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ABSTRACT
The dynamical consequences of radiative energy transport on the evolution of gas conÐned to small-

scale magnetic structures on the Sun are studied. Convective collapse, which transforms weak-Ðeld struc-
tures into intense structures of Ðeld strengths in the 1È2 kG range on the photosphere, is strongly
inÑuenced by radiative heating from the surroundings and cooling due to losses in the vertical direction.
We Ðrst present analytic results in the quasi-adiabatic approximation to attempt a qualitative under-
standing of the inÑuence of radiative e†ects on the convective stability of Ñux tubes. We demonstrate the
destabilizing action of vertical radiative losses, that tend to enhance convective collapse and produce
strong tubes at a relatively smaller horizontal scale than those expected from calculations based solely
on horizontal radiative energy transport. Our calculations clearly point to an asymmetry between upÑow
and downÑow perturbationsÈonly the latter are ampliÐed in the presence of vertical radiative transport.
Using a realistic model of the solar atmospheric structure and treating radiative transfer in the di†usion
and Eddington approximations, we next perform numerical stability analyses and produce size (Ñux)-
strength relations for solar Ñux tubes. Our results provide a physical explanation for the observed Ñux-
dependent (equivalently size-dependent) Ðeld strengths of the solar small-scale magnetic structures in the
form of weak intranetwork and strong network components.
Subject headings : instabilities È MHD È radiative transfer È Sun: magnetic Ðelds È Sun: photosphere

1. INTRODUCTION

Energy transport and momentum balance of gas motions
in the subphotospheric and photospheric layers of the Sun
are dominated by radiative energy losses. For instance, it is
well known that these e†ects strongly inÑuence the proper-
ties of granules (Spruit, Nordlund, & Title 1990). They can
also be seen in numerical simulations of the solar convec-
tion (Cattaneo et al. 1991 ; Rast et al. 1993 ; Rast & Toomre
1993 ; Stein & Nordlund 1998). It is also well known that
the horizontal radiative energy transport determines granu-
lar scales and their intensity contrasts (Musman & Nelson
1976 ; Nelson & Musman 1977, 1978). Such multidimen-
sional e†ects of radiation are even more pronounced in the
presence of magnetic Ðelds (Spruit 1977 ; Kno� lker,

& Weisshaar 1988), owing to modiÐcations intro-Schu� ssler,
duced to the thermal properties of the gas. These modiÐ-
cations stem from the inhibiting action of the magnetic Ðeld
on the convective motions of the ionized gas (Biermann
1941). The initiation of convective collapse in a magnetic
Ñux tube with an equipartition Ðeld strength (with respect
to granular motions) is due to the insulation of the tube
from the surrounding convective motions (Parker 1978) :
the gas conÐned to such structures is cooled faster than the
surrounding gas owing to the unbalanced radiative losses
through the surface cross section of the magnetic structure.
Assuming that the horizontal optical thickness of the down-
Ñowing gas is sufficiently high so that radiative heating from
the surroundings can be neglected, Parker (1978) reasoned
that the downÑow along the magnetic Ðeld lines proceeds
almost adiabatically. The net e†ect of this nearly adiabatic
downÑow in the superadiabatically stratiÐed gas below the
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photospheric surface is the evacuation of the upper layers of
the Ñux tube, leading to an increase in the magnetic Ðeld
strength to maintain pressure balance with the surround-
ings. However, it has been realized that the solar magnetic
elements are small enough to be inÑuenced strongly by the
lateral inÑux of radiation (Spruit 1977), and many of the
observed properties are determined by such e†ects : the
excess continuum brightness, the structure, the size-
dependent intensity contrasts, and the critical sizes for the
transition from bright points to dark pores for magnetic
structures are all determined by the action of radiative
e†ects (Spruit & Zwaan 1981 ; et al. 1988 ;Kno� lker Kno� lker
& 1988). As regards the convective collapseSchu� ssler
process, for initial weak-Ðeld structures of small enough
sizes, radiative heating from the surroundings (Hasan 1986 ;
Venkatakrishnan 1986) renders the downÑows signiÐcantly
nonadiabatic, thereby reducing the efficiency of the collapse
process. The main aim of our study is to examine quantitat-
ively such size-dependent radiative e†ects and the associ-
ated observational consequences.

The small-scale concentrated Ñux elements are well
known to have photospheric Ðeld strengths and sizes in the
range 1È2 kG and 100È300 km (Howard & StenÑo 1972 ;
StenÑo 1973 ; see the review by StenÑo 1994), respectively.
These strong-Ðeld Ñux elements are found preferentially at
the supergranular downÑow regions and form the so-called
network, which, at the chromospheric layers, causes excess
emission in the Ca II K spectral lines, and this feature has
long been identiÐed as a proxy for magnetic activity. These
network elements also play a dominant role in the dynamics
of the overlying coronal gas. Observations have established
that the Ñux elements comprising the network share
uniform properties, such as their strength and other obser-
vational signatures, be it in the active region plages or in the
quiet regions of the sun 1990, 1992). Most impor-(Schu� ssler
tantly, it has been found that the Ðeld strengths of these
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strong-Ðeld structures show a very weak dependence on the
Ñux per element, ' : the active region network elements
have ' much higher than the quiet region ones, yet the Ðeld
strengths are almost the same. This observational fact sug-
gests that the formation and equilibrium process of these
structures is unique and global. On the other hand, there
are the inner network mixed-polarity weak-Ðeld structures
whose Ðeld strengths have been measured recently (Keller et
al. 1994 ; Lin 1995 ; Solanki et al. 1996) to have a typical
value of 500 G, with the property that they have ' typically
less than 1] 1017 Mx and with strengths strongly depen-
dent on the Ñux. If the convective collapse of a weak-Ðeld
tube is the global process responsible for the formation of
the strong-Ðeld tubes (Parker 1978 ; Webb & Roberts 1978 ;
Spruit & Zweibel 1979 ; Spruit 1979 ; Hasan 1983, 1984) that
comprise the network with strengths weakly dependent on
', then we need to understand why tubes with smaller
Ñuxes, viz., the inner network elements, do not collapse to
kG strength. Efficient radiative exchange with the sur-
roundings by a small Ñux tube (Hasan 1986 ; Venkatakrish-
nan 1986) o†ers a natural explanation. In particular,
Venkatakrishnan (1986), using a simpliÐed treatment of
radiative e†ects, derived a size-strength relation for Ñux
tubes on the Sun. Such a relation has been shown, recently,
to agree qualitatively with observations (Solanki et al.
1996). In reality, the convective collapse process is not as
simple as often modeled and occurs in a complicated
environment dominated by Ñows and multidimensional
radiative transfer. Radiative cooling associated with vertical
radiative losses, which has not been so far modeled for a
magnetic Ñux tube, plays an important role in enhancing
convective downÑows ; this e†ect, thus, helps in producing
strong tubes at a relatively smaller horizontal scale, conse-
quently at magnetic Ñux values that are less than those
expected from calculations based solely on horizontal radi-
ative energy transport. We study the above-stated e†ects in
detail enabling a quantitative comparison between the theo-
retical and observationally established properties of solar
Ñux tubes.

We treat radiative transfer Ðrst in the di†usion approx-
imation and subsequently in the more reÐned generalized
Eddington approximation (Unno & Spiegel 1966). We
compare the results for the two cases and delineate their
validity. We note that a stability analysis that considers
adiabatic displacements and their growth properties cannot
distinguish between upward and downward perturbations,
and, consequently, for the case of a Ñux tube in pressure
equilibrium, it does not distinguish between Ðeld dispersal
(upward displacements) and intensiÐcation (downward
displacements) in the tube. In the present study, through the
inclusion of nonadiabaticity due to both horizontal
exchange and vertical radiative losses and by examining
their competing inÑuences, we show that a tube prefer-
entially undergoes a collapse (Rajaguru 1999). Thus, we
provide theoretical conÐrmation of the hypothesis (Parker
1978) that radiative losses would initiate a downward dis-
placement that becomes unstable and leads to a collapse.
We also check if the overstable oscillations driven by hori-
zontal radiative exchange (Roberts 1976 ; Spruit 1979 ;
Hasan 1985, 1986 ; Venkatakrishnan 1985 ; Massaglia,
Bodo, & Rossi 1989) persist when vertical radiative losses
are self-consistently taken into account.

The paper is organized as follows : in ° 2 we present math-
ematical details and derive the necessary set of equations. In

° 3 a quasi-adiabatic analysis of the equations is carried out.
Using a local stability analysis, we derive results that bring
out the basic physical features due to radiative transport
and discuss the limiting behavior of the results. In ° 4, we
present numerical solutions to the full set of nonadiabatic
equations derived in ° 2 ; we discuss the implications of these
results and present Ñux (size)-strength relations for small-
scale solar tubes, which o†ers a meaningful comparison
with observations. Finally, in ° 5 the main conclusions of
the study are summarized.

