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lonization potential and excitation energy calculations for B&
using the relativistic coupled-cluster method
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We report the results of our relativistic coupled cluster singles, doubles, and patrtial triples calculations of the
ionization potential§IP) and excitation energig€E) for different low-lying levels of B4. The accuracies of
the IP's and EE’s are approximately 0.2% and 1%, respectively. The inclusion of the triple excitations were
crucial to achieve this degree of precision.
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It is now well known that atomic parity nonconservation
(PNO) has the potential to probe physics beyond the standard (i|Tlj)= f ¢ (D)T1¢(1)dry )
model [1]. The atom that is currently best suited for this
purpose is cesium for which the combined accuracy of PNGind
experiment and theory is below 1P2]. However, there are
other promising proposals to observe PNC in atomic sys- .. . .
tems. One of these involves applying the techniques of ion (] |U|k|>:f f #7(2)$j(2)v126(1) (1) d7y A3,
trapping and laser cooling to B4 3]. It has been pointed out (4)
that certain transitions in Baand Ra could yield unam-
biguous information about nuclear-spin dependent PRIC ~ Where
Unlike the S— S transition for cesium, the transitions of in-

terest for B4 areS—D. The PNC calculations on Baare Ti=ca;pi+c?(Bi—1)+Voudi) 5
more demanding than those on cesium, as a many-body dghd

scription of theD states, unlike th& states, requires configu-

rations that are relatively complex. While there have been 1

attempts to calculate PNC amplitudes in"Bp4,5], further vij=—. (6)

work, based on rigorous many-body approaches, is needed.
The electric dipole transition amplitude induced by the short
range electron-nucleon PNC interaction, is sensitive to th
region close to as well as far away from the nucleus. It i

Effects due to Breit, negative-energy states, and radiation
Qorrections are omitted, since the property we are interested

. X n, for present paper, has a negligible effect due to them. We
therefore necessary to perform calculations of a variety o

. . . ave used CCSQO) with the even-parity channel approxi-
atomic properties to estimate the accuracy of the PNC Calcuﬁwation[S] to go beyond the DF approximation. The selection

lations. .This Paper, vyhere . Iresults of our high—precisior}ules and the angular momentum reduction techniques are
calculations of ionization potentiélP) and excitation energy explained in the earlier papé@]. The code is parallelized

(EE) for various states of Babased on the relativistic non- sinq message passing interface and the details will be re-
linear coupled cluster singles, doubles, and partial triple ;

CCSOT hod d he fi Dorted in another paper.

[ O(T)] method are presented, represents the first step i In our coupled cluster calculations, we use the DF refer-

this direction. o ence state corresponding to Bl 1)-electron closed-shell
The IP of the valence electron is given by configuration, then add one electron to #th virtual orbital
N N No1 No1 and obtain theN-electron system on which calculations are
Vi=(WHH[WE) = (W H[W ), @ carried out. The addition of an electron to tkéh virtual

orbital to the reference state, can therefore be written as
where [¥N"1) | |WN) represent states of thd—1 and N

electron systems, respectively, and H is the exact no-virtual |<I>E‘):al|d>0). (7)
pair Dirac-Coulomb Hamiltonian of the system as discussed
by Refs.[6,7], which can be expanded as Any general state can be written in open-shell coupled-
cluster model(CCM) [10] as
H:Z Ti+i2<j vij- 2 W) ={eNeT|Dy), tS)
where|®,) is the DF reference state for an open-shell con-
The matrix elements of andv are given by figuration withT and S operators defined as
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FIG. 1. Diagrammatic representation Bfand S operators.

