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We provide examples of transient~nonasymptotic! ‘‘1/ f noise,’’ occurring over reasonably long time scales,
in extended nonlinear systems modeling complex spatiotemporal phenomena. These studies contribute towards
establishing that transient phenomena, which is often quite relevant in numerical and laboratory experiments,
can hold a wealth of interesting dynamical features.

PACS number~s!: 05.45.1b

I. INTRODUCTION

The asymptotic features of dynamical systems have long
been emphasized and the use of long time averages is very
common in the definition of various dynamical concepts,
such as periodicity, intermittency, and chaos. Here we would
like to focus on the very interesting, though much ignored,
physics oftransient states. Transient signals are traditionally
discarded, as they are considered merely switching on or
warming up effects. In numerical experiments, transients,
even those that are rather long, are not analyzed on the same
footing as the stable asymptotics. Usually one merely notes
the presence of transience, long or short, without analyzing
thedynamical characteristics of the transience.

However, transience, which can also be viewed as a
‘‘nonequilibrium’’ phenomenon, can actually have rather ex-
citing dynamical features, closely related to many aspects of
nonlinear dynamics. It is characterized by the system moving
around, for instance, ‘‘chaotically’’ or ‘‘intermittently,’’ and
then suddenly settling down to a stable dynamical behavior.
Moreover, recent work on transient chaos in a NMR laser
shows that the physics of transience is accessible experimen-
tally @1#, and this motivates us further to research transience
with a new outlook.

In this paper we have investigated the dynamical features
of transience arising in numerical simulations of certain
model spatiotemporal systems. We have brought to light
some transient dynamics~rather long lived! displaying 1/f
spectral characteristics up to frequencies that are rather
small. We hope our studies contribute towards establishing
transient dynamics as being rich in phenomena, and thus
providing a fertile ground for future numerical and experi-
mental investigations.

II. EXAMPLES OF TRANSIENT 1/ f NOISE

Low-frequency noise has long attracted theoretical model
builders as there is a lot of evidence to indicate that it is quite
ubiquitous in nature, occurring widely as it does in a host of
composite processes, as diverse as star-flicker in astronomy,
flow of sand in an hour glass, to traffic movement and stock
market fluctuations@2#. It is therefore of immense interest to
construct paradigmatic models of dynamic processes that are
capable of yielding 1/f spectra@3#. Here we suggest that
there are situations wheretransient phenomena have 1/f-like
characteristics. The 1/f -like features arise from transient

‘‘intermittent’’ behavior, which can also be viewed as an
‘‘intermittent route’’ to the asymptotic state. Note also that
the ‘‘1/f ’’ behavior can persist to rather low frequencies~but
cannot approachf50, as transience is necessarily finite!.
However, since in natural systems and in laboratory experi-
ments one can only sample up to finite times, it is not always
entirely clear if the dynamics is the asymptotic state or a
reasonably long-lived transient. In this context the presence
of transient 1/f noise is rather pertinent.

Here we provide two examples of transient 1/f noise, oc-
curring in extended nonlinear systems relevant to complex
spatiotemporal phenomena@4#. Finite time series Fourier
analysis of the~long-lived! transience yields a many decade
1/f -like spectral density. We discuss the details below.

A. Adaptive lattice dynamics

The first example is obtained from adaptive lattice dy-
namics. This is a class of models proposed recently@5,6# that
incorporates an adaptive dynamics on a lattice of strongly
nonlinear elements. In these models time is discrete, labeled
by n, space is discrete, labeled byi ,i51, . . . ,N whereN is
system size, and the state variablexn( i ) ~which in physical
systems could be quantities such as energy or pressure! is
continuous. Each individual site in the lattice evolves under a
suitable nonlinear mapf (x). Here we choosef (x) to be the
logistic map, which has widespread relevance as a prototype
of chaos. Sof (x)512ax2,x5@21,1#, with the nonlinearity
parametera chosen in the chaotic regime (a52.0 in all sub-
sequent numerics!. On such a lattice a regulatory threshold
mechanism is incorporated. This is triggered when a site in
the lattice exceeds the critical valuexc , i.e., when a certain
site xn( i ).xc @7#. The supercritical site then relaxes~or
‘‘topples’’ ! by transporting its excess to its neighbors. For
the bidirectional model this occurs as follows:

xn~ i !→xc ,

xn~ i11!→xn~ i11!1dx,

xn~ i21!→xn~ i21!1dx, ~1!

