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Abstract. It is well known from Helioseismology that the Sun exhibits
oscillations on a global scale, most of which are non-radial in nature.
These oscillations help us to get a clear picture of the internal structure
of the Sun as has been demonstrated by the theoretical and observational
(such as GONG) studies. In this study we formulate the linearised equa-
tions of motion for non-radial oscillations by perturbing the MHD equili-
brium solution for an axisymmetric incompressible fluid. The fluid motion
and the magnetic field are expressed as scalars U, V, P and T, respec-
tively. In deriving the exact solution for the equilibrium state, we neglect
the contribution due to meridional circulation. The perturbed quantities
Us, V., P., T. are written in terms of orthogonal polynomials. A special
case of the above formulation and its stability is discussed.
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1. Introduction

Studies of stellar pulsations, in particular the Sun, is interesting both from the
theoretical and observational point of view. Stars such as the Cepheids are known to
pulsate with large amplitudes. In the case of the Sun, several thousand individual
modes have been identified. With careful observation, frequencies for as many as 10°
modes can be determined accurately. Helioseismology deals with the study of the
interior of the Sun from the observed frequencies of modes of oscillations. It is
interesting to note that most of the modes are non-radial in nature. For more details
about non-radial oscillations, refer to Unno ef al. (1989), Christensen-Dalsgard (1997).

In order to study oscillations, it is important to determine the equilibrium state of
stars which are under the combined action of gravitational, thermal and magnetic
forces. In most of the studies related to Helioseismology, the equilibrium state is
taken to be hydrostatic, where the pressure gradients are balanced by gravity in the
absence of fluid motions. However, stars like the Sun have magnetic field both inside
as well as on the outer atmospheres. It would be interesting to study the equilibrium
state with magnetic field and motions included, before venturing into the study of
oscillations. There have been several studies on the equilibrium of stars, in particular
the Sun by Chandrasekhar (1956), Ferraro (1954), Pendergast (1956), Nakagawa &
Trehan (1968), Gokhale & Hiremath (1993), Satya Narayanan (1996), Del Zanna &
Chiuderi (1996), Neukirch & Tastatter (1999) who have investigated the combined
effects of fluid motions and magnetic fields.
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2. Equilibrium solution

In a cylindrical coordinate system (y, @ z), the hydromagnetic equations for equili-
brium in an incompressible medium with infinite electrical conductivity in which
axial symmetry prevails can be written in the form of the following system of coupled
partial differential equations for the scalars P, 7, U, V which define the magnetic and
velocity fields (Satya Narayanan 1996).

b’zU=y2P] :-Or b’zUv T+ [ijzP] =0, (1)
*T,¥*P] + y*U,»*V] =0, @)
[AsP,y*P] ~ [AsU, y* U +y;%{T2 ~ V=0 3)

Here, [X, Y] =0X/0y0Y/0z - dX/0z0Y/0y. In stars like the Sun, the meridional
motion U is negligible. Neglecting U, equations (I)—(3) can be simplified to yield

AsP +y—126(y2P) 1 Y5(7P) = B(?P). @

G, g and ® are arbitrary functions of y*P. Equation (4) represents the general
integral of the equilibrium solution for the case U = 0. The above equation is highly
nonlinear. However, for certain specific choices of G, g and @, the equation can be
made linear.

The linear equation is

AsP+ o?P =k — By /2 (5)

where @, 5 and k are constants.
The solution in spherical polars (by a simple transformation) is

P=3 Zﬁii‘?‘; G ) + o+ 25 = 1 = 1) ©)
n=0

u = rcos 8. The boundary condition is similar to that discussed by Hiremath &
Gokhale (1995).

3. Oscillations

In order to study the oscillations, we perturb the scalars U, V, P, T as follows

U=Uy+8U,V=Vy+6V,P=Py+ 6P, T =Ty + 6T. (7)
The linearised equations for the oscillations can be written as
o6P
= 26U, y*Py), (8)
96T
— = [Vo,y6P]| + [6V,y°Py] - [To,y*8U], )
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A6V
¥y - = [To,y*6P] + [y*8T, 2 Po) — [y* Vo, y26U], (10)
asU ) \
yﬂsgﬂ [AsPg, y*6P] — [As6P,y* Py = 2y (ToﬁT VobV). (11)

dU, oV, dP, 6T denote perturbations while V;, P,, T, denote the basic state. U has
been neglected.

The basic equations which are derived in the cylindrical coordinate system can be
recast in the spherical polars because of the spherical symmetry. The perturbed
quantities are written in terms of spherical harmonics

f(r,0,6,2) = > £()Y6, ¢) exp(—iwr). (12)
im

If we plug in the above equations in the linearised equations of motion, the
resulting equations will be quite complicated as the number of terms in each of
the expansion is rather large and one will end up in closure problem. However,
for the sake of simplicity, we shall restrict our analysis to only the first few
terms of the expansion (say |, m = 7). The resulting equations are still complicated
and will have to be solved numerically. This is in progress and will be reported
subsequently.

An interesting stationary solution of the MHD equations is given by
B p B

_+§_ = const. (13)

V=——- and
(47rp)]/ 2 p omp

The linearised equations of motion can be simplified to yield a single equation for

the poloidal field as

&P 1dpP { > 2 ml}

—+—-—+k ——sP =10 (14)
dy?  y dy X Ty

where ¥? = 1/p*(K + 0/2V4)* — 1. The solution of the above equation is given by
P = AJ (kxy) where J (x) is the Bessel function of order m and A is an arbitrary
constant. The boundary condition can be shown to be P(y = R) = 0 The frequency of
oscﬂlatlon of the system can be shown to be 0/2Vy = £1/p(1 + ¢*)"'* —{k + m/p},
where ¢* = /% ./ (kR)* and j,, is the nth root of J,(x) = 0. It is easy to see that the
frequency of oscillation ¢ is always real and hence the system is stable to small
perturbations.

4. Conclusions

An exact solution of the MHD equilibrium with the assumption of axial symmetry
and large conductivity has been presented. The meridional circulation has been
neglected. We have formulated the linearised equations of motion for oscillations
about the equilibrium solution. We retain only a few terms in the expansion. The
resulting equations will be solved later. Finally, a specific steady solution and its
stability has been discussed.
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