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ABSTRACT

We model the structure of the “steady” (slowest varying) part of the Sun’s internal poloidal magnetic field
assuming it to be (for given reasons and in the relevant domain) a current-free field whose field lines
“isorotate” according to the Sun’s internal rotation given by helioseismology. This part of the field can be
described as that of a central dipole and a central hexapole both parallel to the rotation axis and embedded in
a uniform external field. The field structure contains a critical surface (running along the base of the convec-
tion zone in the low latitudes), where a discontinuity of ~7 nHz per unit flux in the gradient of rotation (with
respect to magnetic flux) may be winding a poloidal field (of ~10~* to 1 G) into a toroidal field ~2 MG in
~105-10° yr. Small deviations from isorotation indicate presence of MHD perturbations whose latitude struc-
ture and time scales may be similar to those dominant in the solar cycle.

Subject headings: Sun: magnetic fields — Sun: rotation

1. INTRODUCTION

Helioseismology can be used in two ways to study the inter-
nal magnetic field of the Sun. In one approach, Dziembowski
& Goode (1991) analyzed Libbrecht’s (1989) data for the
observed frequency splittings of the intermediate degree acous-
tic modes and derived the presence of a quadrupole toroidal
field of ~2 + 1 MG just below the base of the convection zone.
A purely toroidal field, however, is unlikely to be stable (Taylor
1980), or even in equilibrium (Spruit 1987), unless it is con-
nected to, and replenished from a poloidal field (Kuhn 1988).
The presence of a directly unobservable steady poloidal field of
primordial origin is possible on theoretical grounds (Cowling
1953) and is also indicated indirectly by some observations
(Piddington 1976). In this paper we first determine, theoreti-
cally, a likely configuration of the internal poloidal field that
can remain in a “steady” state with the helioseismologically
determined internal rotation of the Sun.

At any epoch the “steady” and the “fluctuating” parts of
rotation and magnetic field must considered simultaneously.
The fluctuations may be contributed, for example, by super-
position of a large number of the Sun’s global oscillations (for
example, in this context, hydromagnetic oscillations), on a
hierarchy of “dynamical ” time scales. The “steady” parts of
the rotation and the magnetic field may themselves vary on
very long time scales (e.g., diffusion time scales), much longer
than the period of the slowest mode of global oscillation. The
latter, for example, may be of the order of decades. However,
for determining the “steady ” part of the magnetic field, in this
paper we approximate it as if it is absolutely steady.

Analysis of sunspot data for the period 1874-1976 suggests
that the underlying steady part of the Sun’s magnetic field must
be predominantly axisymmetric (Gokhale & Javaraiah 1990).
Hence, according to Cowling’s theorem, the resistive and the
inductive terms in the induction equation for the steady part
of the field must vanish separately. Thus the steady part of
the internal field must be current free (except near the
“boundaries ’) and must be in isorotation (Ferraro 1937) with
the steady part of the rotation of the plasma. In concluding so,
other plasma flows like meridional circulation, etc. are
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neglected if they exist. If the time-dependent part of the rota-
tion is small, then the isorotation of the field with the steady
part of the plasma rotation implies approximate isorotation
with the helioseismologically “observed” rotation of the
plasma. This requires existence of a functional relation between
the “observed” rotation rate Q(r) at a point r and the flux
function ¢(r) of the “steady ” poloidal field linking through the
circle of revolution of the point.

One may compute many models of an “isorotating ” field at
the epoch of observation by assuming ¢(r) to be different arbi-
trary functions of the observed Q(r). However, the models so
computed will be only numerical, since Q(r) is known only
numerically. Moreover, none of the models so computed will
represent the real steady field, since the real steady field must
be isorotating only with the unknown “steady ” part of helio-
seismologically “observed” internal rotation. Therefore it is
necessary to model the “steady ” part of the real field by deter-
mining the best combination of terms, and the best set of
values for the coefficients in an appropriately chosen analytical
expression for the magnetic field that isorotates with Q(r).

In such a model, that part of the helioseismologically deter-
mined Q(r), which can be best fitted to the isorotation law,
represents the steady part of the rotation field. The residual
part of Q(r) then represents the fluctuating part of rotation.

In the present paper we choose, as a starting form, the sim-
plest expression, viz., the multipole expansion of a potential
field with odd north-south parity. The physical justification for
this choice and the method of analysis are given in § 2.

