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INTRODUCTION :

Binary stars occupy an important place in the study of structure
and evolution of stars. They provide some of the basic parameters such
as masses and radii. We analyse the observational data to derive these
parameters. One of the observational data are the changes in the total
light during the eclipses of close pairs and these changes contain a wealth
of information regarding the components of the close binary systems. The
total light is the sum of the light of the individual components and the
mutually reflected light. If the components are very close, the reflected
light will be a considerable fraction of the total light and therefore will
have to be estimated accurately. One must culculate this radiation field
of the reflected light in a proper way. We must realize that the radiation,
that is received at infinity from the portion of the atmosphere exposed
to the secondary, consists of radiation fields from both the components.
The ineident radiation is modified by the material medium of the atmos-
phere of the primary and its radiation field. We realize that there are
two important aspects to this problem: (1) The physical processes that
take place in the medium and the type of the medium itself and (2) the
geometrical shape of the illuminated surface which reflects the light. Nor-
mally people assume a simplified law of limb darkening (see Kopal 1959)
and estimate the reflected radiation. This will not take into account of
the two physical characteristics mentioned above. The geometrical shape
of the reflecting surface changes due to the tidal effects of the secondary
component and furthermore if the component has extended atmosphere
or fills its Roche lobe, the standard law of limb darkening fails and we
shall have to perform detailed calculations of the radiation fields. The
process of calculating radiation field from such surfaces become compli-
cated when various competing physical processes are taken into account.
Geometrical considerations alone would complicate the calculations enor-
mously. The solution of radiative transfer equation either in plane para-
llel symmetry or in spherical symmetry or in cylindrical symmetry
cannot accurately describe the radiation field emenating from such sur-
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faces. These geometrical configurations (plane parallel, spherical or
cylindrical) assume symmetric boundary conditions and wl_lenever we
have asymmetric incident radiation the solutions developed in the con-
text of symmetrical geometries will have {o be modified. The problezm
of incidence from a point source or an extended source (which is natural in
a binary system)is termed as search light problem. Chandrasekhar (1958)
and Rybicki (1971) made few attempts but the problem remaing unsolvefi
in its total complexity. Buerger (1969) employed plane parallel approxi-
mation in computing the continuum and line radiation emitted by a rota-
tionally and tidally distorted surface of the component which is irradiate.d
by the light of the secondary component. This approach is adopted obvi-
ously to avoid the complexities-in estimating the radiation field in such
atmospheres. This is totally unrealistic if we like to have realistic results.

In the following pages we shall describe an initial attempt of how
the radiation field is calculated from the irradiated surface of the compo-
nent in a binary system. We shall divide the article into 2 parts under
the following headings:

1. Incidence from a Point Source.

II. Incidence from an Extended Source.

In all cases we have assumed scattering medium.

I. Incidence from a Point Source :

(a) BASIC EQUATIONS :—

In this section we calculate the angular distribution of radiation
field at different points along the radius at different colatitudes 6 (see
Fig1(a) ). We also divide the atmosphere into several sectors of equal geo-
metrical thinkness. We draw a radius vector with colatitude ¢ and let
the radius vector meet the shell boundaries at points @, @2, Qs ete. and
extend to meet the other boundary of the atmosphere. The method of
obtaining solution has been described in Peraiah (1982). We describe the
method brifly below. We employ the one-dimensional model (‘rod’ model,
Sobolev 1963, Wing 1962 see Fig 1b). We let the rays emerge from the
point source at S. These rays pass through the points Q:, Qz etc and inci-
dent on the surface at points P,P,P:...... we would like to calculate
the source functions at the points @, Q2 etc. Therefore we have to caleu-
late the ray transfer from points Pi, P2, etc. upto the points Qi, Qz etc and
this should be added to the diffuse field caleulated along the ray beyond
the points Qi, Q2 etc. We calculate the optical depth as (see Fig 1b)

1
=T ()= § a7, (=T e

Tne transfer of radiation is assumed to take place along the ray paths
Pi, Q: ete. (in Fig 1a) or along 01 (in Fig 1b)
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Fig. la:— Schematic model diagram showing how the radiation is calculated
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We assume isotropic scattering. The source function that includes diffuse
radiation can be written as

r «(T-7)

+  + -
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S =S+ () [dpNhe +pte ] (3
where
+ + -
s (M=o [eMI O+pNT (] O
- -+ -
S(7) = () [Up(NT eI ] (5)

=~ (1) is the albedo for single scattering which is equal to unity in a
pure scattering medium, p (1) is the phase matrix (here it is esual to %)
and the specific intensities (see Fig 1b) I (x) and I" (1) are given by the
differential equations.
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p +1 =% (7
.

