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Transient 1/f noise
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(Received 10 July 1995

We provide examples of transiefrtonasymptotic“1/ f noise,” occurring over reasonably long time scales,
in extended nonlinear systems modeling complex spatiotemporal phenomena. These studies contribute towards
establishing that transient phenomena, which is often quite relevant in numerical and laboratory experiments,
can hold a wealth of interesting dynamical features.

PACS numbe(s): 05.45+b

I. INTRODUCTION “intermittent” behavior, which can also be viewed as an
“intermittent route” to the asymptotic state. Note also that
The asymptotic features of dynamical systems have longhe “1/f” behavior can persist to rather low frequenciesit
been emphasized and the use of long time averages is vecannot approach =0, as transience is necessarily fijite
common in the definition of various dynamical concepts,However, since in natural systems and in laboratory experi-
such as periodicity, intermittency, and chaos. Here we wouldnents one can only sample up to finite times, it is not always
like to focus on the very interesting, though much ignoredentirely clear if the dynamics is the asymptotic state or a
physics oftransient statesTransient signals are traditionally reasonably long-lived transient. In this context the presence
discarded, as they are considered merely switching on aof transient 1f noise is rather pertinent.
warming up effects. In numerical experiments, transients, Here we provide two examples of transient hbise, oc-
even those that are rather long, are not analyzed on the saroerring in extended nonlinear systems relevant to complex
footing as the stable asymptotics. Usually one merely notespatiotemporal phenomerid]. Finite time series Fourier
the presence of transience, long or short, without analyzingnalysis of thglong-lived) transience yields a many decade

the dynamical characteristics of the transience. 1/f-like spectral density. We discuss the details below.
However, transience, which can also be viewed as a
“nonequilibrium” phenomenon, can actually have rather ex- A. Adaptive lattice dynamics

citing dynamical features, closely related to many aspects of
nonlinear dynamics. It is characterized by the system moving1
around, for instance, “chaotically” or “intermittently,” and a
then suddenly settling down to a stable dynamical behavio
Moreover, recent work on transient chaos in a NMR lase o . .
shows that the physics of transience is accessible experimeny n, Space Is discrete, Iabeled_ hy=_ L.. '.’N \_/vhereN_ IS
tally [1], and this motivates us further to research transienc8YSteM size, and the sta_tg variakigi) (which in physu_:al
with a new outlook. systems could be quantities such as energy or présgire

In this paper we have investigated the dynamical feature§ontinuous. Each individual site in the lattice evolves under a
of transience arising in numerical simulations of certainSuitable nonlinear map(x). Here we choosé(x) to be the
model spatiotemporal systems. We have brought to lightodiStic map, which has widespread relevance as a prototype
some transient dynamicgather long lived displaying 1f  ©f chaos. Sd(x)=1—ax",x=[—1,1], with the nonlinearity
spectral characteristics up to frequencies that are rathddrametea chosen in the chaotic regima{2.0 in all sub-
small. We hope our studies contribute towards establishing€dUent numerigsOn such a lattice a regulatory threshold
transient dynamics as being rich in phenomena, and th echanism is incorporated. This is triggered when a site in

providing a fertile ground for future numerical and experi- (N€ lattice exceeds the critical valug, i.e., when a certain
mental investigations. site x,(i)>x. [7]. The supercritical site then relaxdsr
“topples”) by transporting its excess to its neighbors. For

the bidirectional model this occurs as follows:

The first example is obtained from adaptive lattice dy-
mics. This is a class of models proposed recdbtl] that
lJ'ncorpora'[es an adaptive dynamics on a lattice of strongly
Ihonlinear elements. In these models time is discrete, labeled

