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ABSTRACT
A gradient-based method of tessellation was applied to SOHO Dopplergrams and to Ca II K Ðlter-

grams in order to study the cellular pattern of the solar surface, in speciÐc the geometric relationship
between the tessellation and the chromospheric network/supergranulation. We found that for zero
spatial smoothing and low temporal averaging the above data sets yield mean tessellation scales of 8È10
Mm for the SOHO Dopplergrams of 2A pixel resolution and 14È18 Mm for K line Ðltergrams of 3A.2
pixel resolution. This di†erence is attributed to the dependence of the tessellation on the resolution of
the images. The distribution of the tessellating tiles shows a broad, right-skewed spectrum, tending to
greater broadness, symmetry, and larger scales when the image is smoothed. The skewness and kurtosis
curves of the distribution of the tiles as a function of the smoothing show local peaks when the mode of
the distribution approaches the traditional supergranular scale of 25 Mm. The values of skewness and
kurtosis in this limit, 1.1 and 4.6, respectively, are close to the corresponding parameters for super-
granular distribution derived independently, implying that supergranulation may be geometrically identi-
Ðed with the tessellation at the corresponding resolution. Time averaging also leads to an increase in
length scale when averaged for up to 30 hr. In the case of Dopplergrams the size increases from 9 to 16
Mm and for the K line Ðltergrams from 18 to 23 Mm. This feature can be attributed to the suppression
of short-lived, small-scale features. The e†ects of both spatial smoothing and temporal averaging can be
explained in terms of enhancement of the supergranular signal.
Subject headings : Sun: atmosphere È Sun: chromosphere È Sun: granulation

1. INTRODUCTION

The chromospheric network was Ðrst extensively studied
and related to the supergranular velocity Ðelds by Leighton
and others (Leighton, Noyes, & Simon 1962 ; Leighton
1964 ; Simon & Leighton 1964). Since then a number of
studies on the morphology, scales, dynamics (see Srikanth,
Raju, & Singh 1999 for a partial list of references), and
relationship with surface magnetic Ðelds have been made.
Length scales have been studied by a number of authors,
since Leighton and others reported a value of about 32 Mm.
This value was determined by the method of autocorrela-
tion (Rogers 1970 ; Wang 1988) and also by taking cross
sections of the network/supergranulation in various lines.
Singh & Bappu (1981) estimated cell areas to be about 23
Mm by outlining peak emissions on enhanced K line
spectroheliograms. Interestingly, they also quoted an auto-
correlation (AC) scale of 32 Mm in agreement with Leight-
on and others. This discrepancy has been attributed to the
presence of open cells, which spuriously boost the AC scale
(Singh & Bappu 1981), to the particular geometry of the cell
shapes (Hagenaar, Schrijver, & Title 1997, and to the inclu-
sion of the intercell spacing in the AC method. et al.Mu� nzer
(1989) derived a size of about 28 Mm from a Fourier
analysis of the K line network. Raghavan (1983) reports a
comparable size measured using quantitative stereology. A
partial list of length scales reported by various authors for
supergranulation has been compiled in Table 1.

Recently, techniques for the automatic extraction of
network structure on the solar surface and study of their
geometric properties using computer algorithms have been
used. A method of ““ skeletonizing ÏÏ the image starting from
a binary image based on a threshold value has been used to
study the morphological properties such as orientation,
elongation, size, fractal dimension, and the temporal varia-
tion of the cells as derived by this method (Berilli, Florio, &

Ermolli 1998 ; Berilli et al. 1999). Using a tessellation that
employs a gradient-based algorithm, Schrijver, Hagenaar,
& Title (1997) studied the patterns of solar granulation and
supergranulation, and Hagenaar et al. (1997a) deduced
from Ca II K Ðltergrams a mean cell size in the range 13È18
Mm, which is almost one-half the traditionally quoted
value. This method of tessellation is a pattern recognition
algorithm for identifying ““ basins ÏÏ in the intensity land-
scape of the image. In this work we have extended the appli-
cation of tessellation to high-resolution K line images and
Dopplergrams obtained from SOHO (Scherrer et al. 1995).
The aim was to study the behavior of the scales of the
tessellating tiles and to draw inferences regarding the geo-
metrical connection between the tiles and supergranular
cells.

Knowledge of the length scale and topology of the
network coupled with its time evolution is useful for model-
ing the di†usion process driving the dynamic evolution of
the network (Leighton 1964), for example, in estimating the
di†usion constant for Ñux dispersal (Schrijver et al. 1997).
Understanding the behavior of surface magnetic Ðelds can
shed light on magnetoconvective processes in general.