2. MATHEMATICAL FORMULATION

2.1. Equations
Let us consider a magnetic Ñux tube with an equi-

partition Ðeld strength, i.e., with a strength Beq4
G, which is obtained for a representativev

g
(4no)1@2B 400

value of the photospheric granular Ñow speed of kmv
g
\ 2

s~1 and a density o \ 3 ] 10~7 g cm~3. We further assume
that such tubes are thin enough to be adequately described
by the quasiÈone-dimensional thin Ñux tube equations that
form a reduced set of MHD equations (Roberts & Webb
1978 ; Spruit 1981 ; Ferriz-Mas & 1989). The equa-Schu� ssler
tions are
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where z denotes the vertical coordinate (positive
downward), t denotes time, o is the mass density, v and B
are the vertical components of the velocity and magnetic
Ðeld strength on the tube axis, p is the gas pressure, T is the
gas temperature, a is depth-dependent tube radius, F is the
energy Ñux, g is the acceleration due to gravity (assumed
constant and given by its value at the surface), and is thec

vspeciÐc heat at constant volume. Quantities with a subscript
e, here and throughout the paper, refer to the external
atmosphere. The quantities and are deÐned bys
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The horizontal pressure balance condition given by equa-
tion (3) implies that the timescale for pressure adjustment
over the cross section of the tube in response to the external
pressure changes is small compared with all other relevant
timescales in the problem. Pressure adjustment takes place
approximately on a timescale for a magnetoacoustic wave
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to cross the tube, which is typically a few seconds for a solar
magnetic element.

The e†ects of radiation are incorporated in the energy
equation (4). The total energy Ñux F, in general, has contri-
butions from all processes that contribute to energy trans-
port in the Ñux tube. However, we treat only perturbations
in the radiative Ñux and neglect contributions fromF

Rother Ñux perturbations. In the present thin tube approx-
imation the divergence of the energy Ñux is

$ Æ F \ 2F
r1 ] dF

z
dz

, (9)

where is the Ðrst-order term in the expansion of theF
r1radial component of the energy Ñux and r is the radial

coordinate.3
2.1.1. Radiative Transfer in the Di†usion Approximation

The radiative Ñux in the di†usion approximation isF
Rwritten as (see, e.g., Rybicki & Lightman 1979)

F
R
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+B\ [ 16pT 3
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where i is the Rosseland mean absorption coefficient,
B\ pT 4/n is the Planck function, and p is the Stefan-
Boltzmann constant. In this approximation, radiative
energy transport essentially resembles heat conduction,
with an ““ e†ective heat conductivity ÏÏ K given by

K \ 16pT 3/3io . (11)

Expanding B about the axis of the tube we Ðnd the com-
ponents of radiative Ñux to be
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where is the second-order term in the expansion of BB2and can be estimated by demanding
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Equation (9) can then be written for radiative Ñux in the
di†usion approximation as
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2.1.2. Radiative Transfer in the Eddington Approximation

We utilize the three-dimensional generalization of the
Eddington approximation (Unno & Spiegel 1966) to derive
a transfer equation appropriate for a thin magnetic Ñux
tube, following Hasan (1988). The radiative Ñux in thisF

Rapproximation is written as

F
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\ [ 4n
3io

+J . (14)

3 Regularity at r \ 0 and symmetry of the problem demands that radial
components of vectors retain only the odd terms and the scalars and axial
components of vectors the even terms, in the expansion about the axis
(Ferriz-Mas & 1989).Schu� ssler

An equation for the mean intensity J is obtained by using
the above expression for in the following relation (UnnoF

R& Spiegel 1966) :

$ Æ F
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\ 4nio(S[J) , (15)

where S is the source function, which we equate to the
Planck function B (i.e., we assume local thermodynamic
equilibrium [LTE]). Hence, S \ pT 4/n. The above equa-
tion is essentially the transfer equation integrated over solid
angle and frequency for a gray medium. In the present case
of a slender tube the zeroth-order reduction of the above
two equations yields (Hasan 1988)
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where is the optical depth element in thedq
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external medium. The calculation of the radiation Ðeld Ñuc-
tuations and their coupling to the hydrodynamic pertur-
bations are done conveniently using the following
Ðrst-order moment forms of the above equations. The trans-
fer equation (16) can be written as
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Here H is the Eddington Ñux, related to the Ñux byF
R, z

F
R,z \ 4nH . (22)

2.2. Equilibrium
We consider an initial equilibrium state of a slender mag-

netic Ñux tube embedded in a plane-parallel stratiÐed atmo-
sphere that is in hydrostatic and energy equilibrium. We
assume that the temperatures in the Ñux tube and the exter-
nal atmosphere are the same at each height. The equation
for hydrostatic equilibrium that is satisÐed by both the Ñux
tube and the external atmospheres is

dp
dz

\ og . (23)

The energy equilibrium conditions for the Ñux tube and the
external atmosphere are, respectively,
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\ 0 (24)
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and

$ Æ F
e
\ dF

z,e
dz

\ 0 . (25)

Furthermore, we assume pressure balance given by equa-
tion (3). The equilibrium stratiÐcation of the external
medium that is used here is the one determined to match the
VAL-C (Vernazza, Avrett, & Loeser 1981) model for the
photosphere and the higher layers with the convection zone
constructed as explained in Hasan & Kalkofen (1994) and
Hasan, Kneer, & Kalkofen (1998). The convection zone
structure in this model di†ers slightly from that of Spruit
(1977), owing to reÐnements in the treatments of radiative
transfer and mixing-length formalism. This model satisÐes
the hydrostatic and energy equilibrium conditions given by
equations (23) and (25). SahaÏs equation is used to deter-
mine k, the mean molecular weight, and the various ther-
modynamic quantities such as are determined followingc

vMihalas (1967). The Rosseland mean opacities are calcu-
lated by interpolation from the tables of R. L. Kurucz (1993,
private communication ; see Hasan & Kalkofen 1994) for
the upper layers of the atmosphere and from those of
Rogers & Iglesias (1992) for the deeper regions. The depth
dependence of adiabatic temperature gradient +

a
\

and the actual temperature gradient(L ln T /L ln p)ad+\ L ln T /L ln p are shown in the upper panel of Figure 1
and that of superadiabaticity is shown in thed \ +[ +

alower panel of Figure 1.
The radius of the Ñux tube is found from the Ñux conser-

vation condition given by equation (5). The condition of
temperature equilibrium implies that b \ 8np/B2 is con-
stant with depth. Hence, it follows that the pressure and
density inside the tube are related to those in the external
atmosphere by
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In the di†usion approximation, because of the assump-
tion of temperature equilibrium, there is no net radiative
Ñux across the tube from the external atmosphere ; i.e.,

In the Eddington approximation, the mean radi-F
R,r1 \ 0.

ation intensity as a function of depth for the solar modelJ
eused is determined by solving equation (17). This we do

numerically, using Ðnite di†erences with the following
upper and lower boundary conditions :
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FIG. 1.ÈDepth dependence of (top) the adiabatic and actual tem-
perature gradients and +, respectively, and (bottom) the super-+

aadiabaticity d \+ [ +
a
.

The mean intensity J inside the tube is now determined by
inserting the values of determined above in equation (16)J

eand solving it with the same set of boundary conditions as
that for the external medium. We place the upper boundary
in the chromosphere at the temperature minimum (ztop\
[500 km) and the lower boundary at a depth of 5000 km in
the convection zone with the photospheric surface (q

e
\ 1)

chosen as z\ 0. The depth variation of is shown in$ Æ F
RFigure 2 (where is calculated in the Eddington and di†u-F

Rsion approximations, respectively), which reveals that this
quantity is overestimated in the optically thin layers by the
di†usion approximation. The radiative Ñux inside the tube,
calculated here, is an approximate representation of the real
situation for which one needs to construct the atmospheric
structure inside the tube consistently by solving the
(magneto)hydrostatic equation along with the radiative
transfer equation. Since our main concern here is not the
detailed equilibrium structure, we have approximated the
temperature structure inside to be identical with that in the
external medium. This is not very di†erent from the real
situation as can be seen from elaborate analyses involving
more reÐned treatments of radiative transfer (Steiner 1990 ;
Hasan & Kalkofen 1994 ; Hasan, Kalkofen, & Steiner 1999),
which reveal that the temperature di†erence at equal geo-
metrical levels is generally small except in the thin surface
layers. The e†ect of such a temperature di†erence is likely to
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FIG. 2.ÈMagnitude of (top) in the Eddington approximation$ Æ F
R
,

and (bottom) in the di†usion approximation, which is a measure of radi-
ative losses as a function of depth for di†erent values of b.

have a negligible inÑuence on the growth rates and fre-
quencies of the modes of the Ñux tube. The main di†erence
between the present case of Eddington approximation and
the di†usion approximation is represented by the quantity

deÐned as which measures the departure*
c
, *

c
\ J/S[ 1,

of the mean intensity from the source function (the Planck
function by assumption). This quantity is always small and
has Ðnite values only in the upper photospheric layers close
to optical depth unity and is zero in the deep layers that are
optically thick. Yet, as we show later in this paper, this
quantity shows an appreciable stabilizing inÑuence on the
unstable modes of the tube. Figure 3 shows the variation of

with z. We Ðnd that the stronger the tube (or equiva-*
clently, the smaller the values of b), the larger is the departure

from the Planck function for the mean intensity inside the
tube.

