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Abstract. The polarized line transfer equation for the Hanle effect is solved in the framework of an exact partial frequency
redistribution (PRD) theory developed by Bommier (1997a,b). In that theory the effect of collisions on the Hanle effect is con-
sidered self-consistently. We follow that approach in the line transfer computations presented here. The theory formulated by
Bommier clearly recognizes two levels of approximations for exact PRD, in order to facilitate the solution of the line transfer
equation. The second level employs angle-dependent redistribution functions, and numerically represents a more difficult prob-
lem compared to the third level, which involves only the use of angle-averaged frequency redistribution functions. We present a
method which can solve the problem in both the levels of approximation. The method is based on a perturbative approach to line
polarization. Although computationally expensive, it offers the only practical means of solving the angle-dependent Hanle PRD
problem. We discuss the numerical aspects of assembling the so called “frequency domain dependent redistribution matrices”,
and also an efficient way of computing the scattering integral. Some examples are presented to illustrate the interesting aspects
of the Hanle-PRD problem with angle-dependent frequency redistribution. A comparison of the emergent profiles computed
under angle-averaged and angle-dependent redistribution is carried out, and the effect of collisions is investigated. We show
that it is necessary to incorporate an angle-dependent redistribution mechanism especially in the computation of the Stokes U
parameter. We demonstrate that the use of simple frequency domains is good enough in practical applications of the Hanle PRD
theory.
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1. Introduction

The study of scattering polarization in spectral lines has be-
come a front line area of research in solar physics (see Stenflo
& Nagendra 1996; Nagendra & Stenflo 1999). The mechanism
of resonance scattering on bound atomic levels produces po-
larization of radiation. A modification of this basic process by
an external weak magnetic field is called the Hanle effect (see
Stenflo 1994; Trujillo Bueno 2001; and Trujillo Bueno et al.
2002 for a description). The magnetic field not only modifies
the angular phase matrix but also affects the frequency corre-
lations between incident and scattered photons. During the life
time of the excited state, the elastic collisions reduce the an-
gular correlations, causing frequency redistribution and a de-
polarization of the line radiation. The inelastic collisions, on
the other hand, cause transitions between the bound states. The
Hanle scattering phenomenon and the intervention of collisions
are both treated self-consistently in two pioneering papers by
Bommier (1997a,b: henceforth [B97a,b]). Apart from deriving
the exact relations for the Hanle scattering redistribution ma-
trix, the author also presented useful limiting approximations
to the same, for practical applications. These approximations
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make use of the possibility to decompose the 2D frequency
space (x, x′), with x′ the incident frequency, and x the outgo-
ing frequency, into several domains. In each of them, the redis-
tribution matrix which describes the scattering (at the micro-
scopic level), can be written as a sum of factorized terms. Each
term involves a scalar redistribution function that multiplies
a phase matrix. The so-called Approximation Level-II uses
the angle-dependent (AD) version of the redistribution func-
tions, and Approximation Level-III the corresponding angle-
averaged (AA) function. The numerical method developed in
this paper for solving the transfer problem handles Level-II and
also the relatively simpler Level-III approximation.

The work of Omont et al. (1972, 1973), developed within
the quantum theory of resonance scattering, marks the begin-
ning of partial frequency redistribution (PRD) line formation
theory with Hanle effect. The redistribution matrices describ-
ing the scattering of polarized radiation were explicitly calcu-
lated much later by Domke & Hubeny (1988) for resonance
scattering (the non-magnetic case). The exact theory was later
developed in [B97a,b] taking into account the role of magnetic
fields, through a quantum electro-dynamical approach. The ear-
lier works of Landi Degl’Innocenti (1983, 1984, 1985) based
on the atomic density matrix approach, did not consider fre-
quency redistribution problems. They were introduced, but in
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heuristic manner, in Landi Degl’Innocenti et al. (1997). The 2-
level atom model is still retained in [B97a,b] for the sake of
simplicity. Recently Bommier & Stenflo (1999) have derived a
redistribution matrix for the combined Hanle-Zeeman scatter-
ing problem, based on a semi-classical approach. It provides a
clear physical picture of the results obtained in [B97a,b].