We find (in § 3) that the observed rotation in the convective
envelope (“CE”), can be fitted very well to a linear relation
Qr) = Q, + Ad(r), but the best fit requires that the flux func-
tion ¢(r) contains a term ¢(r) representing “central ” sources
as well as a term ¢gr) representing field from “external”
sources as defined in § 4.1. At the present accuracies of rotation
data, ¢(r) corresponds to a combination of a dipole and a
linear hexapole (both located at the center, parallel to the rota-
tion axis), and ¢(r) corresponds to an asymptotically uniform
field B,. The fit gives the strengths of the dipole and the hexa-
pole, in terms of B, and the solar radius R,. The strength B,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...407..359G

J. - T407. Z359G0

3A0

I'I_

360 GOKHALE & HIREMATH Vol. 407
2 regions and (2) transport of angular momentum and poloidal
- magnetic flux away from the rotation axis. We also discuss the
difficulties in directly observing and determining the steady
S field, and suggest two possible methods to do so.
= Finally we suggest that further study of the steady and the
fluctuating internal magnetic fields will be simpler if (1) in the
o helioseismological determination of the frequency splittings,
g i the rotation is assumed to have the same form as that of the
flux function of an axisymmetric field with prescribed physical
co properties (e.g., a current-free field as in the present model, or, a
~.© field in the form of a solution of the magnetic diffusion
- equation), and (2) the observations are continued throughout
the solar cycle.
3|
o 2. DETERMINATION OF THE “STEADY ” FIELD
o 2.1. The Shapes of Isorotation Contours and the Sources for
I the “ Steady” Poloidal Magnetic Field
© Christensen-Dalsgaard & Schou (1988), Dziembowski,
° Goode & Libbrecht (1989), and Sekii (1989) have analyzed the
ISt helioseismological data of Libbrecht (1989) in different ways.
©0.00 0.20 0.40 0.60 0.80 1.00 120 Except for the differences in the value and the gradient of
r / Ro rotation rate just below the base of the convection zone, the

F16. 1.—Structure of the “steady ” part of the poloidal field in one quad-
rant of a meridional plane as defined by the combination of terms ! = 1 and 3
in eq. (4) with the “ best estimates ”: u, = 0.624 and p, = 0.156 (cf. eq. [7]). The
field lines correspond to flux values A: 0.50, B: 1.00, C: 1.50, D: 1.60, E: 1.70,
F:1.80,G:1.87,H: 1.90,1: 2.00,J: 2.10, in units of nB, R2. The continuous and
the broken lines represent branches of the separatrix S, defined by ¢ = ¢, =
1.84 units. The field directions can be marked relative to that of B,, which is
presently indeterminate. The field at the surface and that outside is subject to
deformation by several processes into observationally unrecognizable patterns.

cannot be determined from this fit itself, but can be indepen-
dently estimated to be in the range ~10~*-1 G, as shown in
§4.2.

The resulting field structure (Fig. 1) (§ 3.2) has a closed
“critical field line” ¢ = ¢, running almost along the base of
the convection zone in the “sunspot ” latitudes.

The “observed ” rotation in the outer radiative core “ORC”
suggests that in the interior of the surface S,,, generated by the
rotation of the critical field line at the rate Q, (=Q, + 4¢,),
one may have Q, ~ Q and 4 = 0.

Nevertheless, we show in § 4 that the observed rotation just
inside S, can also be expressed in the form of equation (9),
where (Ac — Ag) may be ~7 nHz per unit flux. In § 4 we show
that this difference between 4. and A would correspond to a
small deviation from isorotation near S,. The resulting field
winding might be adequate to yield the 2 MG toroidal field
(varying with 9 as sin® 9 cos 9), near the base of the convection
zone (cf. Dziembowski & Goode 1991), in ~105-10° yr,
depending upon the value of B, (§ 4.2).

The fit over “ORC + CE” (04 < #/R, < 1.0) also indicates
the possibility of requiring, in the magnetic potential, higher
order terms (I > 5) with small strengths which are highly
uncertain at present. We show in § 5 that if these terms are
significant, then in spite of the large uncertainties in their
strengths, they would imply the presence of time-dependent
torsional MHD perturbations with time scales and main lati-
tudinal structure similar to those of the solar magnetic cycle.

