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ABSTRACT

The Compton-reflected spectrum from cold matter for incident X-rays and y-rays
with arbitrary angular, spectral and polarization properties can be determined by a
simple folding of Green’s matrix with the incident spectrum. We calculate Green’s
matrix by numerically solving the polarized radiative transfer equation for an
optically thick planar slab of neutral matter using a method based on discrete space
theory. We account for both angular and polarization properties of the fully
relativistic Compton scattering cross-section as well as photoelectric absorption and
the generation of a fluorescent Fe line. We describe through simple models the basic
characteristics of polarized spectra produced by Rayleigh and Compton scattering.
The emphasis is on exact computations of Compton-reflected spectra. For the first
time, the Fe line equivalent width can be calculated self-consistently for an arbitrary
angular distribution of the incident spectrum using Green’s matrix formalism.

Key words: polarization — radiative transfer — scattering — galaxies: Seyfert —

gamma-rays: theory — X-rays: general.

1 INTRODUCTION

Observations ranging from soft X-rays to soft gamma-rays
seem to indicate the existence of Compton reflection of X-
rays by cold matter in different types of astronomical
objects. These include Seyfert galaxies (e.g., Pounds et al.
1990, Nandra & Pounds 1994, Zdziarski et al. 1994, Zdziar-
ski, Johnson & Magdziarz 1996), and X-ray binaries such as
Cyg X-1 (Done et al. 1992; Haardt et al. 1993).

In the two-phase disc—corona models for Seyfert galaxies
(e.g., Haardt & Maraschi 1993, Stern et al. 1995), hot coro-
nal electrons produce the X-ray spectra by successive
Compton scatterings of the low-energy photons from the
accretion disc. The mildly relativistic temperatures of the
coronal electrons together with the anisotropy of the low-
energy disc photons (as they enter the corona from one side
only) cause the Compton-scattered coronal X-ray spectrum
(in particular at photon energies where the first scattering
order dominates) to be angularly dependent. This requires
that the theoretical Compton-reflected spectrum can be
accurately calculated for angularly dependent incident
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coronal spectra at all photon energies of relevance, i.e. up to
several hundred keV or more. Reflected spectra are neces-
sarily polarized, and future prospects of utilizing polarized
X-ray data as diagnostics can only be realized if polarized
Compton-reflected spectra can be calculated. Several
approaches have been used in the literature to compute the
Compton-reflected spectrum for a given incident spectrum.
They can broadly be divided into two groups: (i) full radia-
tive transfer calculations and (ii) Green’s function
methods.

The full radiative transfer calculations have been per-
formed using Monte Carlo methods (e.g., George & Fabian
1991, Matt, Perola & Piro 1991, Matt 1993) for a given
incident spectrum and chosen geometry, normally a semi-
infinite slab with semi-isotropic illumination either in flux
(from, e.g., an optically thin coronal slab) or in intensity
(from, e.g., an optically thick corona). The disadvantage of
such transfer calculations is that a new simulation must be
performed for each change in the properties of the incident
spectrum. The method is therefore not suitable for fitting
observed spectra.

In order to perform efficient spectral fitting, one needs a
fast and simple method to compute the reflected spectrum
given an incident spectrum. This can be done by convolving
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the incident spectrum with Green’s function, G(v, y; v', ¢'),
which describes the reflected spectrum at photon frequency,
v and cosine angle p, for incident monochromatic photons
at u' and v'. Two methods have been used to determine
Green'’s function.

First, the radiative transfer is solved by separately con-
sidering transport in physical space and frequency space
giving the escape probability and the spectral distribution
after n scatterings (Illarionov et al. 1979; Lightman, Lamb &
Rybicki 1981; Burigana 1995). Green’s function is con-
structed by summing the product of the escape probability
and the spectral distribution over all scattering orders. A
number of approximations such as isotropic scattering in
the Thomson limit, the decoupling of the transport in physi-
cal space and frequency space, and solving the radiative
transfer in the two-stream approximation limits the validity
of the results to photon energies <50 keV.

Secondly, several authors (White, Lightman & Zdziarski
1988; Hua & Lingenfelter 1992; Magdziarz & Zdziarski
1995) have determined Green’s function by fitting analytical
functions to Monte Carlo results. These works do not deter-
mine the full G(v, y; V', u"), but make assumptions about
the angular dependencies, at least for the incident radiation.
In the most detailed work, Magdziarz & Zdziarski (1995)
computed and fitted the angularly dependent G(v, y; v") for
isotropic incident flux showing the importance of consider-
ing angular dependencies. The reflected spectra are, for
example, much harder at larger viewing angles (smaller
1)

The Compton scattering cross-section depends on the
polarization state. As the dominant contribution to Green’s
function comes from photons scattered only a few times, the
degree of polarization can be high directly affecting the
reflected intensity. Polarized Compton reflection was only
considered by Matt (1993), whose result was limited to a
specific incident power-law spectrum, and Fernandez et al.
(1993), whose results are limited to incident monoenergetic
photons.

In spite of all of the work summarized above, there still
exists no method to compute the full Green’s function,
G(v, u; V', u"), that is also valid for photon energies larger
than 100 keV and that considers the full angular depend-
ence of both incident and reflected radiation. Furthermore,
most works have only considered one single Green’s func-
tion describing incident intensity being converted into
reflected intensity. In order to treat the effects of linear
polarization on the reflected spectrum one needs to know
three additional Green’s functions. These four Green’s
functions are the components of Green’s matrix that
converts an incident Stokes vector into a reflected Stokes
vector.

In this paper, we compute Green’s matrix describing
Compton reflection from an optically thick planar slab of
incident radiation with arbitrary spectral, angular and
polarization properties by solving the radiative transfer
equation using the discrete space theory of radiative trans-
fer. We limit our calculations to incident photon energies of
less than 4 MeV. This is not much of a limitation, as the
observed spectra of Seyfert galaxies and X-ray binaries have
cut-offs at a few hundred keV.

In Section 2 we discuss the radiative transfer equation.
The redistribution matrices for Rayleigh scattering, Comp-

© 1996 RAS, MNRAS 283, 892-904

Compton reflection of polarized radiation 893

ton scattering and Fe line fluorescence are given in Section
3. In Section 4, we present the results of our radiative trans-
fer calculations, considering the Compton reflection below
and above 5 keV separately. We discuss several cases of
incident radiation with different angular, spectral and
polarization properties. Details of the radiative transfer
algorithm are given in Appendix A.