The boundary condition at 1==0 and t=T are given by

+
I (0) =1, ®
and I' () =1, (9
We shall specify I; and set Iy = 0. From equations (6) and (7) we obtain

1+ (T-7) (1-p)

IT(m =1, (10)
1+7T (1-p)
(T-7) (1-p)
and I" (7) =1, S (1)

1+ T (1-p)
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From equations (10) and (11) we can write,

+ 1
I(r=T) = ; ——— (12)
I+T (1-p)
T (1-
- () = I, ) (13)
14+T (1-p)
Moreover,
‘T (1-
T (T) — _____,(_..._EL____ > 1 as T o (14)
14T (1-p)
and
1
t (T) = — -0 asT— o (15)
1+T (1-p)

where r(T) and t(T) are the reflection and transmission coefficients respec-
tively. From (14) and (15) we find

£ (T) +t (1) =1 (16)
which is the expression for conservation of energy.

We can therefore calculate the source functions due to the ray
transfer and add them to the source function due to the self radiation of
the star. Therefore if S (r,0) is the total radiation, S: (r, 6) is the
source function due to irradiation from external source and S; (r) is that
due to self-radiation of the star itself, then

S {1,0) = S;a(t,0)+S, (1) (17)
We shall next, estimate the angular distribution of radiation at each point

such as Q;, Q2 ete. This is calculated by the following equations (see
Chandrasekhar 1960).

EY Tl

I(rotp) =T (mp) esp] ~ (727l ]+ [500) expf-(e-my] & (18)
T B

for outward intensities and

T

I Tomp)= I(O. - : *
(ryp) =T (O.p) exp ( F) f S (t) exp [—(T't)/P ] dt (19)
o L

for inward intensities.
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TFor the explanation of various terms see Fig. lc. The optical depths are
always measured from A to B, and 12 >0 where cos™'u is the angle made
by the ray with AB.

The above procedure is applied for a system in which the compo-
nent has a radius of 10"'em with half the radius as its atmosphere. The
incident radiation comes from a point 4.5X10"em away from the centre
of the primary. We assume that the density of the medium varies as 1/r.

Let IQbe the intensity of radiation incident spherically symmetri-
cally on the inner boundary of the atmosphere of the star and the inten-
sity coming from point S be Ig The incident radiation at the point P will
be I cos r. Three cases have been considered with IQ /I =0.1,1 and

10. (case IILIII respectively). As mentioned earlier electron scattering
has been assumed in the medium with Ne (at r = 10%cm) = 10*cm™ to
10'5%em™. We have presented the results for Ne=10" ecm® and with
this density (which is varying as 1/r), the radial optical depth becomes 1.1.
We have divided the medium into 25 shells. We plotted the angular dis-
tribution I (r, g, §) in Figures 2a, 2b and 2c representing cases I, IT and III
respectively. These graphs are given for 6==0°60° and 90° only. In
these curves, the continuous (I) curves denote the distribution of radia-
tion due to the incident radiation from the point source and the dotted
curves (IS) denote the resultant radiation field due to external and self
radiation fields. These results represent the radiation on the outermost
layers of the reflected surface. For some more results please see Peraiah
(1982).
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Fig. 2a :— Distribution of the emergent radiation fleld at §==0° §0°, 90° for case I
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Fig. 2c :— Distribution of the emergent radiation field at #=20°, 60°, 90° for ‘case III

(b) RESULTS ALONG THE LINE OF SIGHT :—
We shall employ the above procedure to calculate the distribution
of radiation from centre to limb received at infinity.