(iii) (1v)

FIG. 3. Typical diagrams representing the approximate triples
— — +4 tP ot pq
T—T1+T2—azp a, aata"'abzpq ap 8q ApAatap 9 diagrams:(i), (i), and (iii) give the VS, contributions, andiv)
gives theV T, contributions.

and H|WN=h=EN"H@N~1), (11)
By suitable substitutions using tieoperator we obtain two
equations. One of them gives the coupled cluster amplitudes
S=SatSe= E a akSIE+2 a,a,8,8f5- (10 and the other the correlation energy. The equation to deter-
mine the correlation energy is

HereT represents the operator that produces excitations from AENT =(Dg|Hy| Do) (12
the core ands the excitation from valence and valence-core
interactions. In our notation, a,b.. denote core orbitals and the equation for the coupled cluster amplitudes is ob-
and p,q.r. . . denote virtual orbitals. Therefofeacts on the tained by projecting on singly and doubly excited determi-
N—1 electron system and bolhandSact on theN electron ~ hants, which reduces to
system. Diagramatically these operators are given in Fig. 1.

For the nonlinear case, the terms that give connected dia- (O*|Hy| Do) =0, (13
grams areT,T,, T,T,, T,T,, T,T,T,, T,T,T,, and
T,T,T,T,. For the present calculation we have taken OnlywhereHN H—(do|H| D) andHN e THye
the termsT, T, T;T,, andT,T, to reduce the computation  \we tyrn next to theN electron system, WhICh satisfies the
time for the evaluation of the T amplitudes. This approxima-gquation
tion is justified since ther; cluster amplitudes are small.
Typlcal dlagrams that c_ontnbute to the nonlinear cluster am- H|‘I’|’2'>— EEI‘PE% (14)
plitudes are given in Fig. 2. For the open shell calculation,
we have included approximate triples, which arise via the
VT, andVS, channels in the IP calculations obtained using
single and double excitations. Typical diagrams, which con-
tribute to such an effect, are given in Fig. 3.

We consider first theN—1 electron closed shell. The
equation for this system is given by

Carrymg out mathematical operations similar to those used
earlier involving theT and S operators, we obtain an equa-
tion for the IP and another one for the coupled-cluster am-
plitudes. The equation for the evaluation of the ionization
potential is

AER=(DR[HN(1+S)| DY) (15)

\ﬁ} W Q M and the equation for the coupled cluster amplitudes is ob-

tained similarly by projecting on the singly and doubly ex-

‘Q“;j \ / g"i cited determinants, which leads to

(DM HNSI L) = AEK( LN S @)~ (@ MH o).

JE“QIL
Here we first solve folE} using Eq.(15) and then solve

Eq. (16) to get newSamplitudes, which we use in turn to get
FIG. 2. Typical diagrams representing the nonlinear terms. neWAEE till self-consistency is achieved. HetaEE is the
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TABLE I. Number of Gaussian basis functions used for the computation of orbitals of each symmetry for
Ba'.

s(1/2) p(1/2) p(3/2) d(3/2) d(52) f(5/2) f(72) g(7/2) g(9/2) h(9/2) h(11/2)

32 28 28 25 25 20 20 15 15 10 10

difference in energy between the closed-shell sttt whereN is the number of basis functions for a given sym-
and the open-shell stath and in comparison with Eq1), metry, anda and B are parameters required to describe the
IP is the negative oAE} . The next step in the calculation is GTOss. . _ o )

the inclusion of the triple excitations in an approximate way ' "€ starting point of our calculation is the generation of

shown below: DF orbitals for the BA™ core. These orbitals are expressed

as linear combinations of GTO’s on a grid and the DF matrix

— VT,+V5, . is diagonalized to yield the occupied and virtual orbitals
s ———— (17 [12]. The parameterdl, a, and 3 are adjusted to get the