2 RADIATIVE TRANSFER EQUATION

We consider Compton reflection from a semi-infinite
homogeneous slab of cold neutral matter with cosmic abun-
dances. We approximate the semi-infinite homogeneous
slab with a finite slab of total Thomson optical depth large
enough (7 > 100) such that a negligible amount of radiation
is transmitted. We use the following notations: I=(I, Q)" is
the Stokes vector (see Chandrasekhar 1960); the degree of
polarization, p=Q/I-100 per cent=(I,—1)/(I;+1,) 100
per cent. We use /; and I, to denote the components of the
intensity with the electric vector in the meridian plane and
perpendicular to it, respectively. The meridian plane is
defined by the direction of photon propagation and the
normal to the slab. The polarization is positive when the
electric vector is predominantly parallel to the meridian
plane. We do not consider the Stokes V parameter, because
there is no source of circular polarization and V is indepen-
dent of the other Stokes parameters, I, Q and U. The third
Stokes parameter, U, is equal to zero because of the azi-
muthal symmetry of the chosen geometry. The general form
of the polarized radiative transfer equation in an axisym-
metric plane-parallel medium is written as

dI(z, x, p) - “(x\ [ ,
p———== —I(1,x, p) + A(x) —|dx du
dz o \X 3

x Rx, %', ph(x, ', ), @)

where u is the cosine of the angle between the direc-
tion of photon propagation and the slab normal,
dr=ny[0,,(x) + 0.(x)] dz is the incremental vertical optical
depth, o,,(x) is the photoelectric absorption cross-section
(Morrison & McCammon 1983), ¢, (x) is the scattering
cross-section being the sum of a coherent, g,.,(x), and an
incoherent, o;,.,,(r), component (see Hubbel et al. 1975).
Only hydrogen and helium contribute significantly to o,.(x).
All cross-sections are defined per hydrogen atom. Further-
more, x=hv/m.c® is the dimensionless photon energy in
units of the electron rest mass, and A(x)=o0.(x)/
[0n(x) + 0. (x)] is the albedo for a single scattering. The
2 x 2 matrix, R(x, p; x’, p'), is the azimuth-averaged polar-
ized redistribution matrix (see Section 3).

The optical depth =0 at the outer (upper) boundary,
and =T at the inner (lower) boundary. The boundary con-
dition at the outer boundary of the slab is

I(x=0,x, —p)=I"(, p), u>0, )

and no radiation is incident at the lower boundary.

We solve the radiative transfer equation (1) using the
method based on the discrete space theory of radiative
transfer (Grant & Hunt 1969a,b; Peraiah 1984; Nagendra &
Peraiah 1985). This method allows us not only to determine
the Stokes vector of the reflected radiation for given inci-

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996MNRAS.283..892P

BVNRAS. 2837 “892P0

I'I_

894 J. Poutanen, K. N. Nagendra and R. Svensson

dent radiation, but also the global reflection matrix, i.e.
Green’s matrix G(x, u;x’, u"), which makes it possible to
compute economically the reflected spectrum and polariza-
tion for an arbitrary incident radiation field using

I(x, p)=I(x=0, x, )

© 1
=J dxl J' du'G(x, ”; xr, u')Iim(x', 'ur),

x 0

u>0. 3)

The method also allows us to compute the diffuse radiation
field inside the slab at chosen grid points. The details of the
computation of Green’s matrix are given in Appendices A
and B. For the reflected flux and polarization, we use the
following notations:

1
Fref(x) ='[ Fref(x, ﬂ) dl»t, Fref(x’ #) =#Iref(x’ 'u)’

0

ref, (4)
=QM 100 per cent,
I ref(x, 'u)

with similar definitions for the incident radiation identified
through the superscript ‘inc’.

JACA)

3 REDISTRIBUTION MATRICES

In this section, we describe the redistribution mechanisms
studied in this paper. The general form of the redistribution
matrix employed by us is a weighted sum of redistribution
matrices for classical coherent Rayleigh scattering, inco-
herent Compton scattering, and fluorescent line production
(see Fernandez et al. 1993):

ﬁ R AN ﬁ 2 ’ O-“’h(x)
O 15 %", 1) =Reg@, g3 X', p') ——
USC(x)
A aTJinwh(x)
+ Reomp(xs 1 X', p') —————
© P( 'u 'u ) GKN(x)asc(x)
A , , Ot
+ Rﬂuor(x7 ﬂ;x » 1 ) ’ (5)
0(¥)

where oy (x) is the angle-integrated Klein—Nishina cross-
section for Compton scattering (e.g., Jauch & Rohrlich
1980), and o is the Thomson scattering cross-section. We
use the experimental values for o,,(x) and o, (x) tabu-
lated by Hubbel et al. (1975). For Av <5 keV, we treat the
scattering as in the Rayleigh scattering approximation [i.e.
Jcoh(x ) = O.sc(x) and o-incoh(x) = 0]‘

3.1 Rayleigh redistribution matrix

The well-studied Rayleigh redistribution matrix (Chandra-
sekhar 1960),

ﬁRayl(xy wx', u)y=6(x—x")
33w =i+ 3® (1=30)(1— )

X = 2 2 N (6)
16 1—p)(A-3x7) 31— -p"?)

is the coherent limit of the Compton scattering redistribu-
tion matrix at small photon energies, x << 1.

3.2 Compton redistribution matrix
The Compton redistribution matrix is given by Nagirner &

Poutanen (1994)

N 3 x (=
Reompt, 5 X', ') =——— J' ded[x’ —x —xx'(1 —cos ®)]
)

T 16mx’
x PG, s x', 15 ), @)
where
P, 15 X', 1's 9)=
1+ cos*® +we cos’® —1+2(1 — ) sin’ ¢
c0s’®—1+2(1—p'?) sin’p 14cos’®@—2(y*+p'?) sin’g |’
®

we=xx'(1 —cos ®)* is the Compton depolarization factor
and O is the scattering angle given by

cos @=pup" + /1 —p? /1 —p'?cos . )
The Dirac é-function in the integrand above preserves the

momentum in Compton scattering. Performing the integral
over ¢ we obtain

. 3 1.
Reomps 15 X', 0 ) =———"—P(x, 5 x", 1'; @),
8w x"?[sin @,

[cos o <1, (10)
where
@y =cos™! _cosO—mr and cos®=1—1+—1—
° J1—=p21—pu'? x x
| (11)