2. DATA AND PREPROCESSING OF DATA

Two sets of data were used in this study : (1) SOHO full-
disk solar Dopplergrams (Scherrer et al. 1995) and (2) a time
series of Ca II K line data at medium resolution from Ant-
arctica (Singh et al. 1994). Data set (1), from the Solar and
Heliospheric Observatory (SOHO), consists of a time series
of Dopplergrams made from Ðve pairs of lines centered
around N II j6768 spaced at 1 minute. The part of the data
set used by us covers a period of 32 hr. The pixel resolution
is about 2A pixel~1, which implies spatial resolution of 4A.
The basic image shows a hazy supergranular signal super-
posed by prominent noisy small-scale features due to p-
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TABLE 1

LENGTH SCALE ESTIMATES OF SUPERGRANULES

Investigator Size (Mm) Method Used

Hart (1956) . . . . . . . . . . . . . . . . . . . . . . 26 AC: Ha Dopplergram
Simon & Leighton (1964) . . . . . . 32.5 AC: various chromospheric and photospheric lines
Simon & Leighton (1964) . . . . . . 25 Microphotometer tracing
Janssens (1970) . . . . . . . . . . . . . . . . . . 28 Visual inspection : Ha
Duvall (1980) . . . . . . . . . . . . . . . . . . . . 30 AC: Fe I j8688
Giovanelli (1980) . . . . . . . . . . . . . . . D30 AC: Fe I j8688
Sy� kora (1970) . . . . . . . . . . . . . . . . . . . 32È37 K Ðltergram AC
Singh & Bappu (1981) . . . . . . . . . 32 AC: K spectroheliograms
Singh & Bappu (1981) . . . . . . . . . 23 Grid counting : K line
Brune & Wo� hl (1982) . . . . . . . . . . 22È31 Visual inspection : Ca K
Hagenaar et al. (1997) . . . . . . . . . . 13È17 Tessellation via steepest descent algorithm
Raju et al. (1998) . . . . . . . . . . . . . . . 30È35 AC: Ca II K
Berilli et al. (1998) . . . . . . . . . . . . . . 24 Tessellation via binary imaging

modes. In order to remove the e†ect of low-period
oscillations, the Dopplergrams were block averaged over 10
minutes. Visual inspection of these images shows a strong
supergranular pattern with the expected distribution pro-
perty : bright-dark clusters clearly visible in the middle
heliographic angles and elongated toward the limb but
almost absent from the disk center. Data set (2) is a time
series of Ca K line Ðltergrams covering an uninterrupted
duration of 106 hr obtained in the Antarctic region during
the local summer of 1989/1990. The study is based on the
quiet region surrounding the spotgroup NOAA/USAF
5784 (central meridian passage 1990 January 10). Details of
the preprocessing of the Ðltergrams involved are given in
Raju, Srikanth, & Singh (1998). The digitized, processed
images are of medium resolution with a pixel resolution of

pixel~1.3A.2

3. METHODOLOGY

A method of tessellation based on a two-dimensional
basin-Ðnding algorithm (Hagenaar et al. 1997) has been
applied to SOHO Dopplergrams and comparatively to the
K line Ðltergrams. The method consists of minimizing the
intensity/velocity map using the Steepest Descent algorithm
to Ðnd the local minima. As a second step, all image points
are clustered into tiles depending on the local minima on
which they converge according to the Steepest Descent
algorithm. This ensures that the entire image is covered by
nonoverlapping tiles, which by deÐnition constitutes a tess-
ellation. To use a physical analogy, the algorithm may be
thought of as recognizing and extracting patterns of
““ valleys ÏÏ or ““ basins ÏÏ surrounded by ““mountain ranges ÏÏ
from the image landscape. K line intensity maps can be
studied by this method because of the bright network struc-
ture they have. Dopplergrams also show a local mountain-
valley structure that can be probed by the tessellation (as
well as AC) method. Tiles formed by Dopplergrams have
their lowest redshift not at the central upÑow region of the
underlying supergranule but in the Ñow directed away from
the line of sight. As the Ñow surrounding the minimum
varies continuously in other directions, the redshift pattern
forms a well-deÐned basin.

An example of a tessellation superposed on a K line Ðlter-
gram window is given in Figure 1. The window size is
125 ] 125 Mm2, which is expected to contain about 25
supergranules of traditional size. Its tessellation yields
about four times as many tessellating tiles. The image is

given in the upper panel. The lower panel contains the same
image with its tessellation at zero smoothing superposed.
The tessellation is seen to divide the window into various
tiles. The brighter regions in the top panel usually Ðnd a
corresponding tile boundary in the bottom panel. However,
the converse is not true : some of the tile boundaries are seen
to cut through the cells. In such cases, close inspection and
sometimes altered image contrast are needed in order to
discern the underlying weak intensity rise sensed by the tile
boundary. In the right and especially lower right parts of
the images in Figure 1 we Ðnd a fairly well-deÐned network
pattern. The tessellation also shows a fairly expectable
track. The present algorithm, being a tessellation, forces the
image into a surface-Ðlling network system of non-
overlapping tiles. As a result, even regions manifesting weak
cellular structure, such as the top left part of the image,
where the intensity contrast is low and the open cell pattern
is reminiscent of formative or dying cells, give rise to a
well-deÐned tessellation.