wheredx5@xn( i )2xc#/2. This algorithm thus induces non-
linear transport along the array~by initiating a domino ef-
fect!. The boundary is open so that the ‘‘excess’’ may be
transported out of the system. This kind of threshold mecha-
nism imposed on local chaos makes the above scenario es-
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pecially relevant for certain mechanical systems such as
chains of nonlinear springs, as well as for some biological
systems, such as synapses of nerve tissue~note that indi-
vidual neurons display complex chaotic behavior and have
step-function-like responses to stimuli!.

Dynamical quantities of interest include local quantities
such as the on-site state variablexn( i ) for specifici , as well
as global quantities such as the size of ‘‘avalanches,’’ de-
fined as the total number of ‘‘active’’ sites, i.e., sites that
have ‘‘moved’’ ~or dissipated energy! during the adaptive
relaxation@5,6#. Here we will be concentrating, with no loss
of generality@8#, on the dynamical evolution of avalanche
sizes.

The most significant parameter in the model is the critical
xc and the dynamics is principally determined by it@5,6#.
Tuningxc leads to the emergence of a variety of ‘‘phases’’ in
xc space, characterized by a rich diversity of dynamical pat-
terns, starting from fixed points to windows of regular or
noisy cycles of all orders.

Here we focus on values of criticalxc lying in reasonably
wide windows of periodicity, where the asymptotic dynam-
ics goes to stable regular cycles. It was found that when the
parameters were close to the edge of the window, the tran-
sience of these periodic states was very long lived (;104).
Further the transient dynamics appeared intermittent~see
Fig. 1!, and spectral analysis of this~finite! time series
showed distinct 1/f f scaling at the low-frequency end, with
1,f,1.5. We illustrate this with two representative ex-
amples in Fig. 2:~a! xc50.89 ~in the five-cycle window!,
and ~b! xc50.98 ~in the four-cycle window!. Note that a
large peak occurs at the frequency of the asymptotic stable
cycle, in the spectra of the transient dynamics, in addition to
the 1/f -like features of the low-frequency end.

It was found that the transience was easily distinguishable
from the asymptotics, and the change from transient behavior

to stable behavior was sudden and abrupt~see Fig. 1!. Also
note that the smoothing procedure employed to obtain suit-
ably ‘‘averaged’’ spectra involveensemble averages. That is,
several relaxations of the dynamics~evolved from different
sets of initial conditions! are collected and the transient
pieces~each of which is reasonably long! are independently
Fourier transformed and the spectra thus obtained are aver-
aged. We do not, as in Ref.@1#, construct a longartificial
time series by gluing smaller stretches of signal, and then
analyzing it. In the process we eliminate noise errors due to
the gluing procedure, and also obtain a very natural easily
interpretable physics from the spectra. Of course the smallest

FIG. 1. Plot of avalanche size vs timen (n56000–8000!, for
the case ofxc50.98, in a bidirectional adaptive model on a lattice
of logistic maps. Note the abrupt transition to the asymptotic regu-
lar state~at n;7700).

FIG. 2. Power spectrum of avalanches in a bidirectional adap-
tive model on a lattice of logistic maps, for criticalxc5~a! 0.89 and
~b! 0.98 (N520 in both cases!. Here we average over 8 transient
pieces of 1024 each. Thex axis has lnf, where f is the frequency
( fP(0,0.5#), and they axis has lnS(f), whereS( f ) is the power.
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frequency resolution of the spectra is limited by the length of
the transient, and so the analysis does not make much sense
unless the transience is reasonably long.~In the examples
quoted here this does not pose a problem as the transient
lengths are very large.! Now in the section below, we will
discuss another example of transient 1/f noise, occurring
now in a hierarchical lattice.