If |cos @,| > 1 then ﬁCOmp(x, W x', u")y=0, which causes cut-
offs in the redistribution matrix at scattering angles

cos O, =up’ + . J1—p2 J1—pu'? (12)

(see Fig. 1). The elements of the ﬁCOmp(x, w;x’, u') matrix
satisfy the following symmetry properties:

Rl ommp06, 115", ') = Ricomplt, 13 X', 1),

Romps 185 X", ') =Rlompl6, = x', —'),  1,j=1,2.
(13)

The scalar redistribution function (i.e. element 11 of the

polarized redistribution matrix) satisfies the normalization
condition

X 1 1
O'KN(x)=0TJ dx’ J dl‘J dy’
x/(1+ 2x) 0 0
X [RGomp®' '3 X, 1) + REmp®', '3 X, — )]
(14)

The corresponding integrals over R and R*' are equal
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Figure 1. The polarized Compton redistribution matrix, ﬁc°mp(x, w;x', u') (upper panels), and polarization, p(x) (lower panels), of singly
scattered radiation in a slab geometry. The pairs of variables, (x', u") and (x, p), are the energies and cosine angles of incident and scattered
photons, respectively. The abscissa, Ay=1/x — 1/x' =1 — cos @, is the Compton wavelength shift from the original wavelength, y’ =1/x", of the
incident photons. Here, x" =1. The 11, 12, 21 and 22 components of the polarized redistribution matrix are shown by solid, dotted, dashed
and dot-dashed curves, respectively (upper panels). The polarization, p(x), for three types of incident radiation: (I, Q")=(1, 0), (1, 1) and
(1, — 1), are shown by solid, dotted and dashed curves, respectively. The dot-dashed curve in lower panel (b) corresponds to (I’, Q") =(1, 0),

but for 4’ = —0.89 and p¢=0.11.

to zero. These normalization conditions are used to check
the accuracy of the numerical redistribution matrix, and
thus the quality of the chosen frequency and angular
grids.
In Fig. 1, we show the elements of ﬁCOmp(x, wx', 1) for
"=1 and for angles u, u’ using a three-point Gaussian
quadrature for the p, u" integrations. The matrix elements
are plotted as a function of the dimensionless wavelength
shift Ay=1x—1/x"=1—cos ® (where y=1/x=14/Ac is the
dimensionless wavelength in units of the Compton wave-
length, A.=h/mc). For |u|=|y'|, we have R”=R*. The
function R", which represents unpolarized scalar Compton
redistribution, is always positive. The polarization curves
shown in the lower panels of Fig. 1 are computed using
p(x)=(Q/I)100 per cent, where I and Q are given by

11 12 ’
<1>=( . Z""“’) (1 ) : (15)
Q Comp Comp (0
and where (I', Q") and (I, Q) are the incident and scattered
Stokes vectors, respectively. We consider three different
incident Stokes vectors: (1) unpolarized incident photons,
', Q")=(1,0); (2) 100 per cent polarization parallel to the
meridian plane, (I', Q’)=(1, 1); and (3) 100 per cent per-
pendicular to the meridian plane, (I', Q')=(1, —1). The
corresponding scattered polarization, p(x), is shown by
solid, dotted and dashed curves, respectively.

For case (1) in lower panel (a), the polarization, p(x), of
Compton-scattered photons is zero in the (almost) forward
(Ay ~0) and backward (Ay ~2) directions, and reaches a
maximum p(x) of ~ 67 per cent at cos ® ~0.1 (Ay ~0.9), i.e.
for scattering at nearly right angles. For cases (2) and (3),

© 1996 RAS, MNRAS 283, 892-904

p(x)is + 100 per cent in the (almost) forward direction, but
+ 60 per cent in the backward direction, where the effect of
the Compton depolarization parameter, wc, is largest. In
case (1), the curve would have been symmetric around
cos ®=0 (Ay=1) for the case of Rayleigh scattering, i.e. if
x" <1, with p(x) of 100 per cent at Ay=1. In case (3),
px) ~0at Ay ~ 1, as then the electric vector of the incident
photons points almost in the direction of the scattered
photon.

For cases (1) and (3) in lower panel (b), p(x) reaches
a positive maximum at Ayx1.1 (corresponding to
cos @ =~ —0.1), where the scattering plane is nearly perpen-
dicular to the meridian plane of the outgoing photons. The
electric vector of the scattered photons lies in the meridian
plane and p(x) is positive. The negative maxima of p(x)
occurs when the meridian and the scattering planes coincide
resulting in the scattered electric vector being perpendicular
to the meridian plane. In case (2), the electric vector of the
incident photons is nearly parallel to the normal, causing
the scattered electric vector to be nearly parallel to the
meridian plane and p(x) becomes positive. In this panel we
also show (dot-dashed line) the polarization produced by
scattering of unpolarized incident photons from ' = —0.89
to u=0.11. The resulting p(x) is always negative owing to
the scattering plane being nearly coplanar with the meridian
plane of the outgoing photons as for case (1) above.

Cases (1) and (3) in panel (c) are similar to the corre-
sponding cases in panel (b). For case (2), p(x) is positive
when the meridian planes coincide, and the electric vectors
of the incident and scattered radiation remain in the meri-
dian plane. Polarization changes sign when the meridian
planes are perpendicular.
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Evaluating ﬁCOmP(x, w;x', ')y on our pre-chosen fre-
quency grid (see Appendix B) using equation (10) will not
preserve the normalization conditions, as the matrix ele-
ments of Re,,,(x, 4; X', u") vary rapidly with frequency and
angle (see Fig. 1). Instead, in our radiative transfer calcula-
tions, we use a smoothed redistribution matrix obtained by
averaging equation (7) over short frequency intervals
[Xi_1pXin1p] With i=1, 2, 3, ..., Ny, where N is the total
number of points in our frequency grid:

RComp(xi’ .u’ x’, I'l',)

3 2n 1 X1z x
=— | do— = dx
16n A, X’

0 X112

x 8[x' —x —xx’(1—cos ®)]P(x, u; x', u'; 0),

3 @+ d(p
- 8n4, , [1+x'(1—cos @)
p ul W (16)
T o X, 1 ,
1+4+x'(1 —cos ®) 10

where A; are the quadrature weights of frequency integra-
tion, the integration limits, ¢, , are

1 1
cos (pi=(1 +;——x——,uu’>/(«/1-;12,/1—#’2), 17

+

and

. x,
X, =min |x; ) 3
N [ e 1+x'(1—cos®+)]

X' } (18)

X_=max |X;_,,,
[ " 14x'(1—cos®_)

To achieve an accuracy of 10™* in the normalization condi-
tion (14), we use 21-point Simpson quadrature when inte-
grating over the azimuthal angle, ¢, in equation (16).

