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Ionization potential and excitation energy calculations for Ba¿

using the relativistic coupled-cluster method
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We report the results of our relativistic coupled cluster singles, doubles, and partial triples calculations of the
ionization potentials~IP! and excitation energies~EE! for different low-lying levels of Ba1. The accuracies of
the IP’s and EE’s are approximately 0.2% and 1%, respectively. The inclusion of the triple excitations were
crucial to achieve this degree of precision.
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It is now well known that atomic parity nonconservatio
~PNC! has the potential to probe physics beyond the stand
model @1#. The atom that is currently best suited for th
purpose is cesium for which the combined accuracy of P
experiment and theory is below 1%@2#. However, there are
other promising proposals to observe PNC in atomic s
tems. One of these involves applying the techniques of
trapping and laser cooling to Ba1 @3#. It has been pointed ou
that certain transitions in Ba1 and Ra1 could yield unam-
biguous information about nuclear-spin dependent PNC@4#.
Unlike theS→S transition for cesium, the transitions of in
terest for Ba1 areS→D. The PNC calculations on Ba1 are
more demanding than those on cesium, as a many-body
scription of theD states, unlike theSstates, requires configu
rations that are relatively complex. While there have be
attempts to calculate PNC amplitudes in Ba1 @4,5#, further
work, based on rigorous many-body approaches, is nee
The electric dipole transition amplitude induced by the sho
range electron-nucleon PNC interaction, is sensitive to
region close to as well as far away from the nucleus. I
therefore necessary to perform calculations of a variety
atomic properties to estimate the accuracy of the PNC ca
lations. This paper, where the results of our high-precis
calculations of ionization potential~IP! and excitation energy
~EE! for various states of Ba1 based on the relativistic non
linear coupled cluster singles, doubles, and partial trip
@CCSD~T!# method are presented, represents the first ste
this direction.

The IP of the valence electron is given by

Vi5^CNuHuCN&2^CN21uHuCN21&, ~1!

where uCN21&, uCN& represent states of theN21 and N
electron systems, respectively, and H is the exact no-vir
pair Dirac-Coulomb Hamiltonian of the system as discus
by Refs.@6,7#, which can be expanded as

H5(
i

Ti1(
i , j

v i j . ~2!

The matrix elements ofT andv are given by
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^ i uTu j &5E f i
!~1!T1f j~1! dt1 ~3!

and

^ i j uvukl&5E E f i
!~2!f j

!~2!v12fk~1!f l~1! dt1 dt2 ,

~4!

where

Ti5ca i pi1c2~b i21!1Vnuc~ i ! ~5!

and

v i j 5
1

r i j
. ~6!

Effects due to Breit, negative-energy states, and radia
corrections are omitted, since the property we are intere
in, for present paper, has a negligible effect due to them.
have used CCSD~T! with the even-parity channel approx
mation@8# to go beyond the DF approximation. The selecti
rules and the angular momentum reduction techniques
explained in the earlier paper@9#. The code is parallelized
using message passing interface and the details will be
ported in another paper.

In our coupled cluster calculations, we use the DF ref
ence state corresponding to a (N21)-electron closed-shel
configuration, then add one electron to thekth virtual orbital
and obtain theN-electron system on which calculations a
carried out. The addition of an electron to thekth virtual
orbital to the reference state, can therefore be written as

uFk
N&5ak

†uF0&. ~7!

Any general state can be written in open-shell coupl
cluster model~CCM! @10# as

uCk&5$eSk%eTuFk&, ~8!

whereuFk& is the DF reference state for an open-shell co
figuration withT andS operators defined as
©2001 The American Physical Society02-1
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T5T11T25(
ap

ap
1aata

p1 (
abpq

ap
1aq

1abaatab
pq ~9!

and

Sk5Sk11Sk25(
p

ap
1aksk

p1(
pqa

ap
1aq

1aaakska
pq. ~10!