In § 6 we point out some interesting properties of the struc-
ture of the steady field and the possible role of the MHD
fluctuations in (1) transport of energy away from the central

characteristics of internal rotation given by all the three inves-
tigations are qualitatively similar. In particular, all the three
calculations yield considerable radial dependence of rotation
rate along the polar axis so that the isorotation contours seem
to intersect the rotation axis. If the contours really intersect the
axis, then the radial variation of Q(r) along the rotation axis
would make it impossible to have the Ferraro’s isorotation law
satisfied in the close neighborhood of the axis. However, there
are considerable uncertainties in the estimation of rotation
rates near the Sun’s center and near the rotation axis (Schou,
Christensen-Dalsgaard, & Thomson 1992). Consequently, it is
not ruled out that in reality the isorotation contours actually
turn near the axis and converge “toward ” the center, running
close to the axis instead of intersecting it. This is equivalent to
suggesting the presence of toroidal currents near the axis in the
central region. On the other hand, the isorotation contours in
“CE” are concave outward, suggesting that the large-scale
steady field may have a contribution from “external ” sources.

Thus, if there is a “steady” and axisymmetric poloidal field
which (as required by Cowling’s theorem) is current free and
isorotating with the contemporary internal rotation of the Sun
in “ORC” and “CE,” then it must have internal sources
(toroidal currents) concentrated near the axis and inside the
inner radiative core (“IRC”) as well as “external ” sources at
large distances.

2.2. The Feasibility of the Existence of Isorotating,
Approximately Current-free Poloidal Field with
Central as Well as External Sources

Toroidal currents of very high intensity must have been
created in the Sun during its formation by gravitational col-
lapse. These currents must have dissipated during the fully
convective (Hayashi) phase of the Sun’s subsequent evolution.
However, as shown by Spitzer (1956), such a diffusion would
also create and maintain electric currents near the axis and the
surface. The “steady ” parts of the presently surviving internal
field and rotation must constitute the slowest decaying solu-
tion of the MHD equations with the end configuration of
Hayashi phase as the initial configuration. In such a solution
the magnetic field must be a solution of the induction equation
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(Chandrasekhar 1956a):
aT _ 1[oQ ¢) AT, y*V)
m‘"“T+y[azw . |

where T = y~'B;,y =r sin 3, z = r cos §, 1 is magnetic diffu-
sivity,

ST\oy? T yoay 0z2)’

and U is a function defining meridional flow field in the same
way as ¢ defines the poloidal field.

If in the post-Hayashi evolution the effects of diffusion and
that of the “steady ” part of the meridional circulation is small
compared to that of rotation (see § 4.2), one must have

a9
Wy

This is in fact Ferraro’s law of isorotation in which all points
on each field line rotate with the same angular velocity (which
may differ from one field line to another). The slow evolution of
the “steady ” part will be given by the diffusion and meridional
circulation. Thus the field lines maintain isorotation with the
solar plasma even as the rotation evolves.

It follows from Spitzer’s solution again that even in this
evolution the currents will be maintained near the axis and
near the surface. Whatever currents slowly diffuse into “ORC”
and “CE” would decay fast owing to the MHD turbulence
(i.e., fluctuations on dynamical time scales) existing there. The
currents diffusing into “CE” will also decay by convective
turbulence and will be carried away by effects of magnetic
buoyancy and coronal expansion.

On these grounds we assume, as a first step, that the large-
scale “steady ” field is current-free in “ORC” and “CE” and
has “central ” as well as “ external ” sources.

There is also the following a posteriori verification for this
approximation. The photospheric field structure given by this
approximation is almost same as that of a unique super-
position of the first two characteristic solutions of the magnetic
diffusion equation (Chandrasekhar 1956b), with appropriate
parity (see Appendix).

2.3. The Chosen Form of the Relation between ¢(r) and S(r)

For the relation between ¢(r) and €(r) we assume the linear
relation

Qr, ) =Qy + Ad(r, 9, 1)

expecting it to serve as the first approximation to any nonlin-
ear relation that might exist.
Herer = |r|, $is the colatitude, and Q, and A are constants.

2.4. The “Data” Used

Among the aforementioned helioseismological computa-
tions of the internal rotation Q(r), the one by Christensen-
Dalsgaard & Schou yields the smallest uncertainties. We do
not find in their paper general expressions which could be used
for determining Q(r, 9) along directions other than 3 = 0°, 45°
and 90°. Hence, we use the expressions given by Dziembowski
et al. to determine the rotation rates at selected sets of points
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(r, 9) and (since the two rotation models are generally similar)
take the resulting values of Q(r, 9) as if obtained by the method
of Christensen-Dalsgaard & Schou, viz., with the correspond-
ingly small uncertainties.