3.3 Fluorescent line redistribution matrix

A fluorescent line is caused by photoelectric absorption and
subsequent spontaneous radiative transitions, resulting in a
redistribution of continuum photons into fluorescent line
photons. This redistribution is assumed to be isotropic (and
hence unpolarized, as is the case for K lines) and is
described by

Rouor(t, 1 X7, 1) =3[Y,8(x —x,) + Y,0(x —x,)]

ore(x") 10
x —=H@E' —x,) (1 —1/J%,) [0 ] ,

T

(19)

where the fluorescent yields are Y,=0.305 and Y;=0.035
(Kikoin 1976; Bambynek et al. 1972), for the 6.4-keV Ko
and the 7.06-keV K lines of Fe 1, respectively, x, and x, are

the corresponding centroid energies, og(x) is the photo-
electric absorption cross-section for Fe1, and J, is the

absorption-edge jump (see, e.g, Fernandez et al. 1993). The
Heaviside function, H(x' —x_), accounts for the absorption
threshold at x, (corresponding to 7.1 keV for Fe 1 X lines).

In equation (19) we assume that the reflecting slab is
sufficiently cold (temperature <1keV) that most of the
iron is weakly ionized (see, e.g., Zycki & Czerny 1994 for
effects of partial ionization). Any relativistic, kinematic or
thermal effects that can significantly affect the iron line
profile (see, e.g., Fabian et al. 1989, Matt et al. 1991) are
neglected here.

4 RESULTS AND DISCUSSION
4.1 Compton reflection for hv <5 keV

As o, (x)2 0. (x) for hv<5keV (x<0.01), at most a few
scatterings contribute to the reflected radiation. As the frac-
tional energy decrease, (Ax/x) ~x < 1, is small, the scatter-
ing can be considered as coherent, Ry, (x, 4; x', 1") can be
used instead of R(x, u;x', 1) (see equation 5), and the
transfer equation can be solved independently at each fre-
quency.

Coherent Compton reflection for isotropic incident
intensity was solved using the two-stream approximation by
several authors (e.g. Lightman & White 1988), resulting in a
reflected flux given by

Frei(x) = e(x)F ™ (x), (20)

where

1-1 — Alx)
1+ T—i@)

In the general case, however, the coefficient is not simply
&(x), but a Green’s matrix which also depends on angles p
and u’'. We calculated Green’s matrix as a function of the
albedo for single scattering, A(x), and noticed that the ratio
[G, s x', u')/e(x)] is a smoothly varying function of A(x).
This property allows us to compute the Compton-reflected
spectrum at x < 0.01 for arbitrary values of A(x) by interpo-
lating between pre-tabulated values of [G(x, y; x', 1" )/e(x)],
instead of explicitly solving the full transfer problem ab
initio for each frequency point individually. We have used
this quite accurate procedure when computing the <5 keV
part of the spectra presented in this paper.

&(x) (21)

4.1.1 The test case of a strongly absorbing layer

Analytical solutions in the single-scattering approximation
for A(x) <1 (e.g., Ghisellini, Haardt & Maraschi 1994,
Magdziarz & Zdziarski 1995) can be used to check our
numerical solutions. For x <0.01, Green’s matrix can be
expressed in terms of the redistribution matrix as

G, 15, 1) =) —— R, 15, ). (22)
utp

We will consider three types of angular distribution of the

incident radiation: (1) Fy(x', ') =6(¢’ — 1), i.e. radiation

is incident along a cone with an opening angle cos™" y; (2)

Fy(’,u')=1, ie. isotropic incident flux; and (3)

Fy(x’, u’)=2y' corresponding to isotropic incident inten-
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sity. For unpolarized incident radiation with these angular
distributions we substitute equation (22) in equation (3) and
obtain the angular distributions of the reflected flux in the
single-scattering approximation:

RN I R < B i R T
e =101 u+uo( (1= 1)1~ 340) ) )
F;ef(x’ “) =
1 2 2 4 LT+p
3 ) A—=2p) (1 -3+ (3—-2p*+3u") In
) 16 , 3 1+pu
(1—u)[~5(1—2ﬂ)+(1—3u2)1n }
(24)
) 1 .
F(x, p)=A(x) g (O)— WF(x, p). 25)

In Fig. 2 we compare these analytical results (curves) as
functions of viewing angle, p, with the numerical results
(squares) of our full radiative transfer calculations in the
limit A(x) < 1, finding excellent agreement even when using
a three-point Gaussian quadrature.

For conal incident radiation, the reflected flux is larger
when photons are incident along grazing angles, since these
photons have a larger escape probability from the surface
layer (t < 1) of the slab. The photons incident along the
normal direction penetrate deep into the medium so that
the scattered photons cannot directly escape to the surface.

Compton reflection of polarized radiation 897

The polarization is always zero along the normal direction
(u=1) due to the axisymmetry. In case (2), a larger number
of photons are incident along grazing angles, u ~ 0, as com-
pared to case (3) where most photons are incident close the
normal. This explains the larger reflected flux in case (2).
The degree of polarization behaves differently in these two
cases. In case (2), the polarization is positive due to large
contribution from the photons incident along the grazing
angles. This is opposite to case (3), where the polarization is
negative due to the large contribution from photons inci-
dent close to the normal.

4.1.2 The test case of pure Rayleigh scattering

We also compare our numerical results with the exact
analytical solutions for conmservative Rayleigh scattering
[A(x) =1] from Chandrasekhar (1960) and Sobolev (1963).
The analytical Green’s matrix is most simply expressed in
the (I, I,) basis as

Qe may LU PN (26)
’ 16 ” + l‘l Srl Srr
where the matrix elements are given by
Sy=2H(H (p)[1 —c(u+p') + '],
Se=qH(WH (1) (u+ 1),
27

Sa=qH.(WH (1) (p+ 1),
Se=H(H (W) [1+c(u+u")+pp'],

H,, are the well-known H-functions, g=0.68989 and
¢=0.87294. The final analytical results are obtained by sub-

6O T T T T T T FrT T T T
403_ AMz) << 1 (a)_: 30"._‘ AMz) << 1 (b)_:

® 20F 1 20p 3
g . PR 3 s ]
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Figure 2. (a) Angular dependence of the flux, F*(x, 1), and the polarization, p™/(x, u), of the reflected radiation for a strongly absorbing
layer with 1(x) <1, and for a cone of unpolarized incident radiation given by Fi°(x’, u')=6&(y’ — po). Curves show the results using the
analytical expression (23), and squares show our numerical radiative transfer results using a three-point Gaussian quadrature (0 < u <1). The
solid, dotted and dashed curves show the results for y,=0.11, 0.5 and 0.89, respectively. (b) Same as (a), but for different angular distributions
of the unpolarized incident flux. Dotted curves correspond to F3°(x’, u')=1 and expression (24), and solid curves to Fi*(x’, u') =2y’ and

expression (25).
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Figure 3. Same as Fig. 2 but for pure scattering, A(x) =1. Curves show the results using the analytical expressions (26) and (27).

stituting equation (26) into equation (3) for the three cases
of unpolarized incident radiation considered in Section
4.1.1.