In two papers published earlier on this subject, we have
drawn attention to the importance of taking into account the
coupling between frequency and angular redistribution which
is present in the exact formulation of Hanle effect derived in
[B97b] and remains in the Level-II approximation which in-
volves the AD redistribution function. In Frisch et al. (2001),
analytical arguments are presented to show that this coupling
leads to non-zero Stokes U in the symmetric case of a mag-
netic field perpendicular to the slab (contrary to the normal
expectations!). It is also shown that the frequency-integrated
Stokes U does vanish. The same conclusions are substantiated
in another paper through some numerical computations (see
Faurobert et al. 2002).

In the present paper, we elaborate on this question, and fur-
ther discuss several aspects of the Hanle redistribution prob-
lem, using angle-averaged, and angle-dependent functions. In
a recent paper Fluri et al. (2002) have proposed a generalized
PALI (Polarized Approximate Lambda Iteration) method for
the Hanle effect under Approximation Level-III. It handles the
AA frequency redistribution case with the frequency domain
decomposition introduced in [B97b]. It is very fast because,
like the PALI methods developed earlier (see Nagendra et al.
1998, 1999), it makes use of the azimuthal Fourier decompo-
sition of the Hanle phase matrix and Stokes vector. A general-
ization of this method to the AD frequency redistribution case
has yet to be developed. Here we use a perturbative approach.
It is simple and direct, but requires large memory and is com-
putationally very slow, because directions have to be described
by their azimuthal and polar angles. In the PALI method, only
polar angles have to be considered. Thus we can state that the
emphasis in this paper is more on exploring the physical as-
pects of this complex problem, than on proposing the perturba-
tive approach as a practical method. A review of the numerical
methods for the solution of polarized line transfer equations
can be found in Nagendra (2002). A brief assessment of the
generalized PALI method as well as the perturbative method is
presented in Nagendra & Frisch (2002).

In Sect. 2 and in the Appendix, we present the re-
quired equations. We highlight the peculiarities of the angle-
dependent PRD problem for the Hanle effect, and the structure
of frequency domains. We also briefly discuss the angle-
averaged Approximation (Level-III). In Sect. 3 we describe
the method of solution and mention the numerical aspects. In
Sect. 4 we present some physical results through illustrative
examples.

2. The basic equations

In this section we present the basic equations of the general
Hanle effect polarized line transfer problem.

2.1. The polarized line radiative transfer equation

The one-dimensional line transfer equation for polarized Hanle
scattering problem may be written as:

µ
∂I (τ, x, n)
∂τ

=
[
φ(τ, x) + β(τ)

]
[I (τ, x, n) − S(τ, x, n)] , (1)

where I = (I,Q,U)T represents the Stokes vector. In the
restricted problem of pure Hanle effect, we do not need to
consider the V Stokes parameter, since it gets completely de-
coupled from the other three parameters. Unless stated other-
wise, all the physical quantities and symbols in this paper have
the same meaning as in Nagendra et al. (1998, 1999), and Fluri
et al. (2002). The Stokes source vector may be written as

S(τ, x, n) =
φ(τ, x)S�(τ, x, n) + β(τ)Bth(τ)

φ(τ, x) + β(τ)
, (2)

whereBth(τ) =
(
Bν0 , 0, 0

)T with Bν0 being the unpolarized ther-
mal source vector (Planck function). The polarized line source
vector S� may be written as

S�(τ, x, n) = εBth(τ) +
1

φ(τ, x)

×
∫ +∞
−∞

dx′
∮

dΩ′

4π
R̂ (x, x′; n, n′; B

)I (τ, x′, n′) , (3)

where the thermalization parameter ε represents the probabil-
ity that a photon is destroyed by collisional de-excitation. The
usual single scattering albedo (1 − ε) is absorbed into the defi-
nition of the redistribution matrix R̂.