2.5. The Method of Analysis

Assuming the current free poloidal field to be symmetric
about the axis of rotation, and of odd north-south parity, we
write it as

B=-VV, 2
where
V=Vdr,9) + Vi(r, 9,
wherein

Velr, 9) = Z Mz"—(Hl)Pz(.“) s
=1
Vi(r, 8) = —BorP(p) + IZ:&M’ "IPI(I‘) >

are the magnetic potentials due to the central and the external
sources, u = cos 9, P(u) are Legendre polynomials, and the
summations are taken only over the odd integral values of .

Since we expect the long-lived external currents to be at very
large distances, we expect their field in the local neighborhood
of the Sun to be uniform. Hence we keep only the first term in
Vi(r, 9) and remove the terms [ > 3. This has been justified a
posteriori by the fact that inclusion of terms / > 1 or omission
of the term | = 1 in V; deteriorates the goodness of the least-
squares fit.

Thus we have

V(r, 9) = (—=Bor + M;r 3P, ()
+ M3r *Py(u) + Msr™°Ps(u) + - . (3)

This gives the following expression for the magnetic flux func-
tion

o(r, 9) = By R3[(x% + 2, x 1 +4puyx 3+ --)sin? 9
+(=5pax 73+ )sin9 + -], (4)

where x = r/Ryand yu, = M)/(Bo Ry 2),1=1,3,5,....
We write equation (1) in terms of the “normalized dimen-
sionless rotation rate ”:

o(r;, $) = [Ur;, 3) — Qobs]/ Oaobs = Ao + a1 9(r;, 3), (5)

where ag = (Qo — Qupe)/Taoss aNd a5 = A/0 g, Qops, AN Taqp
are the mean and the standard deviation of the whole set of the
observationally determined values Q(r;, 3;) at the chosen set of
points (r;, %;). Equation (5) can also be written as

Q=Q,+Q,[(x*+2u;x ' +4u;x 3 +--)sin? 9
+(=5psx 3+ --)sin* 3+ -1, (6)

where Q; = ma; By R 6gups-

We determine the coefficients Q,, Q;, u;, 13, etc., by obtain-
ing weighted least-squares-fits for successive combinations of
terms in equation (6) using the following three sets of data
points:
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TABLE 1

RESULTS OF LEAST-SQUARES FITS OF SUCCESSIVE COMBINATIONS
OF TERMS IN EQUATION (6) TO THE THREE DATA SETS

Terms Q, Q, K3 Goodness
Taken (nHz) (nHz) “ Au e 2 of Fit
(0] ()] ) @ 5) (6) @ ®)
Set “CE” (0.7 < x < 1.0, 99 points)
3 2 326 68 p, =062 17% 0250 179  100%*
+ 12 +11 us = 0.156 30
P,,Pj,and P ........... 321 57 u, =0.905 23 0.251 19.0 100?
+13 +2 pny = 0227 26
s = 0.001
Set “ORC + CE” (0.4 < x < 1.0, 189 points)
PPy i 332 73 1y = 0.490 31 0.229 156 96
+8 415  py=0112 2
P,Pj,and Py ........... 322 64  pu, =0.727 15
+ 10 +2 sy = 0.187 16 0.257 143 99
15 = 0.0003
Set “ORC” (0.4 < x < 0.7, 72 points)
P,,Pyand P, ........... 026 —10 p =—0349
+ 150 +5 uy = —0.0129 0.037 57 89
1s = —0.0001

* x2: probability <10~7. For each data set, the combinations lower than and higher than those given here
yield less satisfactory or unsatisfactory fits. In col. (5), uncertainties exceeding 100% are not given.

“CE”: 99 points in the convective envelope (0.7 < x < 1.0),
consisting of 11 equispaced points along each of the directions
3 =10°,20°,...90°

“ORC”: a set of 72 points in the outer radiative core
(04 < x <0.7) consisting of eight equispaced points along
each of the directions just mentioned, and

“ORC + CE”: a set of 189 points over the whole range
04 <x<1.0)

The “weights” have been assigned proportional to the
reciprocals of the uncertainties as read off from Christensen-
Dalsgaard & Schou (1988).

Values of the coefficients in equation (6) obtained from the
least-squares fits for a, and a, in equation (5), by taking
various combinations of terms in equation (3), are given in
Table 1, along with the y2 probabilities.

2.6. Estimation of the Goodness of Fit

For determining the contribution from each point (r;, 3,)
to the value of y* the “observed normalized values” w(i) =
(r;, 3;) must be considered as if obtained from independent
experiments. In reality, this condition is not satisfied. However
here we use the x> values merely for the purpose of comparing
the relative goodness of various least-squares fits.