In Fig. 3, we compare these analytical results (curves) as
functions of viewing angle y with our numerical results
(squares), again finding excellent agreement. Fig. 3(a)
shows the results for an unpolarized flux
F™', w')=6(u' — i) incident along a cone for three
choices of p,=0.11, 0.5 and 0.89. The reflected flux is
strongly enhanced in the normal direction, and limb darken-
ing occurs for all incident directions u,. The degree of
polarization resembles that in Fig. 2(a) except that it is
smaller for p,=0.89 owing to the contribution of multiply
scattered photons.

In Fig. 3(b), results are shown for cases (2) and (3)
defined in Section 4.1.1. For both cases the reflected
intensity is almost isotropic owing to the large contribution
of multiply scattered photons. In case (3), the degree of
polarization is very small due to an almost complete iso-
tropy of the radiation field in the boundary layer. In case (2),
the relative fraction of photons reflected close to the normal
is smaller than in case (3), basically because of the dipole
nature of Rayleigh scattering and because the dominant
contribution to the reflected flux comes from photons
incident along grazing angles. For the same reasons as in
Section 4.1.1, the degree of polarization is large along the
plane of the slab reaching a value of 33 per cent at u=0.

These results will be useful below when interpreting
Compton reflection around 30 keV.

4.2 Compton reflection for av > 5 keV

For hv>5keV (x >0.01) we use the general expression (5)
for the redistribution matrix. Since the radiation field at any
frequency point is coupled to other frequencies through
non-coherent Compton scattering, the radiative transfer
equation is solved for all frequency points simultaneously

(as in the case of radiative transfer in spectral lines). In
order to obtain accurate solutions, we use an equally spaced
wavelength grid. We will consider incident spectra as having
maximum photon energies of 4 MeV, making it necessary to
have a wavelength grid extending fromy ~ 100 (hv ~ 5 keV)
down toy ~ 1/8 (hv ~ 4 MeV). In order to accurately repre-
sent the incident and reflected spectra from 5 keV to 4 MeV
we need about 400 to 800 wavelength points. We use a non-
uniform wavelength grid consisting of seven regions. Each
region contains 50 equally spaced wavelength points.
Green’s matrices on each of these wavelength regions are
constructed as explained in Appendix A, and stored in
memory. Green’s matrix for any chosen logarithmic fre-
quency grid is calculated and tabulated as described in
Appendix B using the pre-tabulated data. We now use two
tabulated Green’s matrices for Compton reflection to deter-
mine the angular and spectral distributions of the reflected
flux and polarization for a few cases of incident radiation
with simple polarization, angular properties and spectral
properties.

4.2.1 Unpolarized isotropic monochromatic incident flux

First, we use Green’s matrix, Gj", (see Appendix B for
notation) with a wavelength resolution of 1/4, for an
unpolarized, isotropic, monochromatic incident flux,
Fi@', ')y =08(x' —x,) with x,=8/9. In Fig. 4, we show the
flux and polarization as a function of wavelength shift, Ay.
Singly scattered radiation dominates in the region Ay <2.
The flux reflected after one scattering differs from zero for
scattering angles cos ® < cos O,,,,=./1 — p? (using ¢’ =0in
equation 12). This condition sets restrictions on the wave-
length shift Ay>Ay_..=1—./1—p? For viewing angles
close to the plane of the slab, u~0, the reflected flux is
maximum for Ay=2 and ~0 (which correspond to the
directions of forward and backward scattering and, thus, to
a maximum scattering probability). In Fig. 4 the flux is non-
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zero for Ay =0, owing to our limited wavelength resolution.
The degree of polarization is always positive for u ~ 0 due to
large contributions from the photons incident close to the
plane of the slab. It has a primary maximum at Ay ~ 1 due to
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Figure 4. F™'(x, ) and p™(x, ) as a function of photon wave-
length shift, Ay=y —y,, for unpolarized, isotropic, monoenergetic
incident flux, Fy°(x', u')=8(x' —x,), with x,=1/y,=8/9. Seven-
point Gaussian angular quadrature and a wavelength resolution of
1/4 are employed. The seven curves represent seven viewing angles
identified as follows: solid curves — p=0.025; dotted curves —
1=0.13; dashed curves — p=0.30; dot-dashed curves — u=0.50;
dot—dot—dot-dashed curves — ©=0.70; long-dashed curves —
1=0.87; and thick-solid curves — p=0.975.
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contributions from photons incident perpendicular to the
meridian plane of outgoing photons. For viewing angles
close to the normal, p ~ 1, and for Ay ~ Ay,_.., only photons
incident at grazing angles close to the meridian plane can
contribute to F™(x, u). For such angles of incidence, the
scattered radiation is polarized perpendicular to the meri-
dian plane, and the polarization is negative.

In the region Ay > 2, the fluxes have secondary maxima
at Ay ~4 corresponding to twice nearly back-scattered
photons escaping from the slab. The secondary maxima in
the polarization at Ay ~ 3 is the result of backward Compton
scattering followed by a scattering at ® =90° (or vice versa).
For larger incident photon energies, x,>> 1, the degree of
polarization is smaller because of the increase in the depo-
larization factor, w, in the Compton redistribution matrix
(see equations 7 and 8).