2.3. L inear Stability : Perturbed Equations
Small amplitude Ñuctuations are imposed on the equi-

librium conÐguration, described above. We linearize the
thin tube equations (1)È(4) and (9) with an assumption that
the external atmosphere is una†ected by the motions inside

FIG. 3.ÈDepth dependence of which measures the*
c
\J/S [ 1,

departure of the mean intensity from the Planck function, for three repre-
sentative values of b that are marked in the panels.

the tube. SpeciÐcally, we neglect the Eulerian perturbations
in the external pressure and in the nonradiative energy
Ñuxes, such as the convective energy Ñux. With these
assumptions, small amplitude perturbations inside the tube
obey the following equations :
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where m denotes the vertical displacement, H is the pressure
scale height, and N2 is the squared frequency,Brunt-Va� isa� la�
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The divergence of the radiative Ñux perturbations, in the
di†usion and Eddington approximations, is calculated
using the basic equations given in °° 2.1.1 and 2.1.2, respec-
tively. The resulting equations are summarized below in the
following subsections ; we refer the reader to Rajaguru
(1999), for details.

2.3.1. Di†usion Approximation

In this case, using equation (13), we Ðnd
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where the Ðrst term on the right-hand side corresponds to
lateral heat exchange due to thermal Ñuctuations and the
second and third terms describe the e†ects of perturbations
in the vertical radiative energy Ñux and hereafter(F
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denote the vertical radiative Ñux and its perturbation,
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respectively). From equation (10) we Ðnd
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Fourier decomposition in time of all the Ñuctuating vari-
ables, i.e., with the time dependence in the separable form
f @(z) exp ([iut), for a typical perturbation variable f @(z, t),
yields the following set of equations in nondimensional
form (Rajaguru 1999) :
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is the nondimensional squared frequency.Brunt-Va� isa� la�
Here, the length scale L is taken to be the depth extension of
the tube from z\ 0. The quantities and are deÐned byi
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All the quantities appearing in the above equations are
dimensionless ; the displacement m and the scale height H
are in units of L . The nonadiabaticity parameter C is the
ratio of the free-fall time to the thermal timescaleq

d
qth(Jones 1970 ; Antia & Chitre 1979) :
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where F is the magnitude of the vertical component of the
radiative Ñux. The timescale represents the thermal time-qthscale in which radiative relaxation takes place over the

length of the tube. In addition, v is given by
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is the lateral radiative exchange timescale. We note that the
timescales and are depth dependent and so are theqth q

rparameters C and v.

2.3.2. Eddington Approximation

In this approximation, the divergence of is foundF
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Expanding o@/o and i@/i in terms of T @/T and p@/p and using
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which when substituted into equation (34) yields the desired
equation relating the mean intensity perturbations to the
thermodynamic perturbations :
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] i)!1N2m ] qs
T
(1] *

c
)
J@
J

\ 0 , (55)

where

a1\ i)(1[ c) ] q*
c
s
T

k1 , (56)

a2\ i)cs
T

[ qs
T
(4[ *

c
k2) , (57)

and

q \ q
d

q
N

, (58)

q
N

\ c
v
T

4niS
, (59)

is the radiative relaxation time in the optically thin limit
(i.e., with NewtonÏs law of cooling ; Unno & Spiegel 1966).
Equation (55) is used to replace temperature perturbations
T @/T in the remaining equations. The perturbation in the
mean intensity J@ is determined by perturbing and linear-
izing the transfer equation (16). Here we use the equivalent
equations (18) and (19) to relate the radiation Ðeld pertur-
bations J@/J and H@/H to the hydrodynamic perturbations
m, p@/p. After lengthy but straightforward algebra, we arrive
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at the following Ðnal set of equations :

dm
dZ

\
C 1
H
AdH
dZ

[ 1
2
B

[ i
)N2!1 s

T
so a2

D
m

[
A 1
so

] b
2

[ s
T

a1
so a2

B p@
p

[ q
(1] *

c
)s

T
2

a2 so

J@
J

, (60)
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where

a3\ C
(S [ J)"

H
] v*

t
(64)

and

*
t
\ J [ J

e
S

(65)

is the ratio of the excess of the mean intensity inside the tube
to the Planck function. It is straightforward to verify that
the above set of equations yields the correct limiting forms
in the optically thick and thin cases. The equations for an
optically thick atmosphere correspond to taking the limit
io ] O and replacing the mean intensity by the Planck
function. The optically thin case is obtained in the limit of
mean intensity perturbations inside the tube J@/J ] 0.

The adiabatic limit occurs, in the systems of equations
(38)È(41) and (60)È(63), separately, when v and C] 0 (i.e., as

and The resulting second-order system has beenq
r

qth] O).
treated in Webb & Roberts (1978), Spruit & Zweibel (1979),
and Unno & Ando (1979).

The limit of C] 0 (i.e., when but not in theqth] O, q
r
)

energy equation given by equation (41) yields

[N2!1
gs

T
m ] (c[ 1)

s
T

p@
p

[
A
c] i

4v
)
B T @

T
\ 0 . (66)

This equation is applicable when nonadiabaticity is solely
due to lateral exchange of radiation between the tube and
its surroundings ; note that is the thermal relaxation timeq

rin the optically thick limit, which follows from the following
exact formula (Ðrst derived by Spiegel 1957) by replacing
the inverse of the wavenumber k by a, the tube radius, and
taking the limit of ioa ] O (Hasan 1986) :

q
s
\ c

v
16ipT 3 [1[ (ioa) cot~1 (ioa)]~1 . (67)

The optically thin limit (ioa > 1) in the above formula gives
the timescale given by equation (59). Now, the use ofq

Nequation (66) to replace the temperature perturbations in
equations (38) and (39) leads to a second-order system,
which has been treated by Hasan (1986). This same second-
order system is arrived at when the mean intensity pertur-
bations J@/J ] 0 in the Eddington approximation equations
(60)È(63). Solutions of this system for isothermal stratiÐ-
cations have been obtained by (Webb & Roberts 1980).

Before presenting numerical solutions, in ° 4, to the sets of
equations derived above using the di†usion and the
Eddington approximations, we Ðrst simplify the equations
under the quasi-adiabatic approximation in order to gain a
clear physical understanding of the various e†ects under
study.

3. QUASI-ADIABATIC APPROXIMATION FOR A THIN FLUX

TUBE

3.1. Equations
The quasi-adiabatic approximation, which qualitatively

captures the physical e†ects associated with both vertical
and horizontal energy transport, has the advantage that the
number of di†erential equations is reduced e†ectively to
two. This approximation is e†ected by using the adiabatic
relations among the variables, i.e., using those obtained in
the limit of v and C] 0 applied to the set of equations
(38)È(41), to evaluate the right-hand side of equation (37).
This procedure yields the following evaluation (see the
Appendix for details) of the energy equation written in
terms of Lagrangian variables (preÐxed with the symbol d) :

(chq
d
] 4v)

ds
c
v
\ cD3(z)

H
m ] cD4(z)

dp
p

, (68)

where ds is the Lagrangian perturbation in entropy and we
have used a time dependence of the form eht, for conve-
nience. The coefficients and are dimensionlessD3(z) D4(z)functions of h and the various parameters determining the
equilibrium atmospheric structure and are given in the
Appendix. Use of this equation in the Lagrangian forms of
equations (38) and (39) and straightforward simpliÐcation
yield the following second-order equation for m :

d2m
dz2 ] P

2H
dm
dz

]
A R
H2] Q

H
B
m \ 0 , (69)

where

P\ 1 [ 2
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]b
2

(M [ I) , (71)
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Q\ IM@
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[ I@ [M)2
L

, (72)
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2
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D3(z) , (73)

M \ b
2

] 1
!1

[ s
T

qso
D4(z) , (74)

and

q \ chq
d
] 4v . (75)

Here the prime symbol denotes a derivative with respect to
z (e.g., M@4 dM/dz). In the limit C] 0, the above equation
reduces to the case where the only nonadiabaticity is
through the lateral exchange of radiation and is the same as
treated by Hasan (1986). In the adiabatic limit, i.e., when
both v and C] 0, it reduces to the form derived by Spruit &
Zweibel (1979). The above second-order di†erential equa-
tion does not lend itself to an analytic solution, because of
the complicated forms of the various coefficients appearing
in it. To gain a clear physical understanding of the various
e†ects of radiative energy exchange embodied in it, we carry
out a ““ local analysis ÏÏ that leads to a dispersion relation
that enables us to delineate these e†ects.

