic Ðeld. Transverse waves, on the other
hand, are incompressible and are therefore much less
a†ected when the value of b becomes small. Obser-
vationally, our Ðnding is consistent with the interpretation
of network bright points in terms of Ñux tube waves, where
the power spectrum observed in by LRK93 shows aH3high peak at 2.5 mHz, presumably the cuto† frequency of
kink waves, and a much smaller peak at 3 mHz, perhaps a
contribution made by longitudinal Ñux tube waves. Our
calculations therefore support the model of network bright
points by K97 in which mainly transverse Ñux tube waves
are excited and where the observed velocity signal measures
the cuto† period of the transverse waves in the photosphere.

For weaker magnetic Ðelds, such as those measured by
Keller et al. (1994), we Ðnd the energy Ñuxes in the two
modes to become comparable. From the absence of a strong
peak at low frequencies in the power spectrum of the cell
interior (CI) we conclude that both transverse and longitu-
dinal waves must make a negligible contribution to K2vbright point oscillations. The absence of the magnetic
modes then implies that the waves in the CI are probably
acoustic waves, and the observed 3 minute period is there-
fore the acoustic cuto† period, and not the cuto† period of
longitudinal Ñux tube waves. From this we infer that the
magnetic Ðeld structure in the CI is likely to be di†erent
from that of Ñux tubes in the magnetic network. One possi-
bility is that if magnetic Ðelds are associated with brightK2vpoints, as suggested by Sivaraman & Livingston (1982),
Kalkofen (1996), and Nindos & Zirin (1998), these Ðelds
may have the mixed polarity observed by Wang et al.
(1995).

As regards the heating of the corona in coronal holes by
kink waves, Muller et al. (1994) have estimated the energy
Ñux generated by rapid footpoint motion ([2 km s~1) of
magnetic Ñux tubes based on the CAP93 calculations. Their
estimate exceeds the coronal heating requirements (about
3 ] 105 ergs cm~2 s~1) by a modest factor of about 7. Such
a small excess requires an e-folding distance for dissipating
the energy that is a factor of 3 longer than the density scale
height required for weak shocks (Ulmschneider 1970) ; the
observations allow a scale length of 4 times the scale height
(Withbroe 1988). However, Muller et al. (1994) have over-
estimated the energy Ñux for two reasons. First, they have
used SpruitÏs (1981) value of the cuto† frequency ui\ 0.009
s~1 (corresponding to a period s), which is aboutPi\ 700
twice as large as the value inferred from the oscillations in
network bright points. For a more realistic cuto† period of
around 450 s, the energy Ñux is further reduced. Second, as
already mentioned in ° 1, the assumption that motion of
network bright points exclusively excites transverse waves is
also questionable. This raises some doubts as to whether
footpoint displacements can provide enough energy to heat
the quiet corona. Our calculations based on more realistic
parameters for the network yield an energy Ñux of

Fi\ 1.5] 106
A v0
1 km s~1

B2
ergs cm~2 s~1 ,

(see Fig. 5), for a Ðlling factor of 0.01 and an interaction time
of 50 s. For km s~1, we get a Ñux that is about av0\ 2
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factor 20 higher than that needed to balance the energy
losses of the quiet corona. Thus, kink waves generated in
the photosphere may still provide a viable mechanism for
coronal heating, provided the interaction time is much
shorter than the cuto† period. Furthermore, for the process
to be efficient, the transport of energy must essentially occur
in frequent short-duration bursts. When the interaction
time becomes large, the energy Ñux in transverse waves
drops sharply (see Fig. 5) and the proposition that kink
waves heat the quiet corona becomes less plausible.