For studying temporal behavior of the Dopplergram
tessellation, we typically used windows of size 140@@] 140@@.
In each successive frame the window has to be shifted in the
direction of solar rotation to prevent misalignment. At the
center of the disk, the pixel scale is 1.44 Mm pixel~1. Since
the solar surÐcial rotation speed is about 2 km s~1, we can
estimate that every 12 minutes, the window should be
shifted by 1 pixel. As the images had been time averaged
over 10 minutes, this means shifting the window by 5 pixels
per six frames. For regions at higher heliographic latitude
and longitude, the ratio decreases because of projection
e†ects both on the size and rotation speed. In practice, we
additionally ensured registration of the images in the time
series by supplementing the main computation program
with a subroutine to align the images with respect to the
initial window by means of maximizing the cross-
correlation function.

4. SPATIAL SMOOTHING AND TESSELLATION

In Figure 2, a tessellation of an unsmoothed SOHO
Dopplergram window of size 140 ] 140 Mm is given. The
average size (deÐned as the square root of area) of the tiles is
about 10.5 Mm and the maximum size about 19.5 Mm.
Tessellation of the images in Ca II K yields an average and
maximum tile size of 14 and 26 Mm, respectively. Here we
note the result of Hagenaar et al. (1997), who quote a range
of 13È18 Mm for the tessellation scale of K line Ðltergrams
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FIG. 1.ÈTessellation of a 125] 125 Mm2 region on a K line Ðltergram. Top: Image window. Bottom: Window upon which is superposed the
corresponding tessellation. The mean size (square root of area) of the tiles is 14.7 Mm.

of similar resolution. From our data we Ðnd that both the
mean and maximum tile size of the K line Ðltergram tessel-
lation are about 1.4 times larger than the corresponding
Dopplergram scales. Hagenaar et al. (1997) identify the tess-

ellation of medium-resolution K line intensity maps with
supergranulation. Analogously, in view of the closeness of
the Dopplergram tessellation scale to mesogranular scales,
one might consider a possible connection between Dopp-
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FIG. 2.ÈTessellation of a Dopplergram on a window about
140@@] 140@@ in size. Intensity minima for each tile (dots) are shown.

lergram tiles and mesogranules. Hagenaar et al. further note
that the tile pattern can be closely modeled as a Voronoi
tessellation, with the seed points being associated with
upÑow centers in supergranules.

Apart from supergranules, the input images contain
signals that could arise from short-term modes, meso-
granulation, and other short-lived small-scale phenomena.
The relative contribution of these features is modiÐed by
spatially smoothing and/or temporally averaging the raw
images. In Figure 3, the AC functions of a 140@@] 140@@
Dopplergram window are given. The dotted line represents
AC of a raw SOHO Dopplergram. The dashed line stands
for AC of the window time averaged over 10 minutes and
the heavy line for the same window spatially smoothed by
convolution with a Gaussian of FWHM \ 4@@. All three give
an AC size of about 30 Mm in agreement with traditional
results, demonstrating the stability of correlation length
scale with respect to smoothing of the image. In the next
three sections, we shall consider the e†ect of smoothing on
the size, distribution, and shape of the tessellating tiles.

4.1. Scales
Smoothing of the image causes intensity contrasts to be

leveled out by redistributing intensity from higher to lower
intensity regions. As a result, it causes tile boundaries of
sufficiently low intensity contrast to vanish, leading to
merger of tiles and consequent increase of the mean size of
tiles. This is depicted in Figure 4, where the four inlaid
Ðgures are tessellations of the same window smoothed with
j \ 0, 1, 2, and 4 Mm, where j is the FWHM of the Gauss-
ian with which the image is convolved to smooth it. Here we
Ðnd evidence for smaller tiles combining to form larger
ones, though this can also be accompanied by shape
changes of the tiles. Data for the dependence of the tessella-
tion scale on j in both SOHO/Michelson Doppler Imager
(MDI) Dopplergrams and K line Ðltergrams are given in
Figure 5. The heavy curve (representing Ca II K) has a
tessellation scale of 14.5 Mm at zero smoothing, about 5

FIG. 3.ÈAC curve for a 140@@] 140@@ window for a single exposure
(dotted line) and the same image smoothed by convolution with a Gaussian
of FWHM\ 4@@ (solid line) and time averaged over 10 minutes (dashed
line). Both spatial smoothing and time averaging tend to remove noise and
hence enhance the supergranular signal.

Mm more than that of Dopplergrams, represented by the
dashed line. However, at higher j, both curves tend to con-
verge. The dependence of tessellation scale on j is in con-
trast to AC scale, which, as noted in connection with Figure
3, is fairly stable.

The initial separation and later convergence of the curves
can be attributed to the di†erent resolutions in the K line
Ðltergrams and Dopplergrams. From the formula

(e†ective resolution)2\ (resolution)2] j2 (1)

we can relate the e†ective resolution of the smoothed image
to the resolution of the original image and the smoothing
parameter j. The respective pixel resolutions in the Dopp-
lergrams and the K line Ðltergrams are 2A and Accord-3A.2.
ing to equation (1), for the e†ective resolution of thej \ 2A.5
Dopplergrams equals the resolution of the Ðltergrams.
From Figure 5 we Ðnd that the tessellation scale for Dopp-
lergrams at is about 14.5 Mm, which is close to thej \ 2A.5
tessellation scale for the Ðltergrams at zero smoothing. Fur-
thermore, equation (1) implies that for sufficiently large j,
the e†ective resolutions in the Ðltergrams and Dopp-
lergrams are close. This is consistent with the observed ten-
dency for both the curves in Figure 5 to converge. This
dependence of tessellation scale on resolution and j under-
scores a necessity to exercise caution in applying this
method to study scales. Identifying supergranulation (or
mesogranulation) with the tessellation will make the size of
supergranules (or mesogranules) resolution dependent. To
avoid this, we must select a criterion that somehow singles
out the resolution that corresponds to supergranulation, a
point that becomes clearer in the next subsection.