Il. EXAMPLES OF TRANSIENT 1/ f NOISE

. . Xn(1)—Xc,
Low-frequency noise has long attracted theoretical model
builders as there is a lot of evidence to indicate that it is quite Xn(i 1) =X, (i + 1) + X,
ubiquitous in nature, occurring widely as it does in a host of
composite processes, as diverse as star-flicker in astronomy, Xo(i—1)— X, (i — 1)+ X, )

flow of sand in an hour glass, to traffic movement and stock

market fluctuation$2]. It is therefore of immense interest to where 6x=[x,(i) —x.]/2. This algorithm thus induces non-
construct paradigmatic models of dynamic processes that atmear transport along the arrd¥py initiating a domino ef-
capable of yielding ¥/ spectra[3]. Here we suggest that fect). The boundary is open so that the “excess” may be
there are situations wheteansient phenomena have 1/f-like transported out of the system. This kind of threshold mecha-
characteristics The 1f-like features arise from transient nism imposed on local chaos makes the above scenario es-
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FIG. 1. Plot of avalanche size vs tinme(n=6000-8000, for sk - T - T T T T T
the case ok.=0.98, in a bidirectional adaptive model on a lattice (b)
of logistic maps. Note the abrupt transition to the asymptotic regu-
lar state(at n~7700).

pecially relevant for certain mechanical systems such as
chains of nonlinear springs, as well as for some biological
systems, such as synapses of nerve tigswge that indi-
vidual neurons display complex chaotic behavior and have 2°
step-function-like responses to stimuli &
Dynamical quantities of interest include local quantities =
such as the on-site state variali|gi) for specifici, as well
as global quantities such as the size of “avalanches,” de-
fined as the total number of “active” sites, i.e., sites that
have “moved” (or dissipated energyduring the adaptive
relaxation[5,6]. Here we will be concentrating, with no loss 151~ 7
of generality[8], on the dynamical evolution of avalanche
sizes.
The most significant parameter in the model is the critical
X. and the dynamics is principally determined by % 6]. T
TuningX,. leads to the emergence of a variety of “phases” in Inf
Xc space, characterized by a rich diversity of dynamical pat-
terns, starting from fixed points to windows of regular or  FIG. 2. Power spectrum of avalanches in a bidirectional adap-
noisy cycles of all orders. tive model on a lattice of logistic maps, for critical=(a) 0.89 and
Here we focus on values of critica), lying in reasonably (b) 0.98 (N=20 in both cases Here we average over 8 transient
wide windows of periodicity, where the asymptotic dynam- Pieces of 1024 each. Theaxis has Ifi, wheref is the frequency
ics goes to stable regular cycles. It was found that when th€f =(0.0.9), and they axis has I&(f), whereS(f) is the power.
parameters were close to the edge of the window, the tran-
sience of these periodic states was very long lived.(*). to stable behavior was sudden and abrigee Fig. 1 Also
Further the transient dynamics appeared intermiti@et note that the smoothing procedure employed to obtain suit-
Fig. 1), and spectral analysis of thidinite) time series ably “averaged” spectra involvensemble average$hat is,
showed distinct ¥ scaling at the low-frequency end, with several relaxations of the dynamitsvolved from different
1<¢$<1.5. We illustrate this with two representative ex- sets of initial conditions are collected and the transient
amples in Fig. 2:(a x.=0.89 (in the five-cycle window,  pieces(each of which is reasonably lohgre independently
and (b) x,=0.98 (in the four-cycle window. Note that a Fourier transformed and the spectra thus obtained are aver-
large peak occurs at the frequency of the asymptotic stablaged. We do not, as in Reffl], construct a longartificial
cycle, in the spectra of the transient dynamics, in addition tdime series by gluing smaller stretches of signal, and then
the 1f-like features of the low-frequency end. analyzing it. In the process we eliminate noise errors due to
It was found that the transience was easily distinguishabl¢he gluing procedure, and also obtain a very natural easily
from the asymptotics, and the change from transient behavianterpretable physics from the spectra. Of course the smallest
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frequency resolution of the spectra is limited by the length ofp(r, 7), describing fluctuations in space)(and time ).
the transient, and so the analysis does not make much sense 7¢ denotes points on d-dimensional cubic lattice.
unless the transience is reasonably loflg. the examples At each siteP is decomposed into fluctuating contribu-
quoted here this does not pose a problem as the transiefiéns p{"(r) from hierarchical levels, 0<n<N. The fluc-
lengths are very largeNow in the section below, we will tuations on leveh, n=0,1,2 ... N, have a typical length
discuss another example of transienf bbise, occurring scalel™ and a typical time scalé™. We associate with the
now in a hierarchical lattice. largestn the smallest scales. For simplicity we choose