Further, in order that each w(i) is a “normal variate” dis-
tributed about the corresponding theoretical value w4(i), it is
necessary that for each i, w(i) and w(i) are both measured in
units of the standard deviation o ,(i) of the “distribution” of
(i) about w(i). However, for each i, |w(i) — w(i)| is itself a
measure of ¢,,(i). Hence we have

22 =3 10() — gl (D)

We have verified that at least in “CE” the values of the
least-squares difference also give the same conclusions about
the relative goodness of the fits as given by the 2 values.

3. THE RESULTS
3.1. Least-Squares Fit for the Convection Zone

From the values of y2 in Table 1 it is clear that in the
convective envelope (“ CE ”) the best fit for equation (6) is given
by the combination | =1 and 3 (the dipole and the linear
hexapole terms) whose strengths in terms of By, are given by

M, =(0.624 +0.16)B,R3 and M;=(0.156+0.046)B,R; .
(7)
This corresponds to a total “ flux ” across the solar hemisphere:
d(Ry, m/2) ~ 2.09nB, R,
which gives the following upper limit on By:
B,<1G,

since the total observed magnetic flux on the photosphere does
not exceed 3 x 1022 Mx (Howard 1974).

3.2. The Geometrical Structure of the Field

The field lines of the field given by equations (4) and (5) in the
range 0.7 < r/R,y < 1.0 are plotted in Figure 1. These simulate,
quite satisfactorily, the pattern of the isorotation lines given by
helioseismology (Libbrecht 1988), except very near the axis,
where the uncertainties in the “observed ” rotation rates are
large.

The field structure also contains a “separatrix ” which has
two branches (shown by the thick and dashed lines) intersec-
ting at the neutral point (r,,, 9,) where

r,=071R, and 9, =73°.

The revolution of the branch shown by the thick line defines
a closed “critical surface,” running close to the base of the
convection zone in latitudes <45°.
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At S, the flux function ¢(r, 9) and the rotation rate Q(r, 9)
are given by equation (6), along with values of Q,, Q, in the
best fit in “CE ”, as

¢* = ¢(r*> 9*) ~ 184(7'530 R(z)) )
and
Q, =Qr,, 9,) =~ 450 nHz .

The helioseismological studies cited earlier (Christensen-
Dalsgaard & Schou 1988 ; Dziembowski et al. 1989; Sekii 1989)
suggest that the Sun’s rotation undergoes a transition from an
approximately rigid rotation within “ORC?” to a differential
rotation within “CE ”, Within “ORC” the small radial varia-
tions in the equatorial plane seem to be time dependent
(Goode & Dziembowski 1991), so that the steady part of equa-
torial rotation may be uniform.

4. A SLOW CREATION OF TOROIDAL MAGNETIC FIELD
NEAR S *

4.1. The Difference between the Values of Ac and Ag

All the three helioseismological models of rotation referred
in § 2.1 suggest that the rotation in the radiative core is more
or less rigid. In view of the large uncertainties in the rotation
rates within “ORC” near the axis, it is not ruled out that the
transition from a “rigid ” rotation to the differential rotation
occurs at S, instead of occurring at the base of the convection
zone. In fact, future improved models of the field and the rota-
tion might reduce the difference between S, and the base of the
convection zone.

Thus we suggest that the isorotation in the steady state takes
the form

(Q - Q*) = A(¢ - ¢*) B (8)

where “4” changes to some small value inside S, from ~ 68
nHz per unit flux outside S,,. This implies a “discontinuity ” in
dQ/d¢ without a discontinuity in Q.

From the results of the best fits in “CE” and “ORC + CE”,
it appears that neither Q, nor A changes significantly across
S,. However, from “CE” to “ORC + CE” the estimates of
both u, and uj increase significantly by the same ratio (viz.,
7/6). Such a change is not physically meaningful. Mathemati-
cally, it must be the effect of a change only in the coefficient of
the terms in y,, u, ..., i.e., the coefficient of the terms contrib-
uted by the “internal” sources. Thus it seems necessary to
rewrite equation (6), separating the terms contributed by the
“internal ” and “external ” sources of the field as

Qr, 9) = Qo + Ap b + Acdc » ©)
where
¢ = 1By R3(x? sin? 9) (10
and
¢c = (B RE2p, x ' sin® § + ) 11

of ¢(x, 9) correspond to the parts Vg(r, 3) and V(r, 9) of the
magnetic potential V(r, 3) defined in § 2.5. The apparent
increase in u;, u; can then be understood as a change in A¢
alone, by factor ~7/6, from “CE” to “ORC + CE.” (In fact, it
is this jump in A, which appears in Table 1 as a jump in y,, pi3
owing to the combined effect of the following facts: [1] py, p3
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were determined only through the products A¢cpy, Acus, [2]
A¢ was not distinguished from Ag; and [3] Ag could change
only from 68 to 64 nHz per unit flux from “CE” to
“ORC + CE.”)