bound orbitals as close to the numerical orbitals as possible

whereSPf are the amplitudes corresponding to the simulta{13—153. We have usedro=0.007 25 and3=2.73 for the
neous excitation of orbitala,b,k to p,q,r, V3 is the con- present calculation. The number of GTO’s used in our calcu-
traction of all creation annihilation operators, agdorbital  |ation for orbitals of different symmetries is given in Table I.
energy of theith orbital. This contribution is added to the We take the core and some of the low-lying virtual orb_ltals
energy obtained using singles and doubles. Once the IP's afts umerical orbitals generated from the GRASP muilticon-
computed, the EE’s are obtained by finding the differenc iguration Dirac FocK 16] package. These orbitals are then
between the IPs of the valencesjéand appropriate virtual made orthogonal with the rest of the Gaussian virtual orbitals
orbitals. through the Schmidt orthogonalization procedure, and the
The single-particle orbitals used in our calculations, areo_rthogonal_ized orbitals in turn are US.Ed for ex_panding the
part numerical and part analytical. The underlying idea of’ 'f}“?' orr]pltal_s. Tlhe DF Hamlltorr]uan IS tlhen bdlagor]raﬂlze%
this new hybrid approach is to represent the core, valenc@™Y I ¢ |fs \r?_rtua T]pa(ljce to gﬁtt € comr;]) e(zjte ad5|s. € ad-
and a certain number of bound virtual orbitals by numericalyamage of this metho gvert € one we had use eqlly
solutions of the DF equation, and the remaining virtual or-'S the freedom one has in choosing the orbitals. For example,

bitals are expressed as linear combinations of kinetically balll! (€ Present approach, one cannot only represent the core,

anced Gaussian type orbital3TO's) [11]. The GTO's are of but also an appropriate number of unoccupied single-particle
the form states by numerical bound orbitals. The details of this new

method for orbital generation will be reported in a forthcom-
G (r =rkiefair2, 18 ing paper. _ .
K(F) (18) For the coupled cluster calculations, we have restricted
where k=0,1,... fors, p,... functions. We have used the the basis by imposing lower and upper bounds in energy for

even tempering condition all the single_—particle orbit:_:lls as 100 and 100 a.u. for all
the symmetries except This was done to reduce the huge
ai=a;_1B, i=1,...N, (19 memory requirement, which is needed in storing the matrix

TABLE II. Orbital generation.

Symmetry No of orbitals in Numerical orbitals Gaussian orbitals
each symmetry used in the calculation used in calculation

S 9 34...8 9s,..11s

p(1/2) 9 3,..8 9p,...11p

p(3/2) 9 3,..8 9p,...11p

d(3/2) 10 ¥,.. d 8d,...1d

d(5/2) 10 y,.. d 8d,...1d

f(5/2) 9 4f 5f 6f,...1%

f(7/2) 9 4f 5f 6f,...1%

g(7/2) 9 59,...13y

9(9/2) 9 5,...,13

h(9/2) 7 6n,...1%h

h(11/2) 7 &,...1h
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TABLE Ill. Nonlinear CCSD values for IP’s in units g&.u) (in parentheses: contribution from partial

triples)
Orbital Experiment Present Elisat al. [17] Guet and Johnsofi8|
6s(1/2) 0.367 64 0.368 14-0.0130784) 0.368 48 0.37308
5d(3/2) 0.34543 0.346 23€0.019412) 0.344 48 0.35172
5d(5/2) 0.34178 0.342 110.018676) 0.34072 0.347 48
6p(1/2) 0.275 34 0.27568+0.010146) 0.27555 0.277 42
6p(3/2) 0.267 62 0.267 810.009801) 0.267 77 0.269 46
elements of the dressed opera%n and the two electron From the above data, it can be inferred that the nonlinear