4.2. T he Distribution Function
The distribution of tile sizes obtained from the tessella-

tion of Dopplergrams shows a broad asymmetric pattern
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FIG. 4.ÈTessellation of the same 140@@] 140@@ SOHO Dopplergram window smoothed with j \ 0.0, 1.0, 2.0, and 4.0 Mm

skewed to the right-hand side similar to that obtained from
a tessellation of K line Ðltergrams (Hagenaar et al. 1997)
and also distributions of cell scales obtained according to
conventional methods (Simon & Leighton 1964 ; Singh &
Bappu 1981 ; Singh et al. 1994 ; Srikanth et al. 1999). Both
the asymmetry and the peakedness of the distribution is
larger for a histogram of areas than for one of length scales
because of the way a distribution transforms under a trans-
formation of the random variable (Srikanth et al. 1999).
Interestingly, Berilli et al. (1998), using a di†erent method of
tessellation, report that the distribution of cells rises monot-
onously toward smaller cells, reminiscent of the distribution
of granular sizes reported by Muller & Roudier (1994).
Because of the simplicity of the distribution function (e.g.,
no double peaks), we can quantitatively characterize the
shape of the distribution in terms of its skewness and kur-
tosis (Srikanth et al. 1999a). For a data set of n points,Mx
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N
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Skewness and kurtosis measure, respectively, the asym-
metry and peakedness of a distribution about its mean. The
deÐnition of either parameter ensures that it depends only
on the shape and not a scale factor of the distribution.

Skewness and kurtosis were calculated as a function of
number n of tessellating tiles. Above a sufficiently large n the
parameters stabilize, generally simultaneously. In Figure 6,
kurtosis is plotted for unsmoothed Dopplergrams as a func-
tion of number of tiles. The function is more or less constant
for n [ 3500. The values of the parameters are calculated as
the mean value in this stable regime. Mean and standard
deviation in this range give a value b \ 6.63^ 0.09. Simi-
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FIG. 5.ÈAverage size of tiles as a function of j. Mean tile sizes for K
line Ðltergrams (plus signs) with a second-order best Ðt (heavy line) and
mean tile sizes for the SOHO/MDI Dopplergrams (asterisks) with a
second-order best Ðt (dashed line) are shown. The tessellation scales for the
two data sets at zero spatial smoothing are, respectively, about 14.5 and 8.6
Mm. Both data points converge for large smoothing.

larly, we Ðnd for skewness a \ 1.65^ 0.01. It turns out that
the minimum image area required for skewness and kur-
tosis functions to stabilize is a constant, about 3 ] 104
Mm2, irrespective of j. Consequently, the number of tiles n
at which a and b stabilize is smaller for larger values of j.
Hagenaar et al. (1997) found that the distribution of the tiles
remains self-similar under smoothing (a, b \ const), but we
noted an overall tendency toward a more nearly Gaussian
shape. The values of a and b at di†erent length scales are
given in Figure 7, wherein j has been reparameterized to
length scale according to the Dopplergram curve in Figure
5. We note the fairly low error bars. Both skewness and
kurtosis show a similar trend. Except for local peaks near
11 and 26 Mm, the main trend is one of falling value of
skewness and kurtosis as mean scale increases, meaning
that the distribution becomes less asymmetric and less
peaked for larger j.

FIG. 6.ÈPlot of kurtosis of a region from an unsmoothed Dopplergram
as a function of number of data points. As the number exceeds some
threshold value (corresponding to a tessellated area of D3 ] 104 Mm2),
the value of kurtosis stabilizes. The mean value of kurtosis in this regime is
considered as the characteristic value for the distribution of tiles.

FIG. 7.ÈSkewness and kurtosis of the distribution of the tessellating
tiles as a function of the mean scale (parameterized by j) of the Dopp-
lergrams. The overall pattern is a fall except for upward kinks near sizes 11
and 25.9 Mm.

A visual appreciation of this trend can be obtained by
inspecting Figure 8. Here the distributions of the tiles for
four distinct values of j in increasing order are given. In
each case, the length scale in the abscissa is factored so that
the mean scale equals 1.0. Frequency is renormalized so
that the area under the histogram equals unity, in order to
see purely the shape changes in the distribution function. It
is apparent that as j increases (from Fig. 8a to 8d), tiles are
depleted at smaller scales and added toward larger scales.
As a result, the amplitude of the peak becomes lower and
the peak shifts rightward to a less asymmetric position. This
can be explained if we make the reasonable assumption that
smaller tiles correspond to more shallow basins on the
velocity landscape of the Dopplergrams and larger tiles to
deeper basins. Thus, the chances of two smaller tiles com-
bining under a smoothing operation are greater than those
for larger tiles. Since the distribution is concentrated in
smaller tiles in the unsmoothed image, the distribution
becomes less skewed and less peaked as the image is
smoothed.