In view of the high relative accuracy of the data in “ CE,” we
assume that the true values of u,, py are as given by the
(“best”) fit in “ CE.” Since the values of u,, u; must be contin-
uous across S, the value of A¢in “ORC + CE” must be ~7/6
times that given by the corresponding best fit in Table 1. Thus,
in “ORC+ CE” Ac~75 nHz per unit flux giving
(A¢c — Ag) ~ 7 nHz per unit flux.

4.2. Slow Buildup of Toroidal Field near S : Its Form and
Time Scale

Equation (9) can be written as

Q@ —Q,) =Add — b,) + (4g — ANde — ¢F) -

The differences between A and A4y in the last term implies a
slow winding of the “steady ” poloidal field into a toroidal field
(By) in the neighborhood of S,. This follows from the law of
induction in MHD which takes the following form as a corol-
lary of the form given by Chandrasekhar (1956a) for axisym-
metric fields (when the relatively small effects of diffusion and
meridional circulation are neglected):

0Br 0(Q, ¢) 0Qp 0Q dP

where z = xR, cos $and p = xR, sin 3.
In the neighborhood of S, this reduces to:

9¢c: ¢5)
da(z, p)
~ —1272B3 R3(Ac — Ap)u, sin® 3 cos 8

0
E(BT) =~ (Ac — Ap)

Taking (Ac — Ag) = 7 nHz per unit flux, we have

9 <&> ~ (50m) sin® 9 cos 9 nHz . 12

ot \ B,
The maximum estimate of this is ~ 50z nHz.
Consequently, the time scale of creation of the toroidal field
is
Tyor = (10°/50m)B1/By) s .

If Br ~2 x 10° G as derived by Goode & Dziembowski
(1991), then, since B, < 1 G,

Tior > 3 x 10° yr .

For the meridional circulation effects to be negligible in the
present stage of the Sun’s MHD evolution, as assumed by us,
T, Must be <7, (time scale of meridional circulation).
If 7, ~ 10° yr (e.g., Zappala 1972), this requires B, > 3 x
1074 G.

Finally for 7, to be less than the age of the Sun (4.5 x 10°
yr), one must have

B,>107*G.

This gives the lower limit on the order of magnitude of B,,.

It is interesting to note that in the low latitudes (which are
significant for observations), the leading term in the 9-
dependence of the toroidal field created near S, is
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“sin § cos 3,” i.e., same as that deduced by Dziembowski &
Goode (1991).

5. TIME-DEPENDENT TORSIONAL MHD PERTURBATIONS

5.1. Likely Presence of Perturbations and its Interpretations

We see from Table 1 that in the radiative core “ORC,” the
inclusion of the term ! = 5 is necessary for obtaining even a
satisfactory fit. Since this fit involves large uncertainties, we
study the results for the set “ORC + CE.” For this set, the
inclusion of the term [ = 5 improves the goodness of fit from
96% to 99%, by lowering the x2. Since Q(r;, ;) cannot be
considered as independent random variables, we are unable to
estimate the significance of this lowering of y2. However, we
believe that the best fit in “ORC + CE” will require terms
1 > 5, since inclusion of the term [ = 5 substantially reduces the
percentage of uncertainties in y; and p;.

One may wonder how the helioseismologically determined
Q(r, 9), which is truncated at sin* 9, can show improvement in
the goodness of fit with inclusion of the term [ = 5 which is
equivalent to extending the fitting formula up to sin® 9.
However, the inclusion of the term [ = 5 also implies inclusion
of terms in x~° in the coefficients of sin? 3 and sin* 9. This
explains how the fit improves and indicates that at the time of
the helioseismological observations there must be (over and
above the rotation field represented by the terms ! = 1 and 3) a
“residual rotation” 6Q(x, 9) varying as x~°. The substantial
reduction in the uncertainties in p,, p; indicates that the
“residual rotation ” is not an artifact of noise or errors.