HereT represents the operator that produces excitations f
the core andS the excitation from valence and valence-co
interactions. In our notation, a,b, . . . denote core orbitals
and p,q,r, . . . denote virtual orbitals. ThereforeT acts on the
N21 electron system and bothT andSact on theN electron
system. Diagramatically these operators are given in Fig

For the nonlinear case, the terms that give connected
grams are T1T1 , T1T2 , T2T2 , T1T1T1 , T1T1T2, and
T1T1T1T1. For the present calculation we have taken o
the termsT2T2 , T1T2, andT1T1 to reduce the computatio
time for the evaluation of the T amplitudes. This approxim
tion is justified since theT1 cluster amplitudes are smal
Typical diagrams that contribute to the nonlinear cluster a
plitudes are given in Fig. 2. For the open shell calculati
we have included approximate triples, which arise via
VT2 andVS2 channels in the IP calculations obtained usi
single and double excitations. Typical diagrams, which c
tribute to such an effect, are given in Fig. 3.

We consider first theN21 electron closed shell. Th
equation for this system is given by

FIG. 1. Diagrammatic representation ofT andS operators.

FIG. 2. Typical diagrams representing the nonlinear terms.
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HuCN21&5EN21uCN21&. ~11!

By suitable substitutions using theT operator we obtain two
equations. One of them gives the coupled cluster amplitu
and the other the correlation energy. The equation to de
mine the correlation energy is

DEN215^F0uH̄NuF0& ~12!

and the equation for the coupled cluster amplitudes is
tained by projecting on singly and doubly excited determ
nants, which reduces to

^F!uH̄NuF0&50, ~13!

whereHN5H2^F0uHuF0& and H̄N5e2THNeT.
We turn next to theN electron system, which satisfies th

equation

HuCk
N&5Ek

NuCk
N&. ~14!

Carrying out mathematical operations similar to those u
earlier involving theT and S operators, we obtain an equa
tion for the IP and another one for the coupled-cluster a
plitudes. The equation for the evaluation of the ionizati
potential is

DEk
N5^Fk

NuH̄N~11Sk!uFk
N& ~15!

and the equation for the coupled cluster amplitudes is
tained similarly by projecting on the singly and doubly e
cited determinants, which leads to

^Fk
!,NuH̄NSkuFk

N&5DEk
N^Fk

!,NuSkuFk
N&2^Fk

!,NuH̄NuFk
N&.
~16!

Here we first solve forDEk
N using Eq.~15! and then solve

Eq. ~16! to get newSamplitudes, which we use in turn to ge
new DEk

N till self-consistency is achieved. HereDEk
N is the

FIG. 3. Typical diagrams representing the approximate trip
diagrams:~i!, ~ii !, and ~iii ! give the VS2 contributions, and~iv!
gives theVT2 contributions.
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TABLE I. Number of Gaussian basis functions used for the computation of orbitals of each symme
Ba1.

s(1/2) p(1/2) p(3/2) d(3/2) d(5/2) f (5/2) f (7/2) g(7/2) g(9/2) h(9/2) h(11/2)

32 28 28 25 25 20 20 15 15 10 10
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difference in energy between the closed-shell stateCN21

and the open-shell stateCk
N and in comparison with Eq.~1!,

IP is the negative ofDEk
N . The next step in the calculation i

the inclusion of the triple excitations in an approximate w
shown below:

Sabk
pqr5

VT̂21VŜ2

ea1eb1ek2ep2eq2e r
, ~17!

whereSabk
pqr are the amplitudes corresponding to the simu

neous excitation of orbitalsa,b,k to p,q,r , VŜ is the con-
traction of all creation annihilation operators, ande i orbital
energy of thei th orbital. This contribution is added to th
energy obtained using singles and doubles. Once the IP’s
computed, the EE’s are obtained by finding the differen
between the IPs of the valence (6s) and appropriate virtua
orbitals.