4.2.2 Unpolarized conal incident power-law radiation

For this and the remaining cases, we use a tabulated
Green’s matrix on a logarithmic frequency grid with resolu-
tion A logx =0.1 (except around iron line features where we
employ the original Green’s matrix, G™,, with resolution
Ay =2, see Appendix B). In Fig. 5, we show the reflected flux
and polarization for unpolarized incident radiation along
cones of different opening angles with power-law incident
spectrum, F{(x', p’)=(')""'6(u’ — o), extending up to
x'=8 (i.e., hv' 4 MeV). For x <0.01 (i.e. hv <5 keV), we
can use expression (23) to interpret the angular dependence
of the Compton-reflected spectrum and polarization.
Nearly constant polarization for photons incident at grazing
angles (Fig. 5a) is due to the large contribution from singly
scattered photons. For almost normal incidence (p,=0.89),
the polarization p™(x, u) decreases with frequency due to
increased contribution from the multiply scattered photons
(Fig. 5b). The angular dependence of p™'(x, p) at x <0.06
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Figure 5. F™'(x, u) and p™(x, ) at different viewing angles u for an incident cone of unpolarized radiation with opening angle cos™ . (a)
corresponds to y,=0.11 and (b) to u,=0.89. The incident flux has a power-law spectrum, F°(x’, u') = (x") "'8(u’ — 1), extending up tox’ =8.
The solid, dotted and dashed curves correspond to u=0.11, 0.5 and 0.89, respectively.
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(hv<30keV) can be understood using the results for the
two test cases in Section 4.1 shown by dashed curves in Figs
2(a) and 3(a). Unpolarized iron Ko and K § fluorescent lines
cause depolarization of the continuum radiation at the
corresponding line energies (see equation 19). At large
photon energies, x> 1, the spectra have sharp cut-offs.
When x ~ 1, the wavelength shift Ay=1/x —1/x’ <1 for any
value of the incident photon energy, x’ >x. Here, single
scattering dominates the reflected flux. For a fixed value of
the incident angle, u' = u,, the wavelength shift is restricted
to Ay > Ay,in=1—cos @, where cos ®, is given by equa-
tion (12). This corresponds to a high-energy cut-off of the
reflected spectrum at

x’ 1

1+x"(1—cos ®+)~1—cos (O

xc(x,’ K, H’O) = (28)

forx' > 1.

The degree of polarization at x ~ 1 is different from that
atx ~0.1 due to increased contribution from the first scat-
tering. From Fig. 5(a) we see that the degree of polarization
decreases with energy, and even becomes negative in direc-
tions close to the normal. This is caused by the fact that for
Ay < 1 (see Fig. 4), the polarization is positive for the radia-
tion reflected tangentially to the layer (1 ~ 0) and negative
for radiation reflected in the normal direction. If the energy
x of the reflected photons is close to the cut-off energy,
x(x', u, 1,), those photons that are forward scattered in the
meridian plane give the dominant contribution to the
reflected radiation. In such a case, radiation scattered close
to the normal directions has large negative polarization
(dashed curve), but radiation scattered along the plane of
the slab is nearly unpolarized (solid curve).

We compared the degree of polarization for p,=0.89
(Fig. 5b) with the results of Monte Carlo computations by
Matt (1993, see his fig. 3, which shows the degree of polariz-
ation in the broad energy bands hv <10 keV, Av=10-30

keV and hv=30-50 keV) and estimated the relative differ-
ence to be at most 10 per cent.

4.2.3 Unpolarized isotropic power-law incident flux and
intensity

Fig. 6(a) shows reflected spectra for unpolarized isotropic
incident flux having a power-law distribution in energy,
Fy(’, p’)=(")"", extending up tox’ =8. The reflected flux
and polarization for x < 0.01 can be interpreted using equa-
tion (24) for single scattering in a layer with dominant
absorption. The angular dependence for this frequency
region is shown in Fig. 2(b) (dotted curves). At energies
x ~ 0.05, multiple scatterings dominate the transfer of radia-
tion, and the results can be interpreted using equations (26)
and (27). The angular dependence in this region of the
spectrum is shown in Fig. 3(b) (the dotted curves). The cut-
off energy for monoenergetic incident photons is given by
equation (28) with u’=0 (Hua & Lingenfelter 1992). The
energy dependence of polarization is similar to that shown
in Fig. 5(a). This is due to a strong contribution to the
reflected radiation from photons incident at grazing
angles.

For the incident radiation of the form F™ (x',u’)
=exp (—x')/x’, we compared the reflected flux with the
results of Magdziarz & Zdziarski (1995). The largest devia-
tion ~6 per cent is consistent with the accuracy of both
methods. We also compared the Fe line equivalent width
with the results of George & Fabian (1991). Our calcula-
tions give values ~ 10 per cent smaller due to the smaller
photoelectric absorption adopted by us (see Zycki & Czerny
1994).

Fig. 6(b) shows reflected spectra for unpolarized incident
radiation of the form Fy°(x', ') =2p'(x")"". For x <0.01
and atx ~ 0.05, the angular dependence of the reflected flux
and polarization is similar to those shown in Figs 2(b) and
3(b) (solid curves). The angular and frequency dependence
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Figure 6. Same as Fig. 5, but with unpolarized incident power-law spectra of the form F°(x',u’)=(x')"' for panel (a), and

FIG, 1) =240 ()" for panel (b).
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Figure 7. Same as Fig. 6(a) (i.e. isotropic incident flux with a power-law spectrum) but for incident polarization of + 100 per cent in panel

(a); and for incident polarization — 100 per cent in panel (b).

of F™(x, u) and p™'(x, p) at very high energies (x > 1) in Fig.
6(b) is qualitatively the same as in Fig. 6(a).

Polarization at high energies has complex behaviour
reflecting the ‘waves’ in polarization occurring at approxi-
mately the same photon energies for incident radiation of
any x’' > 1 (see Fig. 4). Sharp kinks are caused by poor
resolution of the angular grid.

4.2.4  Polarized isotropic power-law incident flux and
intensity

Figs 7(a) and (b) are similar to Fig. 6(a), except that now the
polarization of the incident radiation is + 100 and — 100
per cent, respectively. The flux profiles in Figs 7(a) and (b)
are sensitive to the degree of incident polarization. Indeed,
the spectra in Fig. 6(a) are weighted averages of these two
extreme cases. We emphasize that for highly polarized inci-
dent radiation it is necessary to consider the transfer of
polarized radiation in order to get correct estimates of
F™(x, p) and p™(x, ). The polarization is nearly constant
for 0.03<x<0.5 where multiply Compton-scattered
photons dominate. The sharp increase of polarization for
x> 0.5 is due to the strong contribution of singly scattered
photons. As already mentioned, the Compton depolariza-
tion factor, wc, and thus the singly scattered polarization
depend strongly on the scattering angle ®. Photons at high
energies are nearly forward scattered where the depolariza-
tion is minimum. Thus, the polarization is + 100 per cent at
large energies in Figs 7(a) and (b).