However, an interesting observation that emerges from
Figure 7 is that the overall fall of a and b with scale is not
monotonous. At two points the distribution departs from
the trend toward a Gaussian distribution. This is at the
scales 10.7 and 25.9 Mm, where local peaks are seen, more
so in the latter point. At and about these two points, the
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FIG. 8.ÈRenormalized distribution of tiles derived from Dopplergram tessellation with (a) j \ 0 Mm, (b) j \ 1.6 Mm, (c) j \ 2.8 Mm, and (d) j \ 5 Mm.
In the independent axis, mean tile sizes are rescaled to equal 1. The more the image is smoothed, the less asymmetric and less peaked the distribution is seen
to become.

distribution becomes more asymmetric and peaked, signiÐ-
cantly larger than the error bars. This can be explained by
the existence of intrinsic (i.e., resolution- and smoothing-
independent) scales in the Dopplergrams. When the mode
of the tile size distribution equals an intrinsic scale, a good
many tiles will tend to coincide with the physical structures
responsible for the intrinsic scale. We can visualize that
when the image is suitably smoothed for(6A.5
Dopplergrams), the boundaries of most of the tiles coincide
with those of cells with deeper basins as seen in the intensity
patterns.

We note that the two peaks occur, respectively, close to
the mesogranular and traditional supergranular scales. To
test that the intrinsic structures responsible for the second
peak are supergranules, we compared the distributional
properties of supergranules (obtained independently) with
those of the tiles at 25.9 Mm scale. In Srikanth et al. (1999),
the values for skewness and kurtosis, derived from a sta-
tistical study of supergranular sizes according to the AC
method, are quoted to be 1.1 and 4.9, respectively. This is
in agreement with the values a \ 1.06^ 0.03 and
b \ 4.55^ 0.09 at the 25.9 Mm peak. Here we assume that
AC scales are linearly related to true scales of super-
granules. This ensures that the distributional property of
supergranules is not a†ected by the use of the AC method.
Hence, we associate the second peak in Figure 7 with super-
granular scale. By analogy, the Ðrst peak, at 10.7 Mm, could
be associated with mesogranulation. The corresponding
distributional parameters are a \ 1.68^ 0.03 and
b \ 6.91^ 0.14. The skewness is close to that of super-
granules, but the distribution is more peaked. VeriÐcation

of this by an independent study of mesogranulational size
distribution would further corroborate the usefulness of the
tessellation method to study scales. The mode of the dis-
tribution at the 25.9 Mm peak was found to be 25 Mm,
which is estimated to be the size of supergranules, in agree-
ment with the scale found by Singh & Bappu (1981) and

(1983), and with that of Berilli et al. (1998) for theKu� veler
critical area (424 Mm) at which the geometrical properties
of cells are reported to change. A preliminary study in this
respect of K line Ðltergrams strengthens this result, with an
intrinsic size emerging at a mean tile size of 25.9 Mm, which
is associated with supergranules. This value is closer to
supergranular sizes determined by visual inspection (Simon
& Leighton 1964 ; Janssens 1970 ; Singh & Bappu 1981),
rather than to AC sizes.

4.3. Circularity of the T iles
The shape of a tile may be quantiÐed by the fractal

dimension of its perimeter, which can be derived sta-
tistically from the slope of the log (area) versus log
(perimeter) plot (Muller & Roudier 1994). For our purposes,
we found it sufficient to use a parameter ““ circularity,ÏÏ
which can be deÐned even for a single cell on a Ñat two-
dimensional plane. DeÐned

i \ 4n ] area
(perimeter)2 , (5)

it is a measure of how closely a tile resembles a circle. i
takes values in the range 0\ i¹ 1.0. On a Ñat surface, it
takes the value 1.0 for circles and smaller values for other
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FIG. 9.ÈCircularity parameter for K line Ðltergrams as a function of j

shapes. For example, i \ 0.785 and 0.698 for a square and a
regular hexagon, respectively. A corrugation of the walls of
the tile reduces i since it increases the perimeter without
considerably adding to the area.

A plot of the mean circularity of the tiles against j for the
Dopplergram data is given in Figure 9. Typically the circu-
larity of tiles is in the range 0.4È0.5. That means the tiles are
typically more irregularly shaped than a regular hexagon.
Either a mildly rising trend, such as that depicted in Figure
9, or a lack of dependence on spatial smoothing is observed.
The Ðltergram tessellation also shows a similar behavior.