3.2. Solutions in the L ocal Approximation
In the so-called local approximation, we assume that the

coefficients of the displacement and their derivatives in
equation (69) vary weakly with depth ; this corresponds to
assuming a locally homogeneous atmosphere. Thus, the
various quantities appearing in the equations have values
corresponding to a particular height in the atmosphere, and
here for convenience we redeÐne the scaling length L to be
the local scale height H. Therefore, the length scale appear-
ing in the thermal timescale is the local scale height andqthhence C is the ratio of the local free-fall time toq

d
\ (H/g)1@2

the local thermal timescale. Furthermore, we neglect contri-
butions from the perturbations in the opacity to the
dynamic perturbations ; i.e., there is no i mechanism oper-
ating inside the Ñux-tubeÈconÐned gas. Under these
approximations, the various coefficients in equation (69)
become constants and the application of rigid boundary
conditions m \ 0 at z\ 0 and at z\ D, where D is the
length of the tube, leads to the following dispersion relation
for the dimensionless eigenvalue # \ hq

d
:

S4 #4] #3] S2#2] S1# ] S0\ 0 , (76)

where
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b0\ 1
16

] n2n2H2
D2 , (87)

n being the harmonic order of the perturbations. In the
above,

Q
r
\ H

d ln F
R

dz
, (88)

which is a measure of vertical radiative losses (equivalently,
a measure of departure from radiative equilibrium) and is
negative because decreases as z increases. The greateroF

R
o

the radiative losses the larger the magnitude of In theQ
r
.

limit C] 0, i.e., when the vertical radiative transfer is
switched o†, the above dispersion relation becomes a cubic
equation that describes the e†ects of horizontal exchange
alone ; furthermore, it is seen that, in the limit of isothermal
background stratiÐcation (i.e., when +\ 0), the dispersion
relation reduces to the following form derived by Venkatak-
rishnan (1986) :

#3 ] s2#2] s1# ] s
o
\ 0 , (89)

where

s2 \ 4v
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, (90)
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, (91)
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\ 4vb0
d
c
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It describes the linear evolution of a gas element con-
strained to move in the vertical direction, guided by a thin
Ñux tube that exchanges radiative heat with its surround-
ings. We note here the similarity between the one-
dimensional (vertical) motions of the Ñux-tubeÈconÐned gas
element and a model overstable oscillator studied by Moore
& Spiegel (1966) : in the linear limit, this overstable oscil-
lator obeys the same dispersion relation as the present one
(eq. [89]) ; the restoring force in the oscillator of Moore &
Spiegel is provided by a spring attached to the gas element,
whereas here it is provided by the magnetic Ðeld, and the
dissipative force is the same, viz., horizontal heat exchange
under NewtonÏs law of cooling. Thus, the generalization
that we have achieved here through the fourth-order disper-
sion relation (76) can also be applied to Moore & SpiegelÏs
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oscillator that cools in the vertical direction while being
heated horizontally. Equation (89), which brings out in a
simple way the size-dependent collapse of the tubes, was
solved numerically by Venkatakrishnan (1986) to obtain a
relationship between the size and strength for stable solar
tubes. Here, we derive an approximate analytic relation
between v (i.e., the size of the tube) and critical values of b at
which the convective instability sets in, through a straight-
forward analysis of the transition from oscillatory to con-
vective behavior contained in the solutions to equation (89).

The limit v\ 0 in equation (89) gives the adiabatic solu-
tion,

#ad\ ^([s1)1@2 , (93)

which shows that, if is positive, i.e., if b is less than as1critical value then the tube is convectivelyb
c
\ 2b

o
/d [ 1,

stable and exhibits undamped oscillations with frequency
(Webb & Roberts 1978). The inclusion of radiative#adexchange introduces two new e†ects. First, becomes#adcomplex, transforming the adiabatic oscillatory mode into a

growing mode (overstable) and introducing damping to the
convective mode. To Ðrst order in v, this behavior is
exhibited by the complex roots of equation (89),

(#
i
)1,2 \ #ad ] s

o
[ s1 s2
2s1

. (94)

Second, there is introduced a new thermal mode corre-
sponding to the real root,

(#
i
)3\ [ s

o
s1

. (95)

Since is always positive, this thermal mode is dampeds
owhen is positive and growing when it is negative ; thiss1means that the thermal mode is destabilized when the strati-

Ðcation is convectively unstable, i.e., when the Ðeld strength
is less than the adiabatic stability limit (or Further-b [b

c
).

more, the growth rate of this thermal mode decreases as the
horizontal size of the Ñux tube increases (i.e., as v decreases).
This property reveals that the mode derives its energy from
the horizontal radiative exchange, and since it is of the
convective type (monotonic growth), it can be regarded as a
slow upward motion (in analogy with a similar solution of
Moore & SpiegelÏs overstable oscillator). This thermal
mode and its above-mentioned behavior have been noted
earlier (Hasan 1986).

Considering the solutions given by equation (94), it is
easily noted that, to Ðrst order in v, the lateral radiative
exchange introduces either damping or ampliÐcation
without a†ecting the frequencies of the oscillatory mode
and thus does not determine the transition from oscillatory
to convective behavior, which is still set by the adiabatic
limit. This shows that the size-dependent onset of the con-
vective instability of a tube is an e†ect at least of order 2 in
v. Such a dependence between v and can be derived byb

cexamining the discriminant of the cubic relation given by
equation (89), which determines the transformation of
complex conjugate solutions (oscillatory mode) to two real
valued solutions. This discriminant (Abramowitz & Stegun
1965), to leading order in v, is found to be

k B
s13
27

[ s12 s22
108

[ s
o
s1 s2
6

] s
o
2
4

, (96)

which shows that the deviation of k from its value in the
adiabatic limit is of order v2 and higher ; thus, the non-
adiabatic contributions to the frequencies of the oscillatory
mode are of at least order 2 in v, as also noted earlier from
the solutions (94), which are of order v. The points in the
v[ b space at which the oscillation frequency becomes zero
and the convective mode sets in are given by k \ 0. Thus,
the loci of solutions k \ 0 in the v[ b space demarcate the
stable tubes from the convectively unstable ones. Exami-
nation of the various terms in equation (96) for k shows that
the second term takes very small values compared with the
other ones in the relevant range of values for b and thus can
be neglected. The relation between v and the critical values
of b that satisÐes k \ 0 can then be written as

v2 \ [ s13 d
c
2

9b
o
[48b

o
[ 8(1] b/2)s1]

. (97)

With v expressed in terms of the radius a of the Ñux tube,
using the deÐnitions given by equations (49) and (50), the
above equation gives a relation between tube radius a and
the critical b needed for convective stability. Using Ñux con-
servation (eq. [5]) and the assumed constancy of b over
depth z, the photospheric radius can be related to a (thusa

ov) that corresponds to the particular location at which the
instability is driven, as follows (Venkatakrishnan 1986) :

a
o
\
A p
p
o

B1@4
, a \

A p
p
o

B1@4Aq
d
i
r

v
B1@2

, (98)

where is the thermometric conductivity. Thei
r
\ K/oc

vabove equation, with v as given by equation (97) substituted
into it, gives the relation that demarcates stable tubes from
the unstable ones in terms of photospheric radius and thea

oÐeld strength (with b converted to Ðeld strength).
Application of the relations given by equations (97) and

