GRAVITATING SYSTEMS WITH TORSION SELF-INTERACTION

Letter to the Editor

C. SIVARAM

Grupo de Relatividade e Teoria do Campo, Instituto de Fisica, UERJ, Rio de Janeiro, Brasil Indian Institute of Astrophysics, Bangalore, India and Istituto de Fisica dell'a Universita, Ferrara, Italia

and

L. C. GARICA DE ANDRADE

Grupo de Relatividade e Teoria do Campo, Instituto de Fisica, UERJ, Rio de Janeiro, Brasil.

(Received: 6 August, 1992)

The relation between the torsion vector Q and the magnetic field B it generates through the spin density σ is known to be given (cf. De Sabbata and Sivaram, 1990a) by:

$$Q = 4\pi G \,\sigma/c^2 \tag{1}$$

where B is given (cf. De Sabbata and Gasperini, 1982) by:

$$B = \left(\frac{8\pi}{3c}\right) (2\alpha G)^{1/2} \sigma. \tag{2}$$

Now in the case of magnetic or electric fields, it is known that E^2 or B^2 is proportional to the energy density of the field. The analogy between Q and B (which has been well established) suggests that we can interpret Q^2 as the energy density of the torsion field. This becomes more explicit in the case of propagating torsion, when we write

$$Q = \partial_{\mu} \phi, \tag{3}$$

so that

$$Q^2 = \partial_\mu \, \phi \partial^\mu \, \phi \tag{4}$$

can be interpreted as an energy density. The total torsional self energy would then be given by the volume integral

$$E_T = \int Q^2 \, \mathrm{d}V. \tag{5}$$

Thus $Q^2 \alpha 4\pi G^2 \sigma^2/c^4$ can be interpreted as a contribution to the energy density in the Poisson equation, thus enabling us to write the modified Poisson equation as

Astrophysics and Space Science **201**: 131–133, 1993. © 1993 Kluwer Academic Publishers. Printed in Belgium.

$$\nabla^2 \phi \approx 4\pi G(\rho - G\sigma^2). \tag{6}$$

For the case of just gravitating torsional self-energy we would have

$$\nabla^2 \phi_T \approx -4\pi G^2 \sigma^2. \tag{7}$$

This has a solution

$$\phi_T \sim G^2 \sigma^2 r^2. \tag{8}$$

If S is the total intrinsic spin of the source we can write

$$\sigma \sim S/r^3,\tag{9}$$

so that

$$\phi_T \sim \frac{G^2 S^2 r^2}{r^6} \sim \frac{G^2 S^2}{c^4 r^4},$$
(10)

or in units with c,

$$\phi_T \sim \frac{G^2 S^2}{c^4 r^4} \tag{11}$$

This would explain why the torsion potential ϕ_T falls off with distance as $\sim 1/r^4$, rather than $\sim 1/r$ for the ordinary gravitational potential $\phi_g \sim GM/r$. We note also that the G^2 dependence (rather than G) and also the proportionality to the source strength squared, i.e. S^2 .

In general if a system has both mass M and spin S, Eq. (7) has an equilibrium solution

$$R_e \approx \left(\frac{GS^2}{Mc^4}\right)^{1/3}. (12)$$

This can also be roughly seen by matching the torsion potential ϕ_T as given by Eq. (12) with the ordinary gravitational potential ϕ_g . Thus torsion would dominate at short distances. We can apply Eq. (13) in the context of strong gravity to a typical elementary particle, i.e, a proton with $M=m_p$, $S=\hbar/2$. Eq. (13) then gives with the strong gravity coupling $G_f\approx 6.7\times 10^{30}$ cgs units, a radius of

$$R_p \approx \left(\frac{G_f h^{-2}}{4m_p c^4}\right)^{1/3} \approx 2 \times 10^{-14} \,\mathrm{cm},$$
 (13)

close to the Compton wavelength of the proton. For the electron this gives a value close to the classical electron radius $r_e = e^2/m_ec^2 \approx 2 \times 10^{-13}$ cm. So we have the possibility of explaining both the stable elementary particles, i.e., the electron and proton in terms of strong gravity supported torsion self-interaction!

Eqs. (13) and (14), when applied to the proton and the electron, would give the ratio of strong and electromagnetic interactions coupling constants (De Sabbata and Sivaram, 1990b) as $g^2/e^2 \propto (m_p/m_e)^{2/3} \approx 150$, close to the observed value. Also the interpretation of unstable particles as torsion supported quantum vortices in an earlier paper (Garcia de Andrade and Sivaram, 1992; Sivaram and Sinha, 1977), would suggest the mass spin relation for hadronic resonances as $S\alpha(G_f/\hbar c)M^2$, or $S=aM^2$, where a agrees with the observed Regge slope of $a\approx 1~{\rm GeV})^{-2}$ and the empirically observed $S-M^2$ relation for a multitude of resonances.

References

De Sabbata, V. and Gasperini, M.: 1982, in *Origin and Evolution of Galaxies*, World Scientific, Singapore.

De Sabbata, V. and Sivaram, C.: 1990a, in P. Pronin and Yu.N. Obukhov (eds.) *Modern Problems of Theoretical Physics*, World Scientific, Singapore, 143.

De Sabbata, V. and Sivaram, C.: 1990b, Nuovo Cim. 105B, 603.

Garcia de Andrade, L.C. and Sivaram, C.: 1992, Torsion and Quantized Vortices, UEPJ, *Class. Quant. Grav.*, submitted.

Sivaram, C. and Sinha, K.: 1977, Phys. Rev. D 16, 1975.