The single-particle orbitals used in our calculations,
part numerical and part analytical. The underlying idea
this new hybrid approach is to represent the core, vale
and a certain number of bound virtual orbitals by numeri
solutions of the DF equation, and the remaining virtual
bitals are expressed as linear combinations of kinetically
anced Gaussian type orbitals~GTO’s! @11#. The GTO’s are of
the form

Gi ,k~r !5r kie2a i r
2
, ~18!

where k50,1, . . . for s, p, . . . functions. We have used th
even tempering condition

a i5a i 21b, i 51, . . .N, ~19!
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whereN is the number of basis functions for a given sym
metry, andas andb are parameters required to describe t
GTO’s.

The starting point of our calculation is the generation
DF orbitals for the Ba11 core. These orbitals are express
as linear combinations of GTO’s on a grid and the DF mat
is diagonalized to yield the occupied and virtual orbita
@12#. The parametersN, as , andb are adjusted to get the
bound orbitals as close to the numerical orbitals as poss
@13–15#. We have usedas50.007 25 andb52.73 for the
present calculation. The number of GTO’s used in our cal
lation for orbitals of different symmetries is given in Table
We take the core and some of the low-lying virtual orbita
as numerical orbitals generated from the GRASP multic
figuration Dirac Fock@16# package. These orbitals are the
made orthogonal with the rest of the Gaussian virtual orbi
through the Schmidt orthogonalization procedure, and
orthogonalized orbitals in turn are used for expanding
virtual orbitals. The DF Hamiltonian is then diagonalize
only in this virtual space to get the complete basis. The
vantage of this method over the one we had used earlier@12#,
is the freedom one has in choosing the orbitals. For exam
in the present approach, one cannot only represent the c
but also an appropriate number of unoccupied single-part
states by numerical bound orbitals. The details of this n
method for orbital generation will be reported in a forthcom
ing paper.

For the coupled cluster calculations, we have restric
the basis by imposing lower and upper bounds in energy
all the single-particle orbitals as2100 and 100 a.u. for al
the symmetries excepth. This was done to reduce the hug
memory requirement, which is needed in storing the ma
ls
ion
TABLE II. Orbital generation.

Symmetry No of orbitals in Numerical orbitals Gaussian orbita
each symmetry used in the calculation used in calculat

s 9 3,4 . . . 8s 9s,..11s
p(1/2) 9 3p,...8p 9p,...11p
p(3/2) 9 3p,...8p 9p,...11p
d(3/2) 10 3d,...7d 8d,...12d
d(5/2) 10 3d,...7d 8d,...12d
f (5/2) 9 4f ,5f 6 f ,...12f
f (7/2) 9 4f ,5f 6 f ,...12f
g(7/2) 9 5g,...13g
g(9/2) 9 5g, . . . ,13g
h(9/2) 7 6h,...12h
h(11/2) 7 6h,...12h
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TABLE III. Nonlinear CCSD values for IP’s in units of~a.u.! ~in parentheses: contribution from partia
triples!

Orbital Experiment Present Eliavet al. @17# Guet and Johnson@18#

6s(1/2) 0.367 64 0.368 14 (20.0130784) 0.368 48 0.373 08
5d(3/2) 0.345 43 0.346 23 (20.019412) 0.344 48 0.351 72
5d(5/2) 0.341 78 0.342 11 (20.018676) 0.340 72 0.347 48
6p(1/2) 0.275 34 0.275 68 (20.010146) 0.275 55 0.277 42
6p(3/2) 0.267 62 0.267 81 (20.009801) 0.267 77 0.269 46
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elements of the dressed operatorH̄N and the two electron
Coulomb interaction in the fast memory. We consider ex
tations from then53 shell and above. Considering excit
tions from n51 and above with a 7 symmetry calculation
the IP value obtained for 6s is around20.368 615 99, which
in comparison withn52 and above, is20.368 6409. This
establishes that the contribution due to omitted shells
than 3 to be 0.01% to IP’s. It is clear from calculations
Kaldor et al. @17# that high-lying virtual orbitals contribute
very little to the excitation energies. Since the basis that
have used is fairly large with the core and the low-lyi
virtuals as numerical orbitals, the error arising from the ba
will be less than 0.1%. Numerical orbitals used in the abo
calculation with respect to each symmetry, are given in Ta
II. Here we have calculated the IP’s of low-lying levels give
by 6s1/2, 5d3/2,5/2, and 6p1/2,3/2. The EE’s are essential fo
the calculation of the lifetimes of the levels, where thed
orbitals connect to 6s orbital throughE2 transition and 6p
orbital throughE1 transition.