(98) to solar Ñux tubes requires appropriate values for the
various parameters that characterize the solar super-
adiabatic surface layers. Furthermore, these parameters (K,
d, H, etc.) vary steeply in the driving regions. We Ðx d by
requiring that the adiabatic stability condition yieldS1\ 0
a critical value of b B 1.5 that is consistent with the result
that we obtain, later in ° 4.1 (see also Spruit & Zweibel
1979), numerically for a realistic solar model described in
° 2.2 ; we also show, in ° 4.1, that the displacement eigen-
function for the convective downÑow peaks at a depth of
about 100 km from the surface. Choosing H \ 200 km,
which corresponds to layers at a depth around z\ 100 km,
and with a depth extension of D\ 1200 km for the Ñux
tube, we Ðnd that d B 0.25 in yields the desired valueS1\ 0
of b for adiabatic stability. The representative value for the
thermometric conductivity is found to be cm2i

r
B 1010

s~1. Using the above chosen values for the various quan-
tities, the relationship between photospheric tube radius a

oand Ðeld strength which demarcates the convectivelyB
o
,

stable Ñux tubes from those unstable, as determined by
equations (97) and (98), is shown in Figure 4. The region
above the curve is unstable, and that below it is stable. It is
seen that tubes of radii above about 100 km have Ðeld
strengths above 1 kG, with the Ðeld strength weakly depen-
dent on a, whereas smaller tubes have a large range in the
Ðeld strength from about the equipartition value of 400 G
to 1 kG. These smaller tubes thus represent the regime in
which radiative heating from the surroundings is capable of
inhibiting their collapse. Larger tubes experience ine†ective



No. 1, 2000 RADIATIVE TRANSFER AND MAGNETIC STRUCTURES 531

FIG. 4.ÈPhotospheric radius (km) of the Ñux tubes as a function ofa
otheir Ðeld strengths (G), as determined by equations (97) and (98) usingB

ovalues for the various quantities representative of the solar surface layers.
This relation demarcates the convectively stable Ñux tubes from the
unstable ones ; the region above the curve is unstable, while that below the
curve is stable.

heating within the dynamical collapse timescale and thus
undergo collapse almost adiabatically achieving a Ðeld
strength close to that set by the adiabatic limit.

3.2.1. E†ects of Vertical Radiative L osses

In the solar surface layers the most vigorous convective
motions coincide with the very rapid radiative cooling in
these layers (Rimmele et al. 1995 ; Rast & Toomre 1993 ;
Stein & Nordlund 1998). Figures 1 and 2 show that the
superadiabaticity d and the radiative losses (measured by

peak in the same region. The convective collapse of$ Æ F
R
)

the Ñux-tubeÈconÐned gas in these layers is also expected to
be similarly a†ected by the radiative losses as are the granu-
lar convective motions. Such e†ects are brought out in a
simple way in the dispersion relation (76), where the quan-
tities and contain the contributions from the verticalp2 p

oradiative losses through the radiative loss function Q
r
.

Examining the various terms in the expressions for andp2we Ðnd that the dominant contributions are fromp
o
, Q

rleading to the simpliÐcations

p2 B [2Q
r
[ 1 ] b

2
, (99)

p
o
B Q

r
. (100)

As is negative, with roughly a value of [5 that corre-Q
rsponds to the solar superadiabatic surface layers, isp2always positive for the relevant range of values of b and p

ois always negative. The magnitude of the vertical radiative
e†ects is controlled by C, the ratio of the local dynamical to
the thermal timescale, which multiplies the above described
quantities in the relation (76). This quartic relation is best
solved numerically, but before doing that, we analyze its
approximate solutions obtained to Ðrst order in C and v. By
expanding the solutions of the quartic equation (76) about
the solutions of the cubic equation obtained by putting
C\ 0 in it, it is easy to check that the solutions of (76) to
Ðrst order in C and v are
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c
\ #ad] S0[ S1 S2
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] S1 S4

2
, (101)
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C\ [S0
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, (102)

where

h
c
\
A
S1 p4[ p2] p

o
S1

B C
2

(103)

is the correction to order C introduced solely by the vertical
radiative transfer to the adiabatic eigenvalues The#ad.fourth solution of the quartic relation, which represents a
thermal mode arising purely out of inclusion of the vertical
radiative transfer, is given by (to order v and C)

#4\ [ 1
S4

] vg2 . (104)

The solutions given by equation (101), in combination with
the relations given by equations (99) and (100), which estab-
lish the signs of and show that, since is negative,p

o
p2, S4oscillations in a convectively stable (positive tube areS1)damped is negative) by vertical radiative losses ; the con-(h

cvective instability (negative is enhanced is positive), ifS1) (h
cthe following condition is satisÐed :

S1 p4] p
o

S1
[ p2 . (105)

Since the magnitude of is of the order of the super-S1adiabaticity d, which is always less than 1, and the magni-
tudes of and are of the same order, the abovep2 p

ocondition is always satisÐed in the presence of convective
instability, which consequently is always enhanced by verti-
cal radiative losses. Thus, the growth rates of the convective
instability are higher by the amount than the adiabatich

cvalues, and hence the associated downÑows develop faster
than the adiabatic downÑows, in the presence of vertical
radiative losses. It is also clear that the lateral heating and
the associated inhibition of convective downÑow are
countered by the radiative losses.

Considering the thermal mode given by (102), it is seen
that, in the absence of vertical radiative losses (i.e., when

as discussed earlier (see the discussion next to eq.S0\ s
o
),

[95]), the mode is damped for convectively stable tubes
(positive however, vertical losses can destabilize thisS1) ;mode when becomes negative (i.e., whenS0 oCp

o
o[ o vg

o
o )

for a convectively stable tube (positive Thus, the natureS1).of this thermal mode depends on the stratiÐcation and on
whether the radiative losses or heating (horizontal) domi-
nate : for convectively stable stratiÐcation (strong tubes) ver-
tical losses destabilize the mode while horizontal heating
stabilizes it, and for convectively unstable stratiÐcation
(weak tubes) the horizontal heating destabilizes the mode
while the vertical losses stabilize it ; the instability takes the
form of a slow downÑow in the former case and of a slow
upÑow in the latter.

We now present numerical solutions of equation (76),
using the following choice of parameters to represent the
superadiabatic layer (driving the instability) on the Sun :
d B 0.25, H \ 200 km, and The values for theQ

r
\ [5.

dynamical timescale and the thermal timescale areq
d

qthfound to be about 27 and 7000 s, respectively, at about a
depth of z\ 100 km, leading to a value of C\ 0.004. For
this set of parameters, the scaled growth rates Re(#) as a
function of v for di†erent values of the magnetic Ðeld
strength (parameterized by b) are shown in Figure 5, for



532 RAJAGURU & HASAN Vol. 544

FIG. 5.ÈRe(#), i.e., growth rate scaled by the inverse of free-fall time q
d
,

as a function of v for di†erent values of b ; the numbers by the side of the
curves denote b values. The dotted curve represents a thermal mode that
becomes unstable in thick (small v) and strong (small b) convectively stable
Ñux tubes.

D\ 1200 km. The cusps in the curves mark locations where
the overstable mode is transformed into the convective
mode. In terms of the solutions given by equation (101) to
Ðrst order in v and C, these are the points where the coeffi-
cient changes sign. However, as we showed earlier, theS1locations of these cusps in the vÈgrowth rate space as a
function of b is a higher order e†ect (at least of order 2 in v
and C). It should be noted that the destabilization in the
form of a monotonic growing mode that appears in the
regime of strong Ðelds (small b) and thick tubes (small v),
shown in Figure 5 as a dotted part of the curve for b \ 1, is
due to a thermal instability caused entirely by vertical radi-
ative losses. This is the mode given by the solution (102),
which becomes unstable for positive (convectively stableS1stratiÐcation or strong tubes) and negative (verticalS

olosses dominant). This purely thermal instability is related
to a similar instability Ðrst studied by Defouw (1970). Now,
to obtain a size-strength relation that demarcates the con-
vectively stable Ñux tubes from the unstable ones from the

FIG. 6.ÈComparison of size-strength relations obtained without verti-
cal radiative losses (C\ 0. ; dashed curve) with those with the losses : the
dotted curve is for C\ 0.001 and the solid curve is for C\ 0.004. The
larger the value of C, the stronger are the e†ects of vertical radiative
transport and cooling.

results shown in Figure 5, we note the values of v and b that
correspond to the cusps that mark the locations of the tran-
sition from the overstable mode to the convective mode. We
then use equation (98) to obtain the relation between the
photospheric size and Ðeld strength These relations(a

o
) (B

o
).

are shown in Figure 6 ; for comparison we have also shown
the relation obtained analytically (dashed curve) in ° 3.2 for
the case C\ 0 (no vertical radiative transport) and that
obtained for the case of C\ 0.001 (dotted curve). Figure 6
clearly shows the physical implications of the vertical radi-
ative losses for the formation of strong tubes by convective
collapse ; in the presence of vertical radiative losses strong
Ðelds are obtained for tube sizes that are much smaller than
those that are needed in the absence of them.