B. Hierarchically coupled maps

Turbulent convective transport is characterized by the
coupling between fluctuations on different length scales.
There is a chaotic cascade of velocity fluctuation, which ter-
minates finally on a length scale where diffusion of momen-
tum brought about by the viscosity of the fluid eliminates
velocity gradients sufficiently high for further instability.
This self-organization of chaotic fluctuations leads to an es-
sentially conservative transport of kinetic energy from large
to small scales known as the Richardson-Kolmogorov cas-
cade.

A system of coupled maps was proposed recently by
Sinha and Thomae@9# to mimic some of these features found
in fully developed turbulence. In contrast to the widely dis-
cussed coupled-map lattices, this lattice of logistic maps was
constructed withhierarchical coupling to account for the
peculiarities of turbulent fluid flow.

The elementary building block of the model is again the
logistic map~written now in a form different from that in
Sec. II A, but equivalent by simple scaling!:

pt115apt~12pt!, 0<p<1, 0<a<4. ~2!

Here t50,1,2, . . . denotes the discrete time,p is the dy-
namical variable, anda the control parameter. Equation~2!
provides the elementary building block for the construction
of our model, which defines the dynamics of variables

P(r ,t), describing fluctuations in space (r ) and time (t).
rPZd denotes points on ad-dimensional cubic lattice.

At each siteP is decomposed into fluctuating contribu-
tionspt

(n)(r ) from hierarchical levelsn, 0<n<N. The fluc-
tuations on leveln, n50,1,2, . . . ,N, have a typical length
scalel (n) and a typical time scaleq (n). We associate with the
largestn the smallest scales. For simplicity we choose

l ~n!52l ~n11!, q~n!52q~n11!. ~3!

This means that the same value ofp(n) applies to a cubic cell
of (2N2n)d sites and is updated only once whenp(n11) is
updated twice.

The time evolution of thep(n)’s is defined essentially by
coupling the control parameter of the logistic map to the
hierarchical and spatial distribution ofP. We assume that the
dynamics depends on the spatial distribution ofP(r ,t) only
via gradients or higher derivatives with respect tor . Thus,
the dynamics of spatially homogeneous solutions will de-
pend only on the coupling between different levelsn and
from now on we will concentrate only on this case.

With the idea that the dynamical variablept in Eq. ~2!
represents something like a local magnitude of the velocity
gradient in a flow field we introduce the hierarchical cou-
pling by

at
~n! :542~1/q!~12pt11

~n21!!, 1/4<q,`, ~4!

i.e., we assume that the control parameter at leveln is a
linear function of the dynamical variable at leveln21. The
higher the ‘‘velocity gradient’’ on leveln21 the more un-
stable and chaotic is the dynamics on leveln. The coupling
parameter 1/q represents something like a local critical Rey-
nolds number. The larger 1/q, the higher the value of
p(n21) necessary to obtain a certain degree of instability on
level n.

Thus the dynamical equation on leveln reads

pt11
~n! 5H $42~1/q!~12pt11

~n21!!%pt
~n!~12pt

~n!! if t[0~mod 2~N2n!!

pt
~n! otherwise .

~5!

Note the dependence ofat on pt11 in Eq. ~4!. In the context
of Eq. ~5! this means that each time there is a change on level
n0 all levels n with n.n0 will be updated as well. In a
system withN levels, then, updates on leveln are due at

t~n!~s!52N2ns, s50,1,2, . . . . ~6!

We calls the reduced time on leveln.
Spatially, our model consists of a nested hierarchy of

d-dimensional cubes. Level-n cubes contain (2N2n)d sites.
Each level-n cube contains 2d level-(n11) cubes.

We now briefly give some of the interesting analytical
properties we can derive for our model@9#.