Fig. 3: Schematic diagram showing the irradiation section of the component. X is
the point source of radiation. O is the centre of the component. The

specific intensities are calculated along the line of sights. (Q;,Qs ete., Ra,R; ete,)

In figure 3, we describe the geometry of the system. The radiation

is incident from the point X on the surface of the atmosphere at points
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P, P: etc. We draw rays (Qi, Q: etc, Ri:, R: etc) parallel to the line of
sight. We dpply the same method described in section I(a). The ray
transfer is calculated along the segments such as QP given by

] A
QP = {a"+b’+2ab cos (OQ P—}-Of’ Q)}% (20)
where
a=0P (Op,, szetc)a

=0Q (0Q,, 0Quetc),
0OX=R, OQ1 =h (his measured along OX) and

R b2-h2
smOQP = ‘ bZ . R%. 2bR ’ (21)
and
. A R b2~h2 1‘/2
Sin OP Q,z ': ‘ b2+ R2-2hR (22)

We assumed a density ‘varying as 1/t and 1/r®. The source function due
to self radiation S is obtained from the relation
1 4
S, (1) = 3 f I (a, p) dpe (23)
-1,

as we are assummg radiative equilibrium. The specific 1ntens1ty I (r,n)

is obtamed by solvmg the equatmn of radiative transfer in spher1ca1 sym-
metry given as (Peraiah and 'Grant 1973).

U (r,u) 1 9
p—— A — — {(11&“) U (f:#)}‘

dr T 3}1,

+0 (1) U(p) = o (2) {[ (1-= )] B

+1

+ Yy o (1) f P (r,p,p) U (r,0) dp' } (24)
-

for outward going rays and

2§} (1'9 IJ,) 1o
- ——— ——-{ (I-p2) U (r.-p) }-l- o (1) U(r,~p)

T r 9[1,

+1
=9 (@] (1~ o (r>]B(r)+—u~ (r) f P(r, popYU(50)dp (25)

-l
for the inward going rays. Here p{s;_: (0.1}
made by the ray with radius vector r.

Ultyp) = 4m3l(z, ).

is the cosine of the angle
The quantity U(r,;u) is given by,
(26)
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@~ (r) is the albedo for single scattering (has been put equal to 1 in
our calculatmns) o (1) is the absorption coefficient which is a contmuous
function. P (r, u) is the phase function for isotropic scattering. We ensure
that

1 41

S f P (t,p,p) pp'=1 {41<m#<1 } (27)
-1 _
The boundary conditions are assumed as follows

Where I s 18 the 1ntens1ty of radiation incident at the inner boundory and I,
is the intensity of radlatlon incident from the point source. The radlatlon
1nc1dent on the surface at pomts P., P: ete. is taken to be Iy, eos OP Q
and we have set I =1 We have considered both plane parallel ond

sphencally symmetmc media for the sake of compansxon and set B/A—-l
and 1.5 respectlvely The purpose of this is to see how the spherical term

+ = [(1_,&) U (s +)]

r
would change the results. The spherical solution is obtained with
B/A = 1.5 where B and ‘A are the outer and inner radii of the atmosphere
we are con51der1ng We have taken the same data for OX,Ne etc. as
given in the previous section. (see also Peraiah 1983 a)
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Fig. 4a— The specific intensities I(h) (h=—0Q) are plotted with respect to 2h. The
curves lebelled I correspond to wonly irradiation ‘and ‘those with I+4+8
correspond to irradiation plus self-radiation. N is the electron density
at A. B/A=1. N, =10 cm-® (B and A are the outer and inner radii of
the atmosphere. Here B/A=1 means plane paralle]l aimosphere),
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In Figs (4a-4c). we have presented the variation of specific inten-
sities from centre to limb in plane parallel case. The curves labelled I
correspond. to irradiation and those labelled IS correspond to irradiation
with self-radiation, The quantity h.is the perpendlcular distance to the
ray from the centre O _(see Figure 3). The contribution from irradiation
to the intensities I(h) is several times smaller than the total contr1but1on
from both self and irradiation. Figures (4a) and (4b) show that the 11mb
is much darker than the centre Figure (4c) shows that an increase in
electron density increases the brightness at the limb, but when combined
with self-radiation, the limb appears dark, In figures (4d-4f) we have
shown the specific intensities in the spherically symmetric case. We
notice that the limb darkens and.also that the intensities fall sharply
compared to those in plane parallel case. When the electron density is
increased the character of the intensities change, which is shown in Figure
(4g) The intensities due to irradiation always show a brightening ten-
dency towards the limb where as the total radjation field falls towards
limb but at the limb it shows br1ghten1ng Th1s is due to the fact that

there are more electrons in this region which scatter more light than
when Ny=10" or 10* em™3,