6. SUMMARY AND CONCLUSIONS

We have developed a model for analyzing the excitation
of transverse and longitudinal waves in a thin vertical Ñux
tube through the bu†eting action of a granule. Our treat-
ment does not assume at the outset that the motions of the
Ñux tube generate only transverse waves. Rather, we deter-
mine the response of the tube to the same initial impulse
through a solution of the forced Klein-Gordon equation.
We Ðnd that transverse waves are more efficiently excited
than longitudinal waves in the magnetic network. For mag-
netic Ðeld strengths of the order of 1500 G, the energy Ñux
in transverse waves is an order of magnitude larger than in
longitudinal waves. Our results therefore support the con-
jecture of K97 that granular motions excite almost exclu-
sively transverse waves in magnetic Ñux tubes. However, for
weaker magnetic Ðelds, the Ñuxes in the two modes become
comparable. But we note that even though longitudinal
waves gain in relative importance when the magnetic Ðeld
becomes weak transverse waves are still excited and(b Z 2),
are detectable by their cuto† period minutes) in a(PZ 7
power spectrum. Therefore, the absence of long-period
oscillations in the so-called persistent Ñasher described by
Brandt et al. (1992) implies that the 3 minute oscillations
observed in these bright point must be caused byK2vacoustic waves, and not by longitudinal Ñux tube waves.

The impulsive excitation leads to a disturbance traveling
upward with the tube speed of transverse waves, and it is
followed by a wake at the cuto† period with very high phase
velocity (in the limit of t ] O, with inÐnite phase velocity).
It is interesting to point out that the high-phase velocity of
the oscillation in the wake of the initial pulse (which travels
with the tube speed) is a straightforward property of impul-
sive solutions of the Klein-Gordon equation. High-phase
velocities are therefore found also for longitudinal Ñux tube
waves, as well as for the acoustic waves observed in K2vbright points, where they may leave the erroneous impres-
sion that the high velocities indicate standing waves in a
so-called chromospheric cavity. Furthermore, it should be
noted that the initial pulse carries most of the energy. In the

subsequent oscillations of the atmosphere, the separation in
time of the velocity maxima approaches the (corresponding)
cuto† period, and velocity and pressure variation are
related by a phase shift approaching 90¡, i.e., the oscillation
carries no energy (in the linear limit).

We Ðnd that granules with velocities of 2 km s~1 can
contribute signiÐcantly to the generation of transverse
energy Ñux in the magnetic network. This value is close to
the mean value found from the histogram of NBP velocities
deduced from observations (Muller et al. 1994). Efficient
heating, however, requires that transverse waves be excited
through frequent impacts of short duration (typically about
1 minute). Existing observations do not rule out this possi-
bility. However, it would be desirable to have more obser-
vations that can provide information on the correlation
time of the velocity in bright points. An observation that
would support our scenario of network bright points would
measure the expected polarization of the kink waves.
Whereas the oscillations in the photosphere should not
detect any Doppler motion at disk center, the transverse
nature of the waves should become visible toward the limb
of the Sun. We should stress that the aim of the present
work was to examine the problem of wave excitation
(transverse and longitudinal) in Ñux tubes and not to
address the problem of coronal heating. The latter requires
a nonlinear treatment, particularly in the higher layers of
the atmosphere where the velocity amplitude of the waves
becomes comparable to the kink or tube speed. In such
regions, shock formation occurs and transverse waves can
dissipate their energy through conversion to longitudinal
waves (e.g., Ulmschneider et al. 1991 ; Huang et al. 1995 ;
Zhugzhda et al. 1995). Another factor that has not been
considered by us is the e†ect of wave reÑection that would
occur in the realistic case when the height variation of the
wave speeds is taken into account. We should also mention
that the use of the thin Ñux tube approximation becomes
highly suspect in the chromosphere and above, where the
radius of the Ñux tubes becomes larger than the local pres-
sure scale height. The above reÐnements, as well as the
inÑuence of neighboring Ñux tubes, need to be considered in
developing a model for wave heating of the corona. We
hope to take account of some of these factors in future
studies.
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APPENDIX A

LINEAR EQUATIONS

A1. KINK WAVES

Following Spruit (1981), Ryutova & Priest (1993), and Bogdan et al. (1996), the linear equation for the transverse displace-
ment associated with a kink wave in a vertical thin Ñux tube to leading order is (neglecting the presence of steady Ñows inm

Mthe ambient atmosphere)

o
L2m

M
Lt2 \ g(o [ o

e
)
Lm

M
Lz

]B2
4n

L2m
M

Lz2 ] o
e

A
2

L2m
M,e

Lt2 [ L2m
M

Lt2
B

, (A1)
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where and denote, respectively, the density and displacement in the external medium. The terms on the right-hand sideo
e

m
M,edenote the contributions by buoyancy, magnetic tension, and the force due to the external motions. Noting that o/o

e
\b/(1

] b), where b \ 8np/B2, p denotes the gas pressure inside the tube, and B is the vertical component of the magnetic Ðeld on
the tube axis, equation (A1) can be rewritten as