The static solutionp
*
(n) of Eq. ~5! has to satisfy the con-

dition pt11
(n) 5pt

(n) for all t and n as well as the boundary
condition forn50. Hence Eq.~5! implies the recursion re-
lation

p
*
~n!512

1

42~1/q!~12p
*
~n21!!

. ~7!

In the limit n→` the sequencep
*
(n) converges to the alter-

nating continued fraction

p
*
~`!511

1

241
1

4q1
1

241•••

5@1,24,4q,24,4q, . . . #
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This yields the value ofp
*
(`) to be

p
*
~`!5~122q!1A~4q21!q. ~8!

Clearly, the lower bound forq is 1/4.
Further one obtains the corresponding relations for the

control parameter

a
*
~n!542

1

qa
*
~n21! , a

*
~`!521A421/q. ~9!

Since the control parameter at each level must be within
@0,4# the recursion requires that 1/4q<a*<4. For a

*
(`) one

has 2<a
*
(`)<4.

It can also be shown rigorously that the rate of conver-
gence ofp

*
(n) to p

*
(`) is characterized by a scaling relation:

d:5 lim
n→`

p
*
~n11!2p

*
~n!

p
*
~n12!2p

*
~n11! 58q2114A~4q21!q. ~10!

Further, linear stability of the static solution gives the eigen-
values of the system to be

l
*
~n!5221~1/q!~12p

*
~n21!!, n51,2, . . . ,N.

Since 0<p*<3/4 the range for all eigenvalues is
2211/4q<l

*
(n)<2211/q. ul

*
(n)u,1 indicates stability

and ul
*
(n)u.1 linear instability of thenth eigenmode. Nega-

tive eigenvalues mean that the corresponding mode oscillates
while positive values indicate monotonic behavior.

This implies the following recursion relation and the
stable fixed point for the eigenvalues:

l
*
~n11!5221

1

q~22l
*
~n!!

, l
*
~`!52A421/q. ~11!

Evidently, l
*
(`),0 if 1/4,q. Hence, for alln sufficiently

large, the eigenmodes will show oscillatory behavior.
Here we will consider the limiting case of

q51/4,a
*
(`)52, where the evolution equation ispt11

(n)

54pt
(n21)pt

(n)(12pt
(n)), with boundary conditionpt

(0)51.
This yields the following scenario: levelsn.1 @10# evolve
to the stable fixed point,p(n)50 @11#. But for n close to 1,
this asymptotic state is reached only after a very long tran-
sience~the transience is shorter for finer scales, i.e., larger
n). For example, then, we find thatp(2) has a transience of
length;103 or 104, after which it abruptly settles down to
the asymptotic fixed pointp(2)50. Further the transient dy-
namics is strongly reminiscent of intermittency, as it displays
long laminar periods, wherep(2) is close to 0, interrupted
‘‘intermittently’’ by bursts of irregularity~see Fig. 3!. This
gives rise to a power spectrum with the low-frequency end
scaling as 1/f f, with f;1 ~see Fig. 4!. Note that here too, as
described in Sec. II A, ensemble averages were used to ob-
tain suitably averaged spectra.

In conclusion, we have furnished examples of intermittent
transient dynamics giving rise to spectra with 1/f -like fea-

tures up to rather low frequencies, in extended nonlinear sys-
tems. We hope these studies contribute towards establishing
that transient phenomena can hold a wealth of interesting
dynamical features.

FIG. 3. Time evolution ofp(2) in hierarchically coupled maps,
for the case ofq51/4,a(`)52.0 during transience~i.e., before the
system reaches its asymptotic state:p(2)50). Note the intermittent
behavior.

FIG. 4. Power spectrum ofp(2) in hierarchically coupled maps,
for q51/4, a(`)52.0. We average over 8 transient pieces of 1024
each. Thex axis has lnf, wheref is the frequency (fP(0,0.5#), and
the y axis has lnS(f), whereS( f ) is the power.
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