5. TIME AVERAGING AND TESSELLATION

Time-averaging behavior of the tessellation was studied
by averaging cospatial windows and tessellating them. A
typical dependence of the tessellation scale on time averag-
ing is given in Figure 10. The x-axis gives the time duration
over which cospatial windows have been averaged. The
upper curve (marked with plus signs) represents the mean
tessellation size for Ðltergrams, and the lower curve (marked

FIG. 10.ÈTessellation scale as a function of time duration over which
images are averaged. The upper data points and Ðt curve represent data
from Ðltergram tessellation ; the lower ones represent Dopplergram tessel-
lation. Both show an initial rising trend from values of, respectively, about
17 and 9 Mm.

with crosses) represents that for Dopplergrams. In both
cases, tile size rises at Ðrst relatively rapidly, then slows
down and appears to level out beyond 25 hr. The Dopp-
lergrams show a rise from about 9 to 16 Mm. The K line
data show a rise from 17.5 Mm to slightly over 23 Mm. The
null dependence on time averaging reported by Hagenaar et
al. (1997) seems to be conÐned in our study only to large
time intervals ([25 hr).

The behavior of scale in Figure 10 can be explained by
the enhancement of the signal due to long-timescale struc-
tures by the averaging out of short-timescale processes.
Thus, it might be expected that time averaging will increase
the tessellation scale. This accounts for the rise in scale in
Figure 10. Another factor a†ecting the time-averaged tessel-
lation is that newer patterns emerge with time. Therefore,
for large time, the average image pattern will become
randomized because of superposition of uncorrelated struc-
tures. As a result, existing boundaries will be crisscrossed by
new ones. This is expected to lead to a reduction in tessella-
tion scale. We conÐrmed this by Ðnding the tessellation
scale for images obtained by averaging unrelated (i.e.,
noncospatial) windows. The result is given in Figure 11.
However, we note that the change in tessellation scale is
much smaller than one would have expected on the basis of
the unrelatedness of the images.

The undulations in the curves in Figure 10 are worth
noting. For example, the deviation from the best Ðt around
time t \ 15 hr is as high as 14% in both the Dopplergram
and Ðltergram curves. Since the number of frames for time
t [ 20 hr is at least 120 frames, and hence contribution of
noise will be low, we believe that the undulations in scale
are not artifacts. Whether these are indeed related to the
undulations in the correlation function noted by Raju et al.
(1998) will be investigated elsewhere.

The circularity of the tiles as a function of time averaging
for Dopplergrams is plotted in Figure 12. The initial small
rise and later fall is not typical for all windows. However, we
generally found both in Dopplergrams and Ðltergrams that
the plots have a relatively narrow spread and are conÐned

FIG. 11.ÈLength scale derived from tessellation of the average of
various numbers of unrelated windows of equal size. The upper data points
and heavy straight-line Ðt curve represent Ðltergram tessellation. The lower
data points and dashed straight-line Ðt represent SOHO/MDI Dopp-
lergram tessellation. The randomization of features due to the averaging of
arbitrary images is expected to produce a rapid fall in the tessellation scale.
However, both Ðts show a gentle fall.
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FIG. 12.ÈMean circularity of the tessellating tiles as a function of time
duration over which images are averaged in a 140@@] 140@@ window. We do
not Ðnd any interesting common trend for this variable among di†erent
windows. The rise-fall pattern found in the Ðgure is speciÐc to this window.

to a band in the 0.4È0.5 region. An undulatory character is
seen in these plots also.

6. DISCUSSION

6.1. Physical SigniÐcance of Tessellation
In the Ðrst step of minimizing a two-dimensional func-

tion, the basin-Ðnding algorithm recognizes only local
minima that lie inside spatial undulations resolvable in the
given image. For example, if in an image small-scale basins
are superposed on a larger basin containing the global
minimum, then the tessellation will pick out minima within
the smaller basins. In this sense, it tends ““ not to see the
forest for the trees.ÏÏ Its e†ectiveness as a supergranule-
identifying method rests on the assumption that super-
granules as basins exist in a one-to-one relation with the
local minima occurring in the image.

However, it is obvious from experience that, in the kind
of image sets that have been tessellated, local minima occur
at smaller scales than supergranules. For example, meso-
granules are reported to be about 10A in size (Oda 1984). As
they occur at a smaller scale (and hence more densely), they
may interfere with the tessellation pattern. In the case of
Dopplergrams, scales associated with coherence length of
residual p-modes in the Ðltered images are also possible
candidates for forming tiles (though their contribution will
be minimal because of the Ðltering). Another source of inor-
dinately small tiles is open cell regions, which includes for-
mative and dying cells as well as intercellular space. By
design, the basin-Ðnding algorithm is a tessellation ; i.e., it
covers the tessellated region wholly by a system of non-
overlapping tiles. Visual inspection shows that open cell
regions have considerable small-scale intensity variations.
These are forced into small tiles, further bringing down the
mean tile size.