5 SUMMARY

A numerical method based on discrete space theory in
order to solve polarized Compton scattering problems was
presented. This method was employed to solve the problem
of Compton reflection of incident X-rays and y-rays by an

© 1996 RAS, MNRAS 283, 892-904

optically thick planar slab of cold neutral matter accounting
for both photoelectric absorption and the generation of a
fluorescent Fe line. The relevant transfer equation was
written in the (I, Q) basis in order to solve the Compton
reflection problem in an axially symmetric situation.
Generalization to non-axial symmetries is also possible.
Explicit expressions were given for the Compton redistribu-
tion matrix for cold matter.

We discussed the basic physics of Compton frequency
redistribution as a non-coherent mechanism. The scattering
of X-rays with photon energies <5keV can be well
described using the Rayleigh scattering limit. For larger
photon energies >5keV, the Compton redistribution
matrix must be used. Common features and differences
between Rayleigh and Compton redistributions were
described quantitatively, and analytical methods and simple
numerical approximations were used to understand the
radiative transfer results. The emergent reflected spectra
and polarization for a variety of incident radiation fields
were presented and discussed.

Green’s matrix for the Compton reflection problem was
computed and stored. The tabulated Green’s matrices are
available electronically from the authors.
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APPENDIX A: A BRIEF ACCOUNT OF THE
POLARIZED RADIATIVE TRANSFER
ALGORITHM

We employ the method of solution given by Grant & Hunt
(1969a,b). It is a discrete ordinate finite difference method.
Consider a plane-parallel slab of total thickness 7 with
radiation incident only on the upper boundary (7 =0). For
convenience, we assume that there are no sources of radia-
tion inside the slab. Let x,(i=1, N)) be the set of frequency
points and p,=cos 0, (j=1,J) be the angle cosines in the
interval [0, 1]. The Stokes vector at an optical depth <, is
written as a vector of 2N,J elements and is denoted by 1*
with + and — signs denoting the upward and downward
directions, respectively. More specifically, the elements
of the intensity vector are IS, =I(t,,x;, +u;) and
I ng=0(,,x;, = ), with the running index & given by
k=j+J3i—-1).

The medium is divided into N layers of arbitrary optical
thickness. Consider now an arbitrary layer (r, m) bounded
by the planes t, and 7,, such that 0<t,<7,<T with
m=n+1andrn=1,2,...,N.Let the Stokes vectors incident
on this layer be I} and I . If the emerging Stokes vectors, |,
and |,;, depend linearly on the incident radiation, then we
can write

[:"f]=8<n, m) H (A1)

where the interaction matrix, S(n, m), is given by

)= [t(n, m) r(m, n)]

S(n,m
r(n, m) t(m, n)

(A2)

The linear operators t(n, m), t(m, n) and r(n, m), r(m,n)
describing diffuse transmission and diffuse reflection of
radiation can also be defined as integral operators. For
example, for the reflection matrix r(m, n) we can write

=<} 1
r(m, n)l,f=J dx’ J du'r(t,., x, 3 1, X', —u')

0 0

xI(t,,x', —p'), O<p<l. (A3)

In the discrete ordinate representation, r(m,n) is a
2N.J x 2N,J matrix. The integrals in the above equation are
performed using angular and frequency quadratures with
weights, c¢; and A4, respectively.

We now give the expressions for determining the fluxes
emerging from a homogeneous slab. Consider two adjacent
layers bounded by planes at t,, 7, and 7, where
0<rt,<r1,<1,<T. Using equation (Al) we can write

" =50 m) H and B’f}sw,m [:] (Ad)

P

Since 1,, 1,, and 7, are arbitrary, we can also write

1] Lr
" |=S@.p) H (45)

) n

The matrix S(n, p) can be written as a ‘star-product’ of two
interaction matrices for the adjacent layers as

S(n, p)=S(n, m)*S(m, p), (A6)

where the elements of the interaction matrix S(n, p) for the
composite layer can be found by eliminating | from the set
of equations (A4):

t(n, p) =t(n, m) [E —r(p, m)r(n, m)] "'t(m, p),
t(p, n)=t(p, m)[E —r(n, m)r(p, m)]~'t(m, n),
r(n, p)=r(m, p) +t(p, m)r(n, m)

x [E—¥(p, m)r(n, m)]~'t(m, p),
r(p, n)=r(m, n) +t(n, m)r(p, m)

x [E —r(n, m)r(p, m)]~'t(m, n),

where E denotes the identity operator. The physical mean-
ing of these equations as well as properties of the ‘star-
product’ can be found in Grant & Hunt (1969a,b).

(AT)
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The discrete ordinate representation of the transfer
equation (1) is given by

+

di
M1 =A[R" el +R* el
T

(A8)
di;
M
dr

—IF =A[R™*elf +R¢l],

where M, ¢ and A are 2N, J x 2N,J diagonal matrices, with
the elements given by
M, = ] 0

g Cag =C, A0

s oy = A0, (A9)
The matrices R** are discrete ordinate representations
of the redistribution matrix, with the elements written expli-

citly as

X;
R:* =; R,,I(x,-, iuj;xi’, + luj')' (AIO)

S

The indices g and g’ are given by g=j +J[i — 1 + N(I—1)];
and g’ =j’ +J[i" — 1+ N,(’ —1)]. The polarization indices
1,1'=1, 2. By reducing the discretized transfer equations to
the canonical form (equation AS) through straightforward
algebraic manipulations, we obtain expressions for the
transmission and reflection matrices:

t(n, m)=E —hM~'(E —AR" *c) + o(h),
t(m, n1)=E —hM~'(E — AR~ ~c) + o(h),
r(n, m)=hM~'(E — AR* ~¢) + o(h),
r(m, n)=hM~(E—AR™ *¢) +o(h),

where the step-size h =7,, — 7,. Through successive applica-
tions of the star-product (see equation A6), we can build up
the global ‘transfer operator’ S(1, N + 1) which represents
the transfer of radiation throughout the entire slab. Finally,
we can obtain the external response (emergent intensities)
from the slab by using equation (Al) withn=1,m=N+1.
This procedure is useful for slabs which are homogeneous
and/or optically thin (z ~ 1). In such cases, we can employ
uniform or logarithmic depth grids with N=50-100 points
to develop accurate t and r matrices for the whole slab. If
the medium is optically thick and inhomogeneous, the t and
r operators for layers of arbitrary thickness are preferably
computed by a fast doubling procedure. The discussion on
the accuracy and stability of this method can be found in
Grant & Hunt (1969b) and Peraiah (1984). The algorithm is
stable as long as a step-size criterion

(A11)

2,

h<t,=min—————
1—-2A(x)R ",

(A12)

is satisfied.