The total number ofT amplitudes for the above calcula
tion is 233 988. The linear CCSD converged within 4 cyc
with a self-consistency of 1027, with a total CPU time of 35
h. The nonlinear part of the code took 3 iterations, with ea
iteration taking on an average 64 h. Using theT amplitudes,
the dressed Hamiltonian matrix and the IP’s of different
bitals, were computed. In comparison with theT amplitude
calculation, the computation time for theS amplitudes is
about an order of magnitude smaller. In addition, the dres
Hamiltonian and the Coulomb matrix elements were sto
in random access memory~RAM!, which considerably
speeded up the calculations.

The values of the correlation energy obtained us
second-order many-body perturbation theory~MBPT!, linear,
and nonlinear CCSD, are given below:

DEN21 ~second order MBPT! 5 21.94 a.u.
DEN21 ~linear CCSD! 5 21.83 a.u.
DEN21 ~nonlinear CCSD! 5 21.82 a.u.
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From the above data, it can be inferred that the nonlin
contribution is 0.6% of the total correlation energy. The
sults of the calculations of our IP’s and EE’s are given
Table III and Table IV and compared with the previous c
culations by Guet and Johnson@18# and Eliavet al. @17#. It is
clear that our CCSD~T! results are more accurate than t
other two calculations. The contribution from partial triple
to IP’s is about 4% to 5% and it is the major reason for t
high accuracy of our calculations. Comparisons with Eli
et al. with no triples and our calculations with triples, su
gest that the omitted triples will have less than 0.1% erro
the computation of IP’s and EE’s. The choice of our orbi
basis has also contributed to the accuracy of our calculati
By representing the core, valence, and the appropriate vir
single-particle states by numerical DF/VN21 orbitals, we
have been able to obtain the best physical description
them. The average error in our IP’s is about 0.1% exc
5d3/2, which is 0.23%. The EE’s also show the same tre
the average error is about 0.6%; most of them being be
0.7%, except 6s25d3/2, which is 1.4%. Eliavet al. have
used the uncontracted well-tempered basis set of Huzin
and Klobukowski@19# with l up to 5. Only virtual orbitals
below 100 a.u. and core orbitals withn54 and above, were
considered for this calculation.

In the calculation by Guet and Johnson using the rela
istic MBPT to second order, the IP’s were computed to
accuracy of less than 2% and EE’s around 4%. The accu
of their 6s25d3/2 excitation energy calculation is somewh
misleading, as it is a consequence of the cancellation of
errors of their 6s and 5d3/2 IP’s. The accuracies of their 6s
and 5d3/2 IP’s are 1.5% and 1.8%. The corresponding valu
for Eliav et al.are 0.23% and 0.28% and our calculations a
0.14% and 0.23%.

By way of conclusion, we would like to state that th
present paper, which is based on the relativistic coupl
cluster theory with single, double, and partial triple exci
tions using an orbital basis that is motivated by physi
TABLE IV. Nonlinear CCSD values for EE’s in units of~a.u.!.

Orbital Experiment Present Eliavet al. @17# Guet and Johnson@18#

6s(1/2)25d(3/2) 0.022 21 0.021 91 0.024 00 0.021 36
6s(1/2)25d(5/2) 0.025 86 0.026 03 0.027 76 0.025 61
6s(1/2)26p(1/2) 0.092 30 0.092 46 0.092 93 0.095 66
6s(1/2)26p(3/2) 0.100 02 0.100 33 0.100 71 0.103 62
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considerations, is an important milestone in our quest
achieve a high-precision calculation of Ba1 PNC.
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