|(M=2](+D) gM=pg+1) 3
B. Hierarchically coupled maps
Turbulent convective transport is characterized by theThIS means t_hat the same valueps? applies to a cubic _ceII
: - : of (2N sites and is updated only once whpH'*Y) is
coupling between fluctuations on different length scales.u dated twice
There is a chaotic cascade of velocity fluctuation, which ter- pThe time e\}olution of the™'s is defined essentially b
minates finally on a length scale where diffusion of momen- ® y by

X . ! S coupling the control parameter of the logistic map to the
tum prought _about by .the V|sc0_5|ty of the ﬂu'd.e“mmateshierarchical and spatial distribution Bf We assume that the
velocity gradients sufficiently high for further instability.

. o . . i h tial distributi f I
This self-organization of chaotic fluctuations leads to an esdynamlcs depends on the spatial distributiorPf, 7) only

. . e via gradients or higher derivatives with respectrtoThus,
sentially conservative transport of kinetic energy from large;,o dynamics of spatially homogeneous solutions will de-

to small scales known as the Richardson-Kolmogorov Caspend only on the coupling between different levelsand
cade. from now on we will concentrate only on this case.

_A system of coupled maps was proposed recently by \jth the idea that the dynamical variabte in Eq. (2)
Sinha and Thomad] to mimic some of these features found (o resents something like a local magnitude of the velocity

in fully developed turbulence. In contrast to the widely dis- g agient in a flow field we introduce the hierarchical cou-
cussed coupled-map lattices, this lattice of logistic maps Wagling by

constructed withhierarchical coupling to account for the
peculiarities of turbulent fluid flow. M-~ 24— (1/g)(1—pn-D 1/4<g< 4

The elementary building block of the model is again the & (U)(1=prig),  Ud=g=<=, @
logistic map (written now in a form different from that in

; . i.e., we assume that the control parameter at levés a
Sec. Il A, but equivalent by simple scaling P

linear function of the dynamical variable at level-1. The
higher the “velocity gradient” on leveh—1 the more un-
Pr+1=ap (l-p,), Osps<l, Osas4. (2)  stable and chaotic is the dynamics on lemelThe coupling

parameter I represents something like a local critical Rey-

Here 7=0,1,2 ... denotes the discrete timg, is the dy- nolds number. The larger d/ the higher the value of

namical variable, and the control parameter. Equati¢8) p("~Y necessary to obtain a certain degree of instability on

provides the elementary building block for the constructionlevel n.

of our model, which defines the dynamics of variables Thus the dynamical equation on levelreads

{4—(Ug)(1-p" ") pM(1—p™) if 7=0(mod 2ZN"™)

n _ i

Pri1 p!"  otherwise . (5

|
Note the dependence af onp, . in Eq.(4). Inthe context ~ The static solutiorp{™ of Eq. (5) has to satisfy the con-
of Eq. (5) this means that each time there is a change on leve&lition D(T'l)l:P(Tn) for all = andn as well as the boundary
no all levels n with n>n, will be updated as well. In a condition forn=0. Hence Eq(5) implies the recursion re-
system withN levels, then, updates on levelare due at lation
1
(n)— 1— . 7
M(e)=2""¢, 0=012.... (6) Px 4— (L) (1—p™ 1) (7