In the non-magnetic case, the redistribution matrix can be
written as the sum of terms, each one being the product of
a frequency-dependent redistribution function and a polariza-
tion phase matrix (see Domke & Hubeny 1988, and [B97a]). In
the presence of an external magnetic field, frequency redistri-
bution and polarization are coupled together. However, in the
limit of weak magnetic fields, i.e. for the Hanle effect, it is
possible to construct approximations to the redistribution ma-
trix in which polarization and frequency redistribution are de-
coupled. Investigating the 90◦ scattering of a pencil of radiation
with the exact redistribution matrix, Bommier [B97b] has ob-
served well-defined frequency domains where (Q/I) and (U/I)
take constant values (see Fig. 2 of [B97b], upper panels). This
behavior is consistent with the idea that in each domain the re-
distribution matrix can be factorized into the product of a phase
matrix and a scalar redistribution function. The domains are
separated by sharp transition regions which are approximated
by step functions. These boundaries correspond to core-wing
transitions in the generalized absorption profiles. Since the the-
ory developed in [B97b] incorporates the effect of collisions,
the RII and RIII type redistribution functions appear in the redis-
tribution matrix. The approximation Level-II involves the AD
scalar redistribution functions and the approximation Level-III
their angle-averaged versions. Figures 1 and 2 show the fre-
quency domains for the AD case and AA case, respectively.
There are three domains associated with RIII and two domains
associated with RII.
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Fig. 1. The frequency domains for solving the angle-dependent Hanle redistribution problem. The panels a–c) refer to RIII−AD(x, x′,Θ), and the
panels d–f) refer to RII−AD(x, x′,Θ). The domains marked as 1, 2, 3 refer to RIII−AD, while those marked as 4, 5, refer to RII−AD. In the text they
are referred as Dm, m = 1, 2, 3 and Dn, n = 4, 5. Notice a strong dependence of the domain shape on the scattering angle Θ. The domains are
defined in Eqs. (A.1) and (A.2) of the Appendix. The dotted vertical line in Fig. 1e shows the “line of integration” over frequency x′, for a given
value of x. The damping parameter a = 10−3 is used. See the Appendix for more details.

In the Level-II approximation, which handles AD redistri-
bution functions, the line source function may be written as

S�,AD(τ, x, n) = εBth(τ) +
1

φ(τ, x)

∫ +∞
−∞

dx′
∮

dΩ′

4π

×
[
P̂II(n, n′; Dn) RII−AD(x, x′,Θ)

+ P̂III(n, n′; Dm) RIII−AD(x, x′,Θ)
]
I (τ, x′, n′).

(4)

For each set of frequencies (x, x′) is associated a domain Dm
for RIII and Dn for RII. In the AD case, the shape of the do-
mains depend on the scattering angle Θ(n, n′). In the Level-III
approximation, which works with AA redistribution functions,
the line source function is again given by Eq. (4) with the angle-
dependent redistribution functions replaced by their angle-
averages. Further the frequency domains do not depend on Θ.
The polarization matrices are given in the Appendix Sect. A3
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Fig. 2. The frequency domains for solving the angle-averaged (AA) Hanle redistribution problem. Notice the similarity of RIII−AA domain with
the AD domain RIII−AD(x, x′,Θ = 90◦) in Fig. 1. Notice also the narrowing of the diagonal stripe in the case of RII−AA, for large frequencies,
which indicates the diminished role of Hanle effect in the line wings. A damping parameter a = 10−3 is used. See Appendix Sect. A.2 for more
details.

(Eqs. (A.8) to (A.12)). For a given domain Dm or Dn, they have
the same expression in the AD and AA cases, but the shapes of
the domains depend on Θ in the AD case.

2.2. The frequency domains

We now discuss the frequency domains shown in Fig. 1.
Forward scattering (Θ = 0◦) is a very special case. Domain-1
(for RIII−AD) and Domain-4 (for RII−AD) do not exist because
the conditions in Eqs. (A.1) and (A.2) cannot be satisfied.

We first consider the case of RII−AD. Domain-5 represents
the region of pure Rayleigh scattering and domain-4 the region
of Hanle effect (see Eqs. (A.11) and (A.12)). Except for the
case of Θ = 0◦, the shape of domain-4 is not very sensitive to
the value of the scattering angleΘ. The Hanle domain includes
the line core. The redistribution function RII−AD takes its largest
value in the diagonal band along x = x′. Hence, for large val-
ues of x, the contribution of domain-4 to the scattering integral
should be negligible. Thus we recover the standard behavior
that the Hanle effect holds only in the line core |x| < 3.