4. NUMERICAL SOLUTIONS

Having identiÐed in the previous section the physical
e†ects of vertical radiative transport on the convective and
oscillatory instabilities using a simple quasi-adiabatic
analysis, we now turn to the numerical solutions of the full
nonadiabatic sets of equations (38)È(41) and (60)È(63) appli-
cable in the di†usion and Eddington approximations,
respectively. These linear sets of equations are solved
numerically by approximating the derivatives by Ðnite dif-
ferences. The insertion of the boundary conditions, which
are stated below, in the di†erence equations leads to a
homogeneous, tridiagonal system of equations, which con-
stitute a generalized eigenvalue problem for the complex
eigenvalues. The eigenvalues are determined by Ðnding the
roots of a determinantal equation. MullerÏs method is used
for locating the complex roots. Determinants are evaluated
efficiently using Gaussian elimination with partial pivoting,
and the eigenvectors are calculated using inverse iteration
(Wilkinson & Reinsch 1971).

4.1. Boundary Conditions
4.1.1. Choice of L ower Boundary Mechanical Condition

Before presenting the fully nonadiabatic solutions, we
clarify the e†ects of open and closed mechanical conditions
at the lower boundary on the convective and oscillatory
motions in the Ñux tube. To this end, it is sufficient to
consider the adiabatic and NewtonÏs law of cooling limits.
By open or closed mechanical condition we mean dm/dz\ 0
or m \ 0, respectively. We adopt a closed mechanical condi-
tion at the top boundary, i.e., at km, as wez\ ztop \[500
Ðnd that the di†erences in the instability growth rates or
frequencies between the two cases of open or closed condi-
tion at are very small ; this pertains to the fact that theztopmass content of the gas in this location is very small.
However, the location and nature of the mechanical condi-
tion at the lower boundary have dynamical consequences
for both the convective and oscillatory motions. The adia-
batic behavior is summarized in Figures 7 and 8, which
show the eigenvalues and eigenfunctions (m),(u\ p

f
] ig)

respectively ; g is the growth rate, and is the frequency ofp
fthe mode ; curves annotated as @ob@ and @cb@, respectively,

correspond to open and closed boundaries at For az\ z
b
.

closed boundary at km, we Ðnd a critical value ofz
b
\ 5000

for convective stability (tubes with areb
c
\ 1.64 b \ b

cstable) corresponding to a photospheric Ðeld strength of
1430 G, for the solar model used here. We note that Spruit
& Zweibel (1979) found (1350 G). The values ofb

c
\ 1.83 b

cobtained for the two di†erent locations of namely, 5000z
b
,
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FIG. 7.ÈComparison of the growth rates and frequencies (dotted
curves) for the adiabatic case for di†erent boundary conditions ; ““ ob ÏÏ and
““ cb ÏÏ refer to open and closed boundaries, respectively.

FIG. 8.ÈComparison of the displacement eigenfunctions m for the two
di†erent depths of the lower boundary, which is (top) closed and (bottom)
open. The dotted curves are for a depth of 5000 km, while the solid ones are
for 10,000 km. For b \ 7, i.e., for a weak-Ðeld (equipartition) tube, the two
cases are indistinguishable in both open and closed boundary cases.

and 10,000 km, with open and closed conditions (as marked
in Fig. 7) demonstrate that the deeper layers make a small
contribution to the convective instability, which is driven
mainly by the superadiabatic region conÐned to about 1000
km below the surface. This is also evident from the shape of
the displacement eigenfunctions m shown in Figure 8. In
general, we Ðnd that the shallower the tube, i.e., the closer the
bottom boundary to the driving regions, the larger the di†er-
ence between the cases of open and closed conditions. Figure
8 also shows that weaker tubes (e.g., b \ 7) are far less
sensitive to the nature of the lower boundary. Since, before
collapsing to form stronger tubes, all tubes are expected to
be at an initial strength of roughly about the equipartition
value (around b \ 7), one can conclude that the e†ect of the
lower boundary condition is small, provided it is located
sufficiently far away from the regions driving the instability.

The way the oscillatory overstable motions are a†ected
by the conditions at the lower boundary is shown in Figure
9, which contains the eigenvalues of oscillatory and convec-
tive modes obtained when there is horizontal heat exchange
based on NewtonÏs law of cooling. The results shown are for
a tube of photospheric radius km. Similar(q

e
\ 1) a

o
\ 100

to the adiabatic case, there is a destabilizing action of the
open boundary on the convective motions, as seen from the
shift of the bifurcation marking the onset of convective
instability toward smaller values of b. Importantly, it is
found that the overstability persists even for the open
boundary, though there is a small reduction in the growth
rates compared with the closed boundary case. This sub-
stantiates the result (Hasan 1986) that overstability is the
physical consequence of the lateral exchange of radiation by
the tube with the surroundings rather than being due to
reÑection associated with a closed mechanical condition at
the bottom boundary, as claimed by Takeuchi (1995). We
refer the reader to the original physical explanations
(Cowling 1957 ; Moore & Spiegel 1966), which hold here as
well, for the mechanism by which overstability is brought in
Rajaguru (1999).

4.1.2. Boundary Conditions for the Sets of Equations (38)È(41) and
(60)È(63)

Based on the arguments presented in the preceding sub-
section, we Ðnd that it is adequate to integrate the fourth-

FIG. 9.ÈComparison of the growth rates (solid curves) and frequencies
(dotted curves) of the modes for closed bottom (cb) and open bottom (ob)
boundaries ; the radiative exchange is solely in the horizontal direction
based on NewtonÏs law of cooling.
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order system of nonadiabatic equations only up to a depth
of 5000 km with closed mechanical conditions at both the
boundaries. These conditions are expressed as

m \ 0 , at z\ ztop and at z\ z
b
, (106)

where km and km. The other twoztop \ [500 z
b
\ 5000

conditions required are thermal. For the di†usion approx-
imation case, the vertical Ñux perturbations at obeyz\ ztop

F
z
@

F
z
\ 4

T @
T

, (107)

and at the perturbations are assumed to obey thez\ z
badiabatic condition,

T @
T

\ c[ 1
c

p@
p

. (108)

In the Eddington approximation case, we require that there
be no incoming radiation from above at ztop :

H\ J

J3
, (109)

which on linearization gives

H@
H

[ J@
J

\ 0 , (110)

and at since the matter is optically thick, we assume thatz
b
,

the mean intensity perturbations exactly equal the pertur-
bations in the Planck function (i.e., source function),

S@
S

[ J@
J

\H@
H

\ 0 . (111)

4.2. Results and Discussions
We now present numerical solutions of equations (38)È

(41) and (60)È(63). Figure 10 and the upper panel of Figure
11 depict the growth rates (g) of the fundamental mode as a
function of photospheric radius of the tube ; in Figure 10,a

othe dotted curves are for the case of solely horizontal

FIG. 10.ÈGrowth rates of the convective and overstable modes as a
function of surface radius for various values of b ; the dotted curves area

ofor the case of radiative exchange solely in the horizontal direction, based
on NewtonÏs law of cooling, while the solid curves are obtained when full
nonadiabaticity due to vertical losses is also taken into account using the
di†usion approximation.

FIG. 11.ÈTop, growth rates of convective and overstable modes
(fundamental mode) as a function of surface (photosphere) radius (ata0of Ñux tube and bottom, the corresponding frequencies, for variousq
e
\ 1)

values of b. The numbers by the side of the curves denote b values. The
solid curves are obtained in the Eddington approximation, and the dashed
ones correspond to the di†usion approximation.

exchange under NewtonÏs law of cooling and the solid
curves are obtained in the case of di†usion approximation
with radiative losses (eqs. [38]È[4]) ; the upper panel of
Figure 11 contains a comparison of the growth rates
obtained in the Eddington (solid curves) and di†usion
(dashed curves) approximations and the lower panel of
Figure 11 the corresponding frequencies, of the modes.(p

f
),

Various curves in the Ðgures correspond to di†erent values
of b that label each curve. The cusps in the growth rate
curves shown in these Ðgures mark the locations where the
overstable mode gets transformed into the convective
mode ; at these points of transformation there also appears
a thermal-convective mode, whose presence and behavior
was discussed in ° 3.2. This mode branches out, and its
growth rates decrease as increases ; this thermal-a

oconvective mode is not shown in the Ðgures for clarity and
since our focus is on the convective and overstable modes.