There are also other small-scale candidates that can by
deÐnition form tiles at subsupergranular scale : random
background spatial Ñuctuations. Such Ñuctuations are not
of any characteristic scale but occur in a complicated image
such as a Dopplergram for a variety of reasons : discontin-
uities on the cell boundaries, detached cell wall elements
from decayed cells, intracell bright points, etc. Fluctuations
arising from these will be of a statistical nature and not vary

considerably from region to region. In order to test whether
tessellation picks up signals from such statistical Ñuctua-
tions, we studied the tessellation of both Dopplergram and
Ðltergram windows processed as follows. In each case, the
window is averaged with itself after the introduction of rela-
tive phase shifts with respect to itself. The results of the
phase-shifted self-averaging for a typical 224@@] 224@@
unsmoothed Dopplergram window are given in Figure 13.
The x-axis gives the shift in units of AC scale (25.3 Mm for
this window) through which the window is shifted to be
averaged with itself. At each averaging, the window area is
kept constant by including area adjacent to the original
window in a continuous way. The y-axis gives the AC scales
(heavy curve) and tessellation scales (dotted curve) derived
from each self-averaged image in the original AC scale
units. The self-averaged imageÏs AC size is seen to vary
systematically with the shift. Initially, at zero phase shift, the
AC function yields a scale 25.3 Mm. From Figure 13, we see
that the self-averaged AC scale remains the same for shifts
that are small compared to the cell boundary thickness,
which is estimated to be about 5.7 Mm (Singh & Bappu
1981). Thereafter, the phase-shifted self-averaged AC scale
rises steeply with increasing phase shift to a value about
twice the AC scale. Finally, as the shift approaches one-half
the AC scale, the phase-shifted self-averaged AC scale also
becomes one-half the AC scale. On the other hand, the
tessellation length scale remains almost the same, about 15
Mm for Ðltergrams, for self-averaged images at varying
phase shift. A similar behavior was noted in the case of
Dopplergrams, as well.

The behavior of the AC scale reÑects the phase di†erence
between intrinsic features in the window between its orig-
inal and shifted positions. We found that generally the self-
averaged AC scale is halved when the shift equals one-half
the original AC scale. The reason for this is apparent from
the simpliÐed scenario presented in Figure 14. An idealized
image proÐle, with cells separated equally by one actual (i.e.,
involving no image self-averaging) AC scale unit, is present-
ed in the upper panel. The lower panel represents the image
self-averaged at a shift of one-half AC scale. Here the cell

FIG. 13.ÈPlot of AC and tessellation scale for shifts at which a
224@@] 224@@ quiet window is averaged with itself. The scales and shifts are
in units of the actual (i.e., involving no image self-averaging) AC scale (25.3
Mm here). The self-averaged image AC scale shows strong variations
including a halving when the shift equals one-half the AC size. Tessellation
scale is almost constant.



No. 2, 2000 DISTRIBUTION OF SUPERGRANULAR SIZES 1017

FIG. 14.ÈResult of averaging an (ideal) window with itself after a shift through one-half an AC scale. Top: ProÐle of boundaries of equal-spaced cells
(heavy line) and the same proÐle shifted by one-half an AC scale (dash-dotted outline). Bottom:Self-averaged proÐle, with AC length one-half the true value.

walls appear twice as frequently, implying a halving of the
AC scale because the cell is split into two in the phase-
shifted self-averaged image. The self-averaged AC sizes for
other shifts are explained by using a more complicated
proÐle, having unequally spaced cell boundaries of unequal
heights. The self-averaged AC scale can exceed the basic AC
size because at certain shifts the relative displacements
between the cell boundaries in the self-averaged images are
interpreted by the AC function as a broadening of the cell
wall, which leads to an apparent enlargement of the cell size.
On the other hand, the independence of tessellation scale of
shift, speciÐcally the fact that it does not halve for a shift of
one-half the tessellation scale, means that tessellation reÑec-
ts intensity variations that may not correspond wholly to
intrinsic physical features but to background spatial varia-
tions that remain statistically the same at all shifts. We
conclude that, for unsmoothed images, the tessellation is
independent of actual physical features of interest, unlike
the AC function, which shows a strong dependence on the
phase of shift in the self-averaged images.

6.2. Resolution Dependence of Tessellation
Closely related to the local minimization property of the

tessellation is the image resolution dependence of the mean
tile size, as seen in Figure 5. Lower resolution means that

the smallest ““ valleys ÏÏ sensed by algorithm will be larger
(and usually deeper) than if the resolution had been higher.
Hence, tessellation scales are, as noted, larger for lower
resolution. Smoothing of the image reduces the e†ective
resolution of the image and leads to an increase in the mean
tile size. The resolution dependence introduces an arbitrari-
ness in the size of the structures deÐned by the method. It
would make the scale of supergranulation dependent on the
resolution of the image we use rather than some intrinsic
property of the pattern. The value of tile sizes of around 15
Mm obtained by us is due (in good part) to the particular
resolution of the images we start with pixel~1 for the(3A.2
Ðltergrams). There is no a priori reason why super-
granulation should prefer tessellation at this resolution. If
we deÐne supergranular scale as the mean tile size, then we
do not have obvious grounds for excluding 10 Mm, the
mean tile size derived from Dopplergrams, as the ““ true ÏÏ
supergranule size. Indeed, it follows from Figure 5 and has
also been veriÐed by us that sufficiently higher resolution K
line Ðltergrams yield mean tile sizes much smaller than 10
Mm.