L2m
M

Lt2 ] g
2b ] 1

Lm
M

Lz
[ 2

c
c
s
2

2b ] 1
L2m

M
Lz2 \ 2

b ] 1
2b ] 1

L2m
M,e

Lt2 , (A2)

where is the sound speed (constant by deÐnition). We now deÐne a new variable asc
s

Qi
m
M

\ ez@4HQi . (A3)

Making the above substitution in equation (A2) we obtain

L2Qi
Lz2 [ 1

ci2
L2Qi
Lt2 [ ki2Qi \ [e~z@4H 2(b ] 1)

2b ] 1
1
ci2

LV
M,e

Lt
, (A4)

where

ki2\ 1
16H2 , ci \ 2

c
c
s
2

2b ] 1
.

A2. SAUSAGE WAVES

We start from the linearized equations for the sausage mode in a thin Ñux tube (Roberts & Webb 1978). In terms of the
longitudinal displacement where is the vertical velocity, the relevant equations for sausage waves arem

A
\ Lv

A
/Lt, v

A

B
C
do ] L

Lz
(om

A
)
D

[ o(dB
A

] B@m
A
) \ 0 , (A5)

o
L2m

A
Lz2 ] gdo ] Ldp

Lz
\ 0 , (A6)

dp ] p@m
A

[ c
S
2(do ] o@m

A
) \ 0 , (A7)

dp ] BdB
A

4n
\ %

e
, (A8)

where do, dp, and denote the Eulerian perturbations in density, pressure, and vertical magnetic Ðeld, respectively ; isdB
A

%
ethe Eulerian perturbation in the external pressure ; and the prime symbol denotes a di†erential (e.g., B@4 dB/dz). Equations

(A5)È(A8) are the linearized equations of continuity (combined with the induction equation), motion in the vertical direction,
energy (for an adiabatic medium), and horizontal pressure balance, respectively. The perturbed quantities can be expressed in
terms of through the relations (Hasan 1997)m
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. (A10)

Substituting equations (A9) and (A10) into equation (A6) and using equation (A7) to eliminate do, we arrive at the following
equation (valid for an isothermal medium) in terms of m

A
:

L2m
A
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2H
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A
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] 1
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B
%

e
. (A11)

We now deÐne a new variable throughQj
m
A

\ ez@4HQj . (A12)

Making the above substitution in equation (A11), we obtain

L2Qj
Lz2 [ 1
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L2Qj
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where

kj2\ 1
H2
Cc[ 1

c2
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1 ] cb
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]
A3
4

[ 1
c
B2D

.

Equation (A13), without the inhomogeneous term on the right-hand side, was derived by Rae & Roberts (1982).
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APPENDIX B

EXCITATION OF KINK WAVES BY FOOTPOINT MOTIONS

We develop the solution in terms of which satisÐes the homogeneous Klein-Gordon equation for a semi-inÐniteQ0 i,medium extending from z\ 0 to z\ O :

L2Q0 i
Lz2 [ 1

ci2
L2Q0 i
Lt2 [ ki2Q0 i \ 0 , (B1)

subject to an inhomogeneous boundary condition at z\ 0, where is speciÐed as a function of time. The solution ofQ0 iequation (B1) can be determined using a GreenÏs function technique. The GreenÏs function for this problem that vanishes at
z\ 0 can be constructed in terms of the corresponding function for an inÐnite medium (given by eq. [10]), which is
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The above equation follows by superposing the GreenÏs functions of two sources at and respectively. Thez\ z0 z\ [z0,solution of equation (B1) in terms of given by equation (B2) isGi

Q0 i(z, t) \
P
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t
dt0Q0 i(0, t0)
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Substituting
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in equation (B3), yields the desired result, viz.,

Q0 i(z, t)\ Q0 i
A
0, t [ z
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B
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where

fi \ J(t [ t0)2[ (z/ci)2 .
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