If the isorotating magnetic field did not contain a residual
term 6B(x, 9), then 6Q would be time dependent. Even in case
the 0B required for the steady state exists in “ ORC,” the inclu-
sion of the corresponding term in ¢(x, 3) deteriorates the fit in
“CE” (cf. Table 1), implying nonisorotation in “CE.” Thus,
either the residual rotation in “ORC,” or the field structure in
“CE,” or both would be nonsteady. Thus, a time-dependent
torsional MHD perturbation seems to exist in the region
“ORC + CE.” A very rough estimate of the amplitude of the
“l=5” component in the 6Q (based on the highly uncertain
value of us in Table 1) is ~Q, us/u; ie., ~0.07 nHz. (The
variation of ~ 30 nHz in the equatorial rotation rate at x = 0.4
derived observationally by Goode & Dziembowski [1991]
may be the rms fluctuation caused by superposition of ~10°
such harmonic terms in MHD perturbations. The presence of
perturbations must be contributing substantially to the uncer-
tainties in the determination of p,, s, etc.)

5.2. Time Scales of Variations of MHD Modes in the
Perturbations

The “frequencies” (v) of the various MHD modes in these
perturbations will be given (along with the other MHD
equations) by the induction equation: v ~ |curl (V,xdBp)|/
|6Br|, where V, is the “zero-order” flow defined by the
approximately “steady” part of the rotation. The order of
magnitude of the operator curl (¥, x ...) has already been esti-
mated in equation (12) to be ~150 nHz. This can give the
periods of the modes in the range ~2-20 yr, if §B1/dBp is in the
range ~ 10-100. (Similar orders of magnitude for the periods
of MHD perturbations have been suggested by Layzer,
Rosner, & Doyle [1979] using a different approach.)

Thus, it is not ruled out that the MHD modes in the pertur-
bations detected in § 5.1 have time scales comparable to those
of solar activity, including the “ period ” of the solar cycle.
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5.3. A Note on the Latitudinal Structure of the Perturbations

The uncertainties Ay, , Aps in p,, ps in the “steady ” part of ~
the field may be expected to be comparable to the amplitudes
0by, ob; of the terms [ = 1 and I = 3 in the “fluctuating” part
0B of the real field. If 6b; and/or 6b; were > b5 (the amplitude
of the term [ = 5), then inclusion of the term “I = 5” in the fit
could not have reduced Au,, Ap; in “ORC + CE” as seen in
Table 1. This suggests that the term | = 5 may be dominant in
the time-dependent part of the field. It is significant in this
context that the terms [ = 5 and 7 are already known to be
dominant in the “22 yr cycle” of the photospheric magnetic
field (Stenflo 1988) and of the internal field inferred from the
sunspot data (Gokhale et al. 1992).

6. CONCLUSIONS AND DISCUSSION

We have shown that a large-scale magnetic field which can
remain in steady state with the contemporary internal rotation
of the Sun can be expressed in terms of a potential given by the
terms / = 1 and | = 3 in equation (3).

Here the linear relation in equation (1) serves as a universal
first approximation to all nonlinear relations. Qur attempts
(not described here) to replace equation (1) by an exponential
relation between Q and ¢ have shown that such a relation
cannot give any good fit. The goodness of fit for the linear
relation obtained here shows that nonlinear terms are not
needed at least with the existing uncertainties in the determi-
nation of Q.

The best estimates of the strengths of the terms I = 1 and
| = 3 obtained from “CE,” where the uncertainties in Q are
smallest, are given in equation (7).

The field structure shows (see Fig. 1) distinctly different pat-
terns in the high- (>30°) and low- (< 30°) latitude zones, which
can provide a natural framework for the remarkably different
behaviors of the surface fields observed in these zones.

The structure also shows a clear separation of a part of the
flux of the “steady ” field “trapped ” near the Sun’s center and
the other part of the flux which seems to be in the process of
diffusing out of the Sun, across the convection zone. One may
wonder if this separation also defines “in principle” the
separation of the zero-order flux connected to “interstellar”
field and that constituting the “interplanetary” part of the
Sun’s large-scale field.

Our analysis also indicates possible existence of a time-
dependent torsional MHD perturbation and the possibility
that the time scales of the modes in this perturbation may turn
out to be comparable to those in the solar magnetic cycle. It is
interesting that the most likely dominant term in this pertur-
bation is [ = 5, which is also the dominant term in the solar
magnetic cycle.