4.2.1. Convective Instability

Let us Ðrst focus on the pattern of the convective insta-
bility of the tube as a function of the tube radius and Ðeld
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strength (parameterized by b). The heating by radiation
from the surroundings reduces the degree of adiabaticity of
the downÑowing gas resulting in its deceleration, and this
e†ect, as one would naturally expect, depends on the hori-
zontal optical thickness of the tube. There are two aspects
to the stabilizing action of radiation against buoyancy
forces that drive the convective instability : Ðrst, for a given
initial Ðeld strength (i.e., for a curve in Fig. 10 or the upper
panel of Fig. 11 for a Ðxed b) the lateral radiative heating
that counteracts the convective force is greater for tubes
with smaller radii and hence the growth rate of the convec-
tive instability decreases as the radius decreases until a criti-
cal value for the tube radius where the convective mode is
transformed into an oscillatory overstable mode. Second,
for a given tube radius, the lateral radiative exchange time is
smaller for stronger tubes leading to an increased stabilizing
action of the radiation. This requires that the critical radii
for the onset of the convective instability increase as the
Ðeld strength increases. The above two features are clear in
Figure 10 and the upper panel of Figure 11.

The above aspects are related to the horizontal radiative
exchange that counteracts the convective instability. The
di†erences brought out in the present study, as shown in
Figure 10, are mainly due to the vertical exchange and the
radiative losses. As is evident in the Ðgure, the vertical losses
tend to enhance the convective instability : cooling of the
gas associated with the vertical radiative losses accelerates
the downÑow perturbation, and hence a tube is more
unstable than in the situation where the only radiative
interaction is the heating due to the lateral inÑux of radi-
ation. Indeed, it is the cooling associated with the radiative
losses that triggers the downÑow, as Ðrst discussed by
Parker (1978). As such, in the absence of vertical radiative
losses, convective perturbations are bidirectional : an
upÑow perturbation is equally unstable as a downÑow, and
thus an initial tube conÐguration is equally liable for a dis-
persal as it is for a collapse. However, in the presence of a
net radiative loss in the vertical direction, a Ñuid element is
always cooled irrespective of whether it moves downward
or upward. This means that the motion in a direction
opposite to the direction of radiative losses, i.e., the down-
ward motion, is more unstable than the upward. As a result,
downÑow perturbations are ampliÐed faster. From Figure
10, it is seen that the convective instability is not only more
vigorous in the presence of vertical radiative transport (solid
curves) but also sets in at smaller critical radii than thata

ohappens when only horizontal exchange is included (dotted
curves). Thus, it can be concluded that in the presence of
vertical radiative losses a weak-Ðeld tube preferably under-
goes a collapse resulting in its Ðeld intensiÐcation rather
than an upward convective perturbation that tends to
further weaken and disperse the tube.

Now, comparing the di†usion and Eddington approx-
imations shown in Figure 11, it is seen that the growth rates
obtained in the latter case are appreciably smaller than
those in the former. Moreover, for a given value of b, i.e., for
a tube of given Ðeld strength, the onset of convective insta-
bility requires a larger size tube in the Eddington approx-
imation than that required in the di†usion approximation.
We attribute these e†ects to the overestimate, in the di†u-
sion approximation, of radiative losses in the upper photo-
spheric and higher layers that are optically thin. It is also
found that the di†erences between the two approximations
are larger for smaller values of b, i.e., for stronger tubes.

This is easily explained because stronger tubes are more
transparent to radiation than the weaker ones, and hence
the di†usion approximation underestimates the horizontal
heating e†ects. As noted earlier, one of the quantities that
measures the deviation from the di†usion approximation is

the ratio of the di†erence between the mean intensity*
c
,

and the Planck function to the Planck function. The varia-
tion of this quantity over depth for di†erent values of b is
shown in Figure 3. This quantity has Ðnite values only in
the layers around and above and also is larger forq

e
\ 1

smaller values of b, i.e., for stronger tubes ; since the vertical
losses, which destabilize the convective mode, are overesti-
mated by the di†usion approximation in the same layers, it
is clear that stabilizes the convective mode. The physical*

cmanifestation of such di†erences between the di†usion and
Eddington approximations is that the convective instability
is more vigorous in the former case. The convective insta-
bility is completely suppressed for tubes with b \ 2.45 irre-
spective of size, in the Eddington approximation. This
corresponds to a Ðeld strength of about 1160 G at q\ 1
inside the tube. This has to be compared with the value of
1310 G (b \ 1.9) that is obtained in the di†usion approx-
imation and the value of 1430 G (b \ 1.6) for the adiabatic
case. The above numbers clearly demonstrate the stabilizing
aspects of the radiation on the convective instability of the
tube. We point out here that the Ðeld strength of 1160 G
that we obtain here does not necessarily imply that all col-
lapsing tubes of weaker Ðelds will attain this unique value
and become stable. This value represents a necessary
strength for stability against convective collapse and thus
can be considered as a minimum strength for stability. A
collapsing weaker tube of sufficient size can of course attain
an equilibrium collapsed state of Ðeld strength higher than
this value (Spruit 1979).

4.2.2. Size (Flux)ÈField Strength Relation

The relation between critical photospheric radii anda
oÐeld strengths which demarcate the convectively stableBph,Ñux tubes from the unstable ones, is obtained by selecting

the values of b and that correspond to the convectivea
oonset points in the growth rate curves of Figure 10 and the

upper panel of Figure 11. The resulting radiusÈÐeld strength
relations, corresponding to di†erent approximations, are
shown in the upper panel of Figure 12. The best obser-
vations available so far on the small-scale magnetic Ðelds do
not achieve high enough resolution to resolve the individual
magnetic features and thus cannot determine their intrinsic
sizes directly. They measure only the magnetic Ñuxes and
the strengths and their distribution (Lin 1995 ; Solanki et al.
1996). Hence, for comparison, we have shown the corre-
sponding magnetic ÑuxÈÐeld strength relations in the lower
panel of Figure 12. The dashed, dotted, and solid curves, in
Figure 12, correspond to NewtonÏs law of cooling, di†usion,
and Eddington approximations, respectively. Flux tubes of
strengths and Ñuxes (sizes) that fall to the right of the Ñux
(size)-strength relation curves of Figure 12 are stable. In
deriving such relations between the size and the Ðeld
strength and comparing them with the observed distribu-
tion on the SunÏs surface, the following scenario is implicitly
assumed: an initial weak-Ðeld tube of size (radius) large
enough to be convectively unstable, i.e., a tube on a location
beyond the convective onset points toward larger radii on
the curves of Figure 10 and the upper panel of Figure 11,
would collapse leading to an increase in its strength (lower
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FIG. 12.ÈTop, size-strength and bottom, magnetic ÑuxÈstrength rela-
tions, which demarcate the convectively stable Ñux tubes from the unstable
ones at the solar photosphere. The region to the right of these curves is
stable and that to the left is unstable. Di†erent curves correspond to di†er-
ent approximations for the radiative e†ects, as marked in the Ðgure.

b) and a decrease in its size, on account of magnetic Ñux
conservation ; if, in this process, a collapsing tube attains a
size and strength such that it crosses the convective onset
points of the curves of Figure 10 and the upper panel of
Figure 11 and reaches the convectively stable regions, then
the collapse is assumed to cease and attain its Ðnal equi-
librium state, thereby leading to the predicted distribution
shown in Figure 12. Hereafter, in deriving further results
and conclusions, we refer to values obtained in the Edding-
ton approximation, as it is the most realistic of all the cases
we have treated. It is found that the maximum possible
initial Ðeld strength up to which a tube is subject to the(B

c
)

convective instability is about 1160 G, corresponding to
b \ 2.45 and a critical size km; i.e., a tube ofa

c
\ 190

strength 1160 G can still collapse to a higher strength if its
size is greater than km. Thus, using these values,a

o
\ 190

we conclude that there is a critical value of magnetic Ñux
Mx above which all Ñux concen-'

c
\nB

c
a
c
2\ 1.31 ] 1018

trations attain always a collapsed state of strong kilogauss
Ðeld above 1160 G. This result is in excellent agreement with
the observational results (Solanki et al. 1996 ; Lin 1995 ;

Keller et al. 1994). Realistically, in the absence of any other
mechanism to form stronger tubes, the maximum attainable
Ðeld strength (corresponding to the maximum observed
granular speed of about 3 km s~1) is the equipartition
strength around 500 G, corresponding to a value of b \ 9.
Thus, all initial equipartition strength magnetic Ñux con-
centrations with Ñuxes less than the above obtained limit of
1.31] 1018 Mx are subject to the radiative inhibition
e†ects as brought out in the present study, and consequent-
ly they would exhibit the Ñux-strength relation that is
obtained here.