We now show how to compute the Stokes vectors I at
the selected levels, 0=1,<...7,<7,.,<...<ty, =1,
within the medium. First, the matrices S(n, n + 1) are com-
puted using the methods described above, and stored in
memory. Then, we compute by forward elimination for
n=1, 2, ..., N the auxiliary quantities, r(1,n) and V2, ,,,
starting with initial conditions, r(1,1)=0, and V,=I;.
Notice that I is the radiation field incident at the top

© 1996 RAS, MNRAS 283, 892-904

Compton reflection of polarized radiation 903
boundary (7 =0), which is specified as a boundary condition.
The elimination procedure is formally written as
rLn+D=r(n,n+1)+tn+1,n)r(1, n)

x [E—r(n+1,n)r(1, n)] t(r,n+1), (Al3)
and

vn_+ 1/2=i(n + 1> n)vn—— 172>

V=t +1,mV, (A19)
where the t and f operators are computed using
tn+1,n)=t(n+1,n)[E—r(l, n)r(n +1,n)]"",

(A15)

tn+1,n)=r(n+1,n)[E—r(l,n)r(n+1,n)]"

Finally, we compute recursively by backsubstitution, the
radiation field I, , and I for all layers of the medium,
n=N,N—1,...,2,1, including the boundaries. This reverse
sweep is performed starting with the boundary condition
5, ,=1"(z=T) at the lower boundary [in this paper, we use
1" (z=T)=0]. The required equations are

In_+1 =l'(1, n+ 1)I:+1 +vr;-+l/2
and (Al6)
L =[E—r(n+ 1), m)] "t n+ D+ Vo

It is important to recognize the fact that the global reflec-
tion matrix r(1, N+1) in equation (A13) is nothing but
Green’s matrix for the ‘reflection of radiation’, incident at
the top of the slab:

G=r(1, N+1) (A17)

This non-local operator G contains the multiple scattering
contributions of all scattering orders. It accounts for the
contribution of scattered photons from all directions and
from all spatial points in the slab. This can be clearly seen by
expanding [E—r(n+1,n)r(1,n)]”" in equation (A13) to
the first few terms. It turns out that the single scattering
approximation and the method of expansion in scattering
orders form limiting cases of the general method of solving
the transfer equation presented above.

APPENDIX B: CONSTRUCTION OF
GREEN’S MATRIX ON AN ARBITRARY
FREQUENCY GRID

Since incident theoretical spectra are computed on a loga-
rithmic frequency grid, we present a simple technique for
obtaining Green’s matrix G on a logarithmic grid (log-
grid). Green’s matrices, G'™, that we originally compute
using equation (A17), are evaluated on an equally spaced
(linear) wavelength grid and stored. The G matrix is, how-
ever, required on a log-grid, but it cannot be obtained from
G"™ by simple interpolations, because the matrix functions
are highly peaked in angle and frequency variables. In the
radiative transfer solution of the Compton reflection prob-
lem, we need an equally spaced wavelength grid. The wave-
length step-size, Ay, must always be less than 2, otherwise
scattered photons are not transmitted from one wavelength
grid point to the next. However, it is practically impossible
from a computational viewpoint to cover the large energy
range, 0.01 <x < 10, using a single step-size. Instead we use
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Figure B1. The equally spaced wavelength grids on which Green’s
matrices for Compton reflection are computed and stored. All
wavelength grids start at the rightmost vertical line, x'=8. G;"
(k= —1,...,5) represent high-energy Compton scattering regime.
As x' >x for Compton scattering on cold matter, G=0 above the
diagonal. The black square shows the area over which G;" values
are averaged in order to obtain the value of G*® at (x/%, x/'*%). Gg,,
represents the Rayleigh scattering regime shown by the crosses.

seven grids with different step-sizes which start at the same
wavelength point, y,=1/8 (i.e. hvy~4 MeV), and cover dif-
ferent ranges in energy as seen in Fig. B1. The wavelength
point i for the grid k is given by the formula

Yii=Yo+ (i — DAYy,
i=1,...,N; and k=-1,...,Ng,

where the step-size Ay,=27% In this paper we have used
N;=50 and N;=5 to calculate the G, matrices. Fig. Bl
shows the actual grids on which the G;" matrices are com-
puted and stored. Each vertical line represents a wavelength
grid. Since x” >x for Compton scattering on cold matter, we
have G =0 for x’ <x, and we need to store G;" matrices only
for half of the (x, x”) plane. To determine the G'*® matrix on
a log-grid at a point (x%,x;/'°!), we perform an average

. J
of G over a square with boundaries [x\*%,,, x|%,,] and

[x, 5, x; ¢ ] centred at the point (x}°¢, x/'*). This averaging
takes into account the typical incident spectrum,
I'™(x) ccx™'. Applying a different incident spectrum power-
law gives differences in the reflected spectrum of order
~ 0.1 per cent, which are much less than the overall accu-
racy of the calculations.

Calculation of the G'® matrix for x=x’ <0.01 (Rayleigh
scattering regime) can be performed by a trivial interpola-
tion of A(x), since Green’s matrix now depends only on A(x)
(see Section 4.1 and the lower left corner of Fig. B1).

The relative accuracy in the evaluation of the reflected
spectra depends on the resolution of the grids used for
computing G;". We found that for very hard incident spectra
(with energy power-law index o < 0), the final errors in the
reflected spectrum are ~ 20 per cent. We can easily reduce
these errors by choosing wavelength grids with higher reso-
lution and/or increasing the number of frequency grid
points. For incident softer spectra (« > 0.5), the errors are
less than 6 per cent. The errors related to the discrete space
method depend on the accuracy that the normalization con-
dition (14) satisfies (Grant & Hunt 1969b; Nagendra &
Peraiah 1985). For the case of Compton scattering, we have
a sink of photons at the low-energy boundary of the grid,
and the normalization condition cannot be satisfied at this
grid boundary. We estimated the final errors in the reflected
spectra by comparing spectra computed using different
G".
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