(c) TEMPERATURE CHANGES DUE TO REFLECTION :—

In this section we investigate how the temperature is redistributed
due to incidence of radiation from the pom’c source (see Figure 5). We
have assurned radiative equ111br1um in scattering medium and therefore it
is easy to calculate the effective temperature, which is proportional to

v 1 . O
s where S’Tis the total source function in the scattering medium. We

-

Fig. 5: Schematit diagram showifg hdw the temperature redistribution is calculated

have considered 3 star with radius equal to 10**cm and an atmosphere
whose thickness is three times the stellar radius. The point source is
kept at a distante five ti¥hes the outer radius of the component from the
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centre 0. We estimated the changes 'in temperature along the radii vec-
tors (OP) corresponding to an angle @ made with OX, where X is the
position of the point source. In Figure 6 we have plotted the ratio of T/Ts
where T is the new temperature and Ty is the original temperature along
the radius vector OP, for various #'s. It is very interesting to note that
the temperature increases by as much as 40% in the’intermediate;regions
(i.e) 6=~30° "In the regions where 6 > 90° the increase in temperaturé
is in the outer layers where as in the regions for 4<90°, the temperature
is affected throughout the region. In figure 6 we considered the density

_r 1
variation g~ =-and in Figure 7, the density variation is 1/r®>, The results

in both these figures show similar characteristics.
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Fig. 8:— We have plotted temperature redistribution T/Ts along the radius vector
for each g shown in' the' figures. "The density variation is 1/r.
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Fig. 7:— Same as in flgure 6, but the density variation is taken to be 1/r.
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II a. INCIDENCE FROM AN EXTENDED SOURCE :(—

In the previous section we have considered the incidence of radia-
tion from a point" source.. We have noticed several interesting results.
In this section we shall investigate the reflection of radiation from the
extended surface of the secondary. In Figures (8) we have schematically
described the model: For details of the calculation see Peraiah (1983 b).

Fig. 8:— Schematic diagram for incidence of radiation from the extended surface
of the secondary.

The inner radius of the component (Rin) is taken to be equal to

10*°cm and the atmosphere is taken to be 3 times and R j; =3 Rin( =
3 X 10’*cm) and the separation of the centres AB (in Fig 8) is taken equal
10 3R gyt (=9X10"cm). We assumed that the electron density, is changing
as 17* and set the election density N(Rj, ) == 10"%cm™. The radius of
the secondary component is set equal to the outer radius of the primary
(ie R oyt). The medium is divided into 25 shells (or 26 shell boundaries).
With the above data. we obtain a total radial optical depth equal to 4 as
shown in Fig. 9. Shell numbers 1 and 25 correspond to R oy and R i,
respectively. In Figure 10, we describe the angular distribution at shell
numbers shown in the figure. The quantity I represents the ratio of
incident radiation from the. external source to that incident on the inner
boundary.



A.4. Reflection effect in close Binaries 41

ty_ j B

€3

30
2.5
2.0
1.5
1.0
0.8
8.0 i ! ! 1
1 5 10 15 20 25
Shell Numher
Fig: §:— The run of the optional depth with the shell numbers:

2 Ty 7N (53
o A -
I=1,8=0 4 Y —IR I:\,O:QDn ! ‘\ -—IR
/ [Wihaiaet € -1 'l v IR+S
/ LL_ ! |4
= 1 [ S
inwards | & | outwards inwards | @ f L outwards
1 f b
[ \ . 3L
Shali _ 1 24l Shell ! €
pamanr2g = Sf \ number26, ';3 y
! L% \ Fon A

o RN

1 .z

L
D ! ! | 1 1
-08 -G4 0 04 08
M

Fig. 10 :— Angular distribution of radiation field for I=1 and (a) §=—0°
(b) §=90° where I is the ratio of radiation corresponding to the two
components with centre at B and A respectively.