In the limit n—o the sequence" converges to the alter-

We call o the reduced time on level. nating continued fraction

Spatially, our model consists of a nested hierarchy of 1
d-dimensional cubes. Level-cubes contain (¥ ™ sites.  p{~=1+ I =[1,-4,49,—-4,4, ...]
Each leveln cube contains ®level-(n+1) cubes. — 4+

We now briefly give some of the interesting analytical Aq+ 1
properties we can derive for our modél. " =45
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This yields the value op{”) to be ey
Py =(1-20)+(4a-D)a. ®)

Clearly, the lower bound foq is 1/4. I 1
Further one obtains the corresponding relations for the °°[ 7
control parameter

06 [~ -1

1
—5., ay)=2+\4-1/. (9)

(n_
a, ' =4-—
* qaj

p@

Since the control parameter at each level must be within 4| ]
[0,4] the recursion requires that 4 a, <4. Foral”) one I H ]
has 2<a{)<4. s

It can also be shown rigorously that the rate of conver- °2[ 7
gence ofp{" to p{*) is characterized by a scaling relation: I ]

(n+1)_ () o U LB JMLJL i
6:= lim (n+2)_ p(n+l) =8q—1+4y(49—1)q. (10 (I) 2<I)o 4(|10 6(I)O a(l)o 10|oo
=oM% * time

Further, linear stability of the static solution gives the eigen- FIG- 3. Time evolution ofp'® in hierarchically coupled maps,

values of the system to be for the case otq=1/4,a(°°)=2.0 during transiencé.e., before the
system reaches its asymptotic stgi€? =0). Note the intermittent
behavior.

NY=—2+ (L) (L-p ), n=12,...N.

Since 0O<p,<3/4 the range for all eigenvalues is

_2+1({]‘)‘q$)\i_n)<_.2+ Ya. NPl<1 indicates  stability  yres up to rather low frequencies, in extended nonlinear sys-
and|\;”|>1 linear instability of thenth eigenmode. Nega- tems. We hope these studies contribute towards establishing

tive eigenvalues mean that the corresponding mode oscillatgat transient phenomena can hold a wealth of interesting
while positive values indicate monotonic behavior. dynamical features.

This implies the following recursion relation and the
stable fixed point for the eigenvalues:

1

)\(n+l): _2+ A
* a(2=1")

A =—\a-1/q. (11 s 7

Evidently, )\Sf”)<0 if 1/4<q. Hence, for alln sufficiently
large, the eigenmodes will show oscillatory behavior.
Here we will consider the limiting case of |
gq=1/4a{"=2, where the evolution equation ip{?, ! i
=4p{"YpM(1—pM)  with boundary conditionp!®=1.
This yields the following scenario: levels>1 [10] evolve
to the stable fixed poinp™=0 [11]. But for n close to 1,
this asymptotic state is reached only after a very long tran-
sience(the transience is shorter for finer scales, i.e., larger 2f -
n). For example, then, we find that? has a transience of
length ~ 10 or 10, after which it abruptly settles down to
the asymptotic fixed poinp®=0. Further the transient dy- I
namics is strongly reminiscent of intermittency, as it displays
long laminar periods, wherp(® is close to 0, interrupted
“intermittently” by bursts of irregularity(see Fig. 3. This 0 I T
gives rise to a power spectrum with the low-frequency end 6 4 2
scaling as 1/?, with ¢~ 1 (see Fig. 4 Note that here too, as
described in Sec. Il A, ensemble averages were used to ob- F|G. 4. Power spectrum qf? in hierarchically coupled maps,
tain suitably averaged spectra. for q=1/4, a®)=2.0. We average over 8 transient pieces of 1024
In conclusion, we have furnished examples of intermittenteach. Thex axis has Ifi, wheref is the frequencyf(e (0,0.5)), and
transient dynamics giving rise to spectra witlf-like fea- they axis has I(f), whereS(f) is the power.

In S(f)
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