We now turn to RIII−AD. Domain-1 and domain-2 repre-
sent a weighted combination of isotropic and Hanle phase
matrices (see Eqs. (A.8) and (A.9)). In domain-3 there is a
combination of isotropic, Hanle and Rayleigh phase matrices
(Eq. (A.10)). Thus in the line core, we have Hanle scatter-
ing with no Rayleigh contribution. For the wing frequencies,
both Hanle and Rayleigh phase matrices contribute, weighted
respectively by the factors β(2)−α and α. For RIII−AD redistribu-
tion, which is somewhat similar to CRD, the maximum of the
redistribution occurs for both x and x′ in the line core. For x
and x′ large, we can assume RIII−AD = φ(x)φ(x′), with φ the
absorption coefficient. Hence, for large x, the main contribu-
tion to the scattering integral will come from domain-2, where
Hanle scattering is present. Thus, in cases where both RII−AD

and RIII−AD contribute to the redistribution matrix, there will be
some contribution to the Hanle effect, coming from domain-2

also. It should be larger than the corresponding contribution
of domain-4, coming from RII−AD since RII−AD in domain-4 is
smaller than RIII−AD in domain-2 as shown by the analytical
expressions for RII−AD and RIII−AD.

We now consider the domains for the AA case which are
shown in Fig. 2. The construction of the domains is explained
in the Appendix Sect. A.2. First we remark that the structure is
somewhat similar to the AD domains for a scattering angle of
Θ = 90◦, except for a sharp narrowing of the diagonal stripe
in the RII−AA case. We note that AA domains are not simple
averages of the AD domains shown in Fig. 1 (see [B97b]). All
the discussions in Fig. 1, regarding the contributions of Hanle
and Rayleigh scattering in the line core and wings, hold also
for Fig. 2.

2.3. A typical Hanle PRD line transfer problem

In order to illustrate the transition from the Hanle dominated
core to the Rayleigh dominated wing, we show, in Fig. 3, the
Stokes Q and U parameters for pure Hanle scattering, pure
Rayleigh scattering and the general case where both are con-
sidered. Such a comparison is carried out for both AA and
AD cases. The method of solution of the transfer problem is
described in Sect. 3. The parameter of the model are the same
as in Figs. 4 to 7. They are given at the beginning of Sect. 3.3.

The general case of (H+R) clearly follows the Hanle type
scattering in the line core (|x| < 2.5), and the Rayleigh scatter-
ing behavior in the wings (|x| ≥ 4.5), for both Q and U. In the
AA case, the Rayleigh type behavior for Q, starts even in the
near wings (|x| > 2.5). We also note that, for both AA and AD,
Stokes Q is bounded from above by the Rayleigh limit, and
from below by Hanle limit. This is consistent with the fact that
the Hanle effect decreases Stokes Q.

As for the U parameter, in the AA case, it follows the Hanle
limit in the core and, in the wings, is smaller than the pure
Hanle case, as expected. In the AD case, Stokes U also follows
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Fig. 3. The emergent Stokes Q and U profiles for pure Hanle (H),
pure Rayleigh (R), and the general Hanle plus Rayleigh (H+R) scatter-
ing mechanisms. Dotted lines represent the AA redistribution, and the
solid lines the corresponding AD redistribution. The exact frequency
domains described in Figs. 1 and 2 are employed in these computa-
tions. Notice the smooth transition between the Hanle dominated line
core and the Rayleigh dominated line wing. See Sect. 2.3 for more
details.

the Hanle limit in the line core, but in the wings, there is a more
complex behavior discussed in the forthcoming sections.

3. The numerical method of solution

It is possible to solve this line transfer problem by direct numer-
ical schemes, such as the Feautrier method (Faurobert-Scholl
1994) or discrete space method (Nagendra 1988). But the mem-
ory and the CPU time requirements are very large. Here we use
a simple perturbative approach.

3.1. The Generalized Perturbation Method (GPM)

Rees (1976) proposed a perturbation method for non-magnetic
resonance scattering polarization. It is applicable when the de-
gree of polarization of the radiation field is small, hence it is
also applicable for the Hanle effect. The perturbative approach
is quite simple. Here it is organized into three distinct stages.
In stage 1 we solve a scalar PRD problem. In stage 2, we
solve a polarization problem but consider the AA form of the

redistribution function. Finally in stage 3 we solve the polar-
ization problem with the AD redistribution function. In each
stage, the solution is calculated iteratively.

In stage 1 we solve a scalar transfer problem, with the line
source function defined as:

S �,unpol(τ, x) = εBνo +
1 − ε
φ(τ, x)

∫ +∞
−∞

dx′
1
2

∫ +1

−1
dµ′

×
[
γcohRII−AA

(
x, x′
)
+ (1 − γcoh) RIII−AA

(
x, x′
) ]

× I
(
τ, x′, µ′

)
. (5)

Here γcoh = α/(1−ε), with α defined in Eq. (A.14). The method
of solution is a core-wing ALI iterative method with a short
characteristic formal solver (FS) (Paletou & Auer 1995).