4.2.3. Overstability

Overstable oscillations are characterized by the appear-
ance of complex conjugate pairs of eigenvalues for ). In
Figure 10 and the upper panel of Figure 11, the overstable
modes correspond to the portions to the left of the cusps in
the curves. As is well known (Cowling 1957 ; Moore &
Spiegel 1966), the overstability of wave motions is due to a
delicate phasing of horizontal radiative exchange with the
restoring and driving forces of the oscillating Ñuid elements.
In essence, energy is extracted from the radiation and con-
verted into mechanical oscillations. For a Ñux tube, the
horizontal radiative exchange with the surroundings makes
the oscillations grow (Hasan 1986). Here we concentrate on
the e†ects imparted by vertical radiative transport. It is seen
that the growth rates of the overstable mode of a Ñux tube,
which can undergocollapse for radii larger than a criticala

ovalue, are larger when there is vertical radiative transport
than when it is not present. In other words, weaker but
convectively stable smaller size tubes, whose interior is not
thermally much di†erent from the surroundings, extract
more energy from the radiation when there is vertical trans-
port than when it is not present. We attribute this e†ect to
the opacity perturbations (i mechanism) associated with
the thermal perturbations, which are brought in automati-
cally through the inclusion of vertical Ñux perturbations.
Now, considering the di†erences between the di†usion and
Eddington approximations, it is found that (Fig. 11, upper
panel) the latter reduces the growth rates of the overstable
oscillations. We interpret this again as an e†ect of i.e.,*

c
,

the mean intensity J being di†erent from the Planck func-
tion S. Such a stabilizing inÑuence of has been found also*

cin studies of radiative transfer e†ects on the stability of the
solar p-modes (Christensen-Dalsgaard & Frandsen 1983).

The behavior of the overstable mode in strong and con-
vectively stable Ñux tubes is shown in Figure 13, choosing
values of b representative of solar network elements. Shown
are the growth rates as a function of in the di†usiona

o
,

(dotted curves) and Eddington (solid curves) approx-
imations. For greater than about 120 km, it is seen thata

othe growth rates go down sharply and become negative
above certain critical values of that depend on b. Thisa

odamped behavior of the mode is purely due to the e†ect of
vertical radiative losses, as it is not present in their absence.
We explain this feature as due to an asymmetry between the
downward and upward swings of an oscillating Ñuid
element, introduced by net radiative losses in the vertical
direction : the upward return passage of an initial down-
ward motion of the Ñuid element is now not as fast as would
occur in the absence of vertical losses. In other words, there
is a reduction in the energy gained by the Ñuid element from
the radiation Ðeld (from horizontal exchange), and hence
the oscillations experience less ampliÐcation. This is
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FIG. 13.ÈComparison of growth rates of the overstable mode in the
di†usion (dotted curves) and Eddington (solid curves) approximations, for
convectively stable tubes. The numbers by the side of the curves denote b
values.

nothing but the well-known phenomenon of radiative
damping. From the results shown in Figure 13, we see that
such radiative damping e†ects associated with vertical
losses are greater for a tube with a strong magnetic Ðeld.
Since a stronger tube is more evacuated than a weaker one,
the vertical loss timescale in it is now much shorter,
resulting in greater damping of the oscillations. This e†ect is
further enhanced as the tube size increases, which reduces
the horizontal heating e†ects. Thus, tubes that are strong
enough with sizes larger than a critical value of about 170a

okm (for b B 0.5) are subject to the severe radiative damping
associated with the vertical radiative losses and thus are
stable. We identify the solar network elements with such
tubes.

5. CONCLUSIONS

We have modeled the interaction between the radiation
and gas motions in magnetic Ñux tubes extending vertically
through the solar surface layers. Very rapid radiative
cooling in the photospheric and subphotospheric regions
has been observed (Rimmele et al. 1995) to coincide with
vigorous convective downÑows and the associated localized
events of acoustic excitations. Including radiative cooling in
the quasi-adiabatic approximation, we have demonstrated
in a simple manner such e†ects of radiative losses and their
dynamical consequences on the evolution of gas conÐned to
magnetic Ñux tubes. Our numerical stability analyses pre-
sented in ° 4, using a realistic model of solar upper convec-
tive and photospheric layers and a reÐned treatment of
radiative transfer, have further corroborated these results.
Convective downÑows are shown to accelerate faster
because of the cooling associated with the vertical radiative
losses thereby theoretically verifying the thermal origin of
the convective collapse mechanism as the cause of intense
magnetic tubes on the Sun. We have thus shown that Ñux
tubes will preferentially undergo a collapse (downÑow)
because of the asymmetry between downÑow and upÑow
perturbations introduced by vertical radiative losses. We
have also shown the existence of a pure thermal instability
that owes its existence entirely to vertical radiative trans-
port ; a thick tube that is not subject to efficient lateral
radiative heating, but in which vertical radiative losses

occur, is shown to develop a downÑow because of this insta-
bility. We point out that the presence of a collapsed strong
Ñux tube in an intergranular region is most likely to
enhance further the radiative cooling in its immediate
environment thereby producing much cooler and vigorous
downÑows that give rise to the acoustic events observed by
(Rimmele et al. 1995).

We have obtained a critical limit for the magnetic Ñux on
the solar surface that demarcates the small-scale Ñux con-
centrations into two groups : (1) Ñux concentrations with
Ñuxes above this limit of about 1 ] 1018 Mx collapse
unhindered attaining Ðeld strengths greater than 1160 G;
(2) Ñux concentrations with Ñuxes smaller than the above
limit are subject to the inhibiting action of the radiation
Ðeld. We identify the strong-Ðeld solar network magnetic
elements with Ñux tubes in the Ðrst group ; the network
elements have the property that their Ðeld strengths, which
are between 1200 and 1500 G, are weakly dependent on
their magnetic Ñux content (see the review by Schu� ssler
1992 ; Solanki et al. 1996), which is greater than about 1018
Mx. Our results show that these network tubes are all fully
collapsed forms of initial, sufficiently thick Ñux tubes that
undergo a radiatively unhindered collapse process. The Ñux
tubes in the second category above are identiÐed with the
weak and moderate Ðeld strength intranetwork structures ;
these structures are subject to radiative inhibiting action of
varying degree on the collapse process, depending on their
size, and as a result exhibit the Ñux (size)-strength relations
derived in this paper (° 4.2.2) ; such relations compare well
with the observations (Solanki et al. 1996 ; Lin 1995). The
above explained broad agreement between our theoretical
predictions and observations suggests that the convective
collapse is indeed the process responsible for forming the
highly inhomogeneous small-scale structured magnetic
Ðelds on the Sun. By analogy, this same process is very
likely to operate on stars like the Sun, producing similar
concentrated magnetic Ðeld structures.

We have also established improved stability criteria for
the overstable mode of the tube. In particular, it is shown
that the wave motions of a convectively stable tube are
mainly a consequence of the horizontal radiative exchange
of the tube with the surroundings. A closed mechanical
boundary condition at the bottom is not the cause of over-
stability, though overstable growth rates are slightly
reduced for an open boundary. The inÑuence of the open
bottom boundary is negligible on the convective instability
of the tube provided the location of the bottom boundary is
deep enough and far away from the driving regions, which
are mainly conÐned to regions of depth about 1000 km
from the surface Furthermore, we have demon-(q

e
\ 1).

strated that strong tubes of large enough sizes are subject to
radiative damping associated with the vertical radiative
losses, leading to a damping of the slow magnetoacoustic
mode of the tube. This leads to the conclusion that a large-
sized network tube (of diameter about 300 km or higher) is
not subject to the overstability due to the horizontal radi-
ative exchange.

The Ðrst author S. P. R. is grateful to P. Venkatakrishnan
for useful discussions. The computational facilities of the
Supercomputer Education and Research Centre, Indian
Institute of Science, Bangalore are thankfully acknow-
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APPENDIX A

DERIVATION OF EQUATIONS IN THE QUASI-ADIABATIC APPROXIMATION

The Lagrangian perturbations in the vertical radiative Ñux are written, using equation (37), as

dF
R

F
R

\
Ad ln T

dz
B~1 d

dz
AdT

T
B

[ dm
dz

]
A
4 ] s

T
so

[ i
T

B dT
T

[
A
i
p
] 1

so

B dp
p

. (A1)

The estimation of in the quasi-adiabatic approximation is done using the adiabatic relations among the variables todF
R
/F

Revaluate the right-hand side of equation (A1). This procedure yields the following approximation for the vertical Ñux
perturbations in terms of the vertical displacement m and pressure perturbation dp/p :
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Noting that
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we have the energy equation,
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taking the following form:
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where and are the dimensionless functions,D3(z) D4(z)
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Substituting for the entropy perturbations in the Lagrangian form of equation (38) using equation (A9) we have, along with
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the perturbed momentum equation (39), the following system of equations in the quasi-adiabatic approximation :
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where

q \ chq
d
] 4v . (A18)

The combination of the above two equations yields the second-order equation (69) analyzed in ° 3.
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