6.3. T ime Dependence of Tessellation
The time dependence of the mean tessellation scale, as

depicted in Figure 10, shows that the mean tile size grad-
ually increases for about 24 hr, where an apparent leveling
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o† is seen. As noted, the tessellation scale derived from the
Dopplergrams rises to over 16 Mm, while that from Ðlter-
grams rises to 23 Mm, the discrepancy being attributable to
the di†erence in spatial resolution. In Figure 10, in the Ðrst
10 hr, both Dopplergram and Ðltergram mean tile sizes
increase by about 4 Mm, which represents about 40% and
23% of the mean initial tile size of the respective data. All
estimates of supergranular lifetime (as against size) are
agreed on a value in excess of 20 hr (Leighton et al. 1962 ;
Janssens 1970 ; Singh et al. 1994 ; Raju et al. 1998 ; Srikanth
et al. 1999). Since Figure 10 implies that some of the tiles are
averaged out within as few as 5 hr and thus have lifetimes
less than this value, it is clear that these tiles cannot be
identiÐed with supergranules. We note that upon being
averaged over supergranular lifetimes, the mean tile size in
the K line approaches 23 Mm, quite close to the super-
granular scales quoted by Singh & Bappu (1981) and Berilli
et al. (1998). It would be interesting to check for this behav-
ior in data of di†erent resolutions.

6.4. AC Scale and Tessellation Scale
In contrast to tessellation scale, AC scale, as noted in

connection with Figure 3, is fairly invariant under smooth-
ing, and hence has approximately the same value in both
Dopplergrams and Ðltergrams (about 30 Mm) for a range of
resolution. The resolution indeterminacy of the tessellation
method is absent in AC, which ensures a stable deÐnition.
However, AC size is rarely the true size when dealing with
any realistic complicated structures, though it can be con-
sidered as a measure of size. Hagenaar et al. (1997) note that
the tessellation scale is about 0.61 times the FWHM of the
AC primary peak irrespective of the smoothing of the
image. They conclude that the disparity between AC scale
and tessellation scale is a result of AC responding prefer-
entially to larger supergranules. In order to understand this
feature, we determined the AC of the tessellated image. In
such an image, the tile network pixels are set to a constant
value, while tile interior pixels are set to another common
lower constant value. This is equivalent to removing inten-
sity information and retaining only topological/geometric
information about the features. We found that AC of such a
binary tessellated image gives a scale comparable to the
tessellation scale, i.e., about one-half the usual AC scale.
Thus, we attribute the lower AC scale to the removal of
intensity information from the image. This removal is
equivalent to boosting the relative contribution of lower
intensity contrasts in the tessellated image. Conversely, the
original image has an increased relative contribution of
signals from structures with high intensity contrasts. Thus,
the larger AC size in the original image is connected with
the larger relative contribution from high-contrast features.
Hence, AC picks its signal predominantly from high-
contrast large features that possibly correspond to super-
granules, whereas the basin-Ðnding algorithm responds to

all spatial intensity variations. We infer that while AC is
underresponsive, a direct application of tessellation can be
overresponsive to the network structures.

Since the AC size of supergranulation is typically 30È32
Mm (Leighton et al. 1962 ; Singh & Bappu 1981 ; Raju et al.
1998), the absence of well-deÐned AC signals at the 30 Mm
scale can be taken as indicative of the absence of super-
granules. We studied disk-center regions of (p-modeÈ
Ðltered) Dopplergrams where, because of slow upÑows and
vanishing horizontal Ñows in the line of sight, weak super-
granular signal is expected. We studied 14 over 70] 70
Mm windows in the Ðltered SOHO Dopplergram disk
centers. From this only two yielded AC scale greater than
25 Mm, indicative of a perceptible supergranular network.
The tessellation scale derived from these two windows was
found to be 7.55 ^ 0.12. On the other hand, the mean tile
scale for the remaining windows, which did not show evi-
dence of supergranular signals, is found to be 7.63 ^ 0.27.
This shows that tessellation scale is independent of whether
the supergranular signal (as manifested in the AC pattern) is
weak or stronger in the given region. This corroborates our
earlier conclusion, based on tessellation of phase-shifted
self-averaged images, that the tessellation senses certain
background spatial variations rather than solely super-
granulation.

7. CONCLUSION

Morphological properties of supergranulation in Dopp-
lergrams and the chromospheric network in Ca II K Ðlter-
grams were studied by a method of tessellation. It is shown
that one can account for the di†erence between the Dopp-
lergram and Ðltergram tessellations by taking into consider-
ation the di†erence in resolution of the two image sets. This
conÐrms that the morphological structure of the chromo-
spheric network is similar to supergranulation as seen in
Dopplergrams. The mean tessellation scale is found to
increase when the images are spatially smoothed or tempo-
rally averaged, suggesting a depletion of small-scale tiles.
The overall tendency for the distribution of the tiles is to
broaden and become symmetrized as the image is spatially
smoothed. However, there exists a degree of smoothing,
which is characterized by a local peak in the skewness and
kurtosis curves, at which the tessellation manifests the tradi-
tional scale of supergranules as well as their distributional
properties. For an image at this resolution/smoothing, the
tessellation is geometrically equivalent to supergranulation.
The method proves to be a useful as well as intuitively
appealing method to study patterns on the solar surface.

We thank P. H. Scherrer and the SOHO consortium for
providing us with the MDI/SOI data. R. S. thanks V. Krish-
nakumar for useful discussions.
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