In stage 2 we start the iteration cycle with the vector source
functionS(τ, x, µ, ϕ) = [S (τ, x), 0, 0]T, where S (τ, x) is the so-
lution of the scalar problem. The formal solution of the polar-
ized transfer, calculated with a polarized FS (Nagendra et al.
1999), provides a Stokes vector which is incorporated into
the AA version of Eq. (4) to obtain the next iterate of the source
vector. The iteration is pursued until the convergence criterion
is satisfied. At each step we calculate the Maximum Relative
Change (MRC) in the degree of emergent linear polarization at
the surface. We end the iteration when the MRC becomes less
than a given value, say 10−2.

In stage 3 we proceed exactly as in stage 2. We start with
the polarized source vector calculated in stage 2 using the AA
redistribution function. After solving the transfer equation with
the polarized FS, we use Eq. (4) to calculate the next iterate of
the source vector. We apply the same convergence criterion as
in stage 2.

Other computational details of the perturbative approach
are described in Nagendra et al. (1999). In stage 2 we need
the angle-averaged redistribution functions (see Eq. (A.3)). The
integration over the scattering angle is performed numerically,
using a Gauss-Legendre quadrature rule. The angle-averaged
functions so computed give nearly the same emergent intensi-
ties as those obtained by the method of Adams et al. (1971), or
the simpler approach of Gouttebroze (1986).

3.2. The memory and CPU time requirements
of the Generalized Perturbation Method

An essential part of the perturbation method is the calculation
of the scattering integral in Eq. (4). The scalar redistribution
functions RII−AD(x, x,Θ) and RIII−AD(x, x′,Θ) which depend on
the scattering angleΘ(n, n′) are given in Hummer (1962). Here
we use respectively the Eqs. (59) and (61) in [B97b] to com-
pute them. They differ by a constant factor with respect to the
expressions given in Hummer (1962). Because of the symme-
tries of the redistribution functions under frequency exchange
(x → x′; and x′ → x), and with respect to the line center
(x → −x; and x′ → −x′), it suffices to solve the line trans-
fer problem in a half-space in the outgoing frequency (x > 0).
Hence we need to calculate the redistribution matrices only on
the frequency range (0 < x < +∞) and (−∞ < x′ < +∞).
For a given value of x, the integration proceeds along a ver-
tical line as shown for example in Fig. 1e. It is clear in this
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figure that, for each value of x, n, and n′, one has to determine
the boundaries of the domain 4. Thus for each set (x; n, n′), the
values of x′ corresponding to domain boundaries have to be de-
termined. All these tests make the calculation of the scattering
integral very expensive as far as computing time is concerned.

All the PALI methods that have been developed so far (with
AA redistribution), make use of an azimuthal Fourier expan-
sion of the Hanle phase matrix and of the Stokes vector. This
decreases significantly, the memory requirement since one does
not have to discretize over the azimuthal angle ϕ. The per-
turbation method developed here involves “explicit” numeri-
cal evaluation of the scattering integral through the quadra-
ture sums on frequency (x), and the angles (µ and ϕ). Since
the AD redistribution matrix exhibits strong variation with re-
spect to the angles µ and ϕ, we need a grid-resolution of at least
Nµ = 7, and Nϕ = 16 to obtain accurate results. This means
224 directions at every spatial and frequency point.

We have employed a non-uniform frequency grid consist-
ing of Nx = 41 points. However the frequency variation of
the AD redistribution function is so strong at certain scatter-
ing angles, that an ordinary grid with Nx points is not sufficient
for an accurate frequency integration. The deficiency clearly
shows up as low amplitude random oscillations of the Stokes Q
and U, in the line core region. To circumvent this numerical
problem, we have employed a linear spline (trapezoidal like)
interpolation method to represent the strong frequency varia-
tion of the integrand. This procedure leads to a construction of,
say, 6-point sub-division of each frequency interval ∆x, and re-
computing the “interpolated redistribution matrix weights” on
a very fine frequency grid of 6Nx points. Notice that the transfer
equation is still solved on the main nodes (Nx) of the frequency
grid. For the above said reason, the perturbation code requires
a large amount of CPU time to compute the AD redistribution
matrices. It can be computed once and accessed later