II b. ILIMB DARKENING OF THE REFLECTED RADIATION :(—

The geometry of the model is described in Figure 11. O and O’ are
the centres of the primary and the secondary respectively. The incidence
of radiation from the surface of the secondary is considered at points
such as P, a point on the line of sight The details of estimating the
radiation field is described in Peraiah and Srinivasa Rao (1983 a). The
radialion along the line of sight is calculated by using the formula,
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Fig. 11: Schematic diagram of model reflection of radiation from the extended
surface of the secondary.

r
1n+1 (r)=1, (n) exp (-7) 4; f Sy (1) exp [_ (.,,_t)] dt. (29)
where I'n (r) correspends to the specific intensity of the ray passing bet-
ween the shells numbered n and n-+1.

I, (n) corresponds to the incident intensity at the boundary of the
shell and is the optical depth in the sector along the ray path. The source
function S(t) is calculated by the linear interpolation between ST (n) and
S p(n+1). The specific intensity is calculated at the boundary of sach
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Fig. 12:— Variation of specific intensity from centre to limb is given in arbitrary
units with (a) plane parallel geometry (B/A=1) and (b) spherical geo-
mttry (B/A=1:5}.
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shell by using equation (29). In Figure (12) we have plotted the centre
to limb variation. We can see that the differences between plane parallel
and spherically symmetric approximations are very real although, we
have taken a small geometrical thickness of the atmosphere compared to
that of the star. In Figure (13) we have given again the centre to limb
variation for plane parallel case for various values of separation r./R
where 1, is the radius of the primary and R is the separation of the two

components.  The effects due to change in r.,/R are seen to be gquite
moderate. ’
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Fig. 13:— Variation of specific intensity from cente to limb is given in (a). Plane
parallel geometry and (b) spherically symmetric geometry for I=1 and
R;, = 101%cm. The results are given for different wvalues of ri/R,

where r; is outer radius of the star and R is separation between the
centres of the two components.

IIl c¢. EFFECTS OF REFLECTION ON SPECTRAL LINE FORMATION

The spectral lines in 12 Lacertae undergo a periodic variation in
width, the lines being wide and diffuse at periastron and sharper and
narrower at apastron (Young 1922). Several ideas are put forward for
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expiaining this phenomenon but not satisfactorily.. The fact that ihe
lines become wide and diffuse at periastron point, indicates that mutually
reflected radiation increases the flux in the lines because of the proximity
of the two components. We shall have to study how reflection changes
lhe lines. We assume a scattering medium and solve the transfer equa-
tion in the line given by,

. L (%,p.1) _{_1"”'2 A p.c) =KIEr) [/3—{—?5 (x)]‘ S¢ (x1) — I(X’M,f)] (30)

ar r s

and

__;I (x, — py1) . T-u? o (x,—p,1) —Kp, (1) [/3+d> (x)] [ SS (x,0)- 1{x,p, 1) ](31)

or r 'm

where I (x,%pr) is the specific intensity of the ray making an angle
cos ' with the radius vector at the radial point r. The quantity x is the
standardised frequency given: by

(*~?5)

- (32)

-3

X ==

where A is a standard frequency interval. S, (x,r) is the source fune-

tion at r for the frequency x. We have considered Doppler profile for
¢ (X). Ky (r) is the absorption coefficient at the centre of the line per

unit interval of Ag, B is the ratio of the opacity per unit frequency

interval in the continuum to that in the line. The procedure of solving
the 2quations (30) and (31) is described in Grant and Peraiah (1972). We
set 8 equal to zero and the calculations have been done in a purely scatter-
ing medium (for details see Peraiah and Srinivasa Rao 1983 b). We
calculate the lines observed at inifinity. These lines are pre-
sented in Fig 14 We have considered a line with x = %5
Doppler units. When there is no irradiation, wc obtain lines
with d=ep cores. When irradiation is introduced the flux in the lines is
increaseu considerably at all points in the line. But the increase in flux
in cores (F¢ ) is considerably more than in the wings(F)- In Fig (14a),
the ratio Fy [Fc is about 25 when there is no irradiation (the dotted
courve). But in the presence of irradiation this ratio reduces to 1.3 — 1.4
depending upon the proximity of the secondary. Because of irradiation

the fux in: the whole line is increased disproportionately, the cores bene-
fitting more than the wings.

The results presented above describe the reflection effect in a
scattering medium and we have to study the reflection ecffect in a
merium which both scatters and absorbs. Thisis under study.
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Fig. 14 :—

Ad. Reflection effect in close Binaries
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