The “zero-order” (“steady ”) field contributed by the inter-
nal sources falls off with negative powers of the radial distance,
whereas the first order perturbations, if originating as MHD
waves in the central regions, will grow as they approach the
surface. Additional amplification of the perturbed field may be
provided by processes in the convection zone. Moreover, non-
axisymmetry of the perturbations, formation of flux tubes and
eruption of toroidal flux by magnetic buoyancy will cause con-
siderable noise at the surface. Consequently, it will be very
difficult to detect the “steady ” field at and above the surface.

It is therefore difficult also to determine the value of B,. One
may detect the steady field in long-term space observations at
high heliographic latitudes. It might also be detected and
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determined as “d.c.” components in the spherical harmonic
Fourier analysis of a long enough time series of the magneto-
grams, very much longer than 22 yr. A preliminary indication
of such a field is already seen in an analysis of magnetogram
data by J. O. Stenflo (1992, private communication).

The MHD perturbations convert rotational energy into
magnetic energy and, together with the other “activity”-
generating processes such as flux tube formations, magnetic
buoyancy, etc., they can provide a nonradiative mechanism of
energy transport away from the central regions on MHD time
scales. The superposition of these perturbations can also
provide diffusion of magnetic flux and angular momentum
away from the axis, on diffusion time scales. On the same time
scales, the “discontinuity” in the isorotation law at S, pro-
vides a mechanism for a slow conversion of the “steady” pol-
oidal flux into toroidal flux and also a mechanism of
converting rotational energy into magnetic energy.

According to the Rayleigh criterion (Chandrasekhar 1961),
the first two terms on the right-hand side of equation (9), and
the dipole term in the field of internal sources, represent stable
rotation. The next (I = 3) term indicates the presence of insta-
bility. The time scale and the length scale of this instability will
have to be determined by detailed calculations including effects
of gravity, etc. It will be interesting to see if this instability
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provides the basic excitation of the above mentioned MHD
perturbations.

Helioseismological determination of rotation, in some physi-
cally significant form, such as equation (6), will be useful for
studying the interaction of rotation and magnetic field inside
the Sun. Such determination in all phases of the solar magnetic
cycle will throw more light on the properties of the steady as
well as the varying components of the Sun’s internal field.

Clearly, for a given rotation field, the structure of the iso-
rotating magnetic field is not unique, but will depend on the
assumptions underlying the chosen mathematical form of the
magnetic flux function. In the present model the uniqueness is
obtained by assumptions given in § 2. One may replace the
present assumptions by others that one may believe to be more
realistic. However, the real test of any model will depend upon
how well it agrees with properties of the real steady field when
it will be possible to determine the latter observationally. Till
then, for reasons given in § 2, and on the basis of the interesting
properties discussed above, we believe that our present model
can serve as a fairly good first approximation to the real steady
field of the Sun.

We are thankful to an unknown referee for helpful com-
ments and suggestions.

APPENDIX

AGREEMENT BETWEEN THE PHOTOSPHERIC FIELD DISTRIBUTION IN THE PRESENT MODEL AND
THAT IN A SOLUTION OF THE DIFFUSION EQUATION FOR MAGNETIC FIELDS

Here we show that the values of u; and u; obtained by us in § 3 are such that ¢(1, 3) can be expressed as

o1, 8) = Yo(l, 9) + AYy(1, 9)

(A1)

where i, and , are the first two even-parity characteristic solutions of the diffusion equation given by Chandrasekhar (1956b), and

A is a constant.
Our model (egs. [4] and [7]) gives

(1, 9) = ag + ay(cos® ) + ay(cos* 9),

where ag = (1 + 2u; — u3) =2.092,0, = —(1 + 2y — 6p3) = —1.312,and a4, = —5Su; = —0.78.
Using the definition of Gegenbauer polynomials, which occur in Chandrasekhar’s solution, equation (A1) can be written as

o1, 9 =1 — 3A/2) + (=1 + 9A) cos® § + (—15A/2) cos* 9 .

Equations (A2) and (A3) together require that

—15A/2

9A — 1
and

9A —1

(A2)

(A3)

—* = 0.5945 (A4)
=22- _06272. (AS)

1—3A2 o

It is important to note that equations (A4) and (AS5) yield almost identical values of A, viz., A = 0.0462628 and 0.0462571,

respectively.

Thus for the values of i, and p; obtained using assumptions in § 2.2, a unique value of A exists such that on the photosphere the 9
dependence of the flux function ¢(1, ) can be written in the form (A1).

This shows that near the photosphere the steady field obtained by assuming a current-free form is almost same as that obtainable
by assuming it to be in the form of a solution of the diffusion equation with appropriate parity.
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