Coulomb interaction in the fast memory. We consider exci-contribution is 0.6% of the total correlation energy. The re-
tations from then=3 shell and above. Considering excita- sults of the calculations of our IP's and EE’s are given in
tions fromn=1 and above wit a 7 symmetry calculation, Table Il and Table IV and compared with the previous cal-
the IP value obtained forsis around—0.368 615 99, which culations by Guet and Johnsfit8] and Eliavet al.[17]. It is
in comparison withn=2 and above, is-0.368 6409. This clear that our CCSOD) results are more accurate than the
establishes that the contribution due to omitted shells lessther two calculations. The contribution from partial triples
than 3 to be 0.01% to IP’s. It is clear from calculations byto IP’s is about 4% to 5% and it is the major reason for the
Kaldor et al. [17] that high-lying virtual orbitals contribute high accuracy of our calculations. Comparisons with Eliav
very little to the excitation energies. Since the basis that wet al. with no triples and our calculations with triples, sug-
have used is fairly large with the core and the low-lying gest that the omitted triples will have less than 0.1% error in
virtuals as numerical orbitals, the error arising from the basishe computation of IP’s and EE’s. The choice of our orbital
will be less than 0.1%. Numerical orbitals used in the abovebasis has also contributed to the accuracy of our calculations.
calculation with respect to each symmetry, are given in Tabl@y representing the core, valence, and the appropriate virtual
Il. Here we have calculated the IP’s of low-lying levels given single-particle states by numerical DEY ! orbitals, we
by 6sy/2, 5d3/250, and @,/ 3,. The EE’'s are essential for have been able to obtain the best physical description for
the calculation of the lifetimes of the levels, where the¢ 5 them. The average error in our IP’s is about 0.1% except
orbitals connect to § orbital throughE2 transition and §  5d3,, which is 0.23%. The EE’s also show the same trend,
orbital throughE1 transition. the average error is about 0.6%; most of them being below
The total number off amplitudes for the above calcula- 0.7%, except 6—5ds;,, which is 1.4%. Eliavet al. have
tion is 233 988. The linear CCSD converged within 4 cyclesused the uncontracted well-tempered basis set of Huzinaga
with a self-consistency of 10, with a total CPU time of 35 and Klobukowski[19] with | up to 5. Only virtual orbitals
h. The nonlinear part of the code took 3 iterations, with eactbelow 100 a.u. and core orbitals with=4 and above, were
iteration taking on an average 64 h. Using thamplitudes, considered for this calculation.
the dressed Hamiltonian matrix and the IP’s of different or- In the calculation by Guet and Johnson using the relativ-
bitals, were computed. In comparison with theamplitude istic MBPT to second order, the IP's were computed to an
calculation, the computation time for th® amplitudes is accuracy of less than 2% and EE’s around 4%. The accuracy
about an order of magnitude smaller. In addition, the dressedf their 6s— 5ds, excitation energy calculation is somewhat
Hamiltonian and the Coulomb matrix elements were storednisleading, as it is a consequence of the cancellation of the
in random access memoryRAM), which considerably errors of their & and 5, IP’s. The accuracies of theirsé
speeded up the calculations. and 55, IP’s are 1.5% and 1.8%. The corresponding values
The values of the correlation energy obtained usingor Eliav et al.are 0.23% and 0.28% and our calculations are
second-order many-body perturbation the@BPT), linear,  0.14% and 0.23%.

and nonlinear CCSD, are given below: By way of conclusion, we would like to state that the
AEN"1 (second order MBPT= —1.94 a.u. present paper, which is based on the relativistic coupled-
AEN"1 (linear CCSD = —1.83 a.u. cluster theory with single, double, and partial triple excita-
AEN"1 (nonlinear CCSp= —1.82 a.u. tions using an orbital basis that is motivated by physical

TABLE IV. Nonlinear CCSD values for EE’s in units ¢é.u).

Orbital Experiment Present Eliaat al.[17] Guet and Johnsof1.8]
6s(1/2)—5d(3/2) 0.02221 0.02191 0.024 00 0.021 36
6s(1/2)—5d(5/2) 0.025 86 0.026 03 0.027 76 0.02561
6s(1/2)—6p(1/2) 0.092 30 0.092 46 0.092 93 0.095 66
6s(1/2)—6p(3/2) 0.100 02 0.10033 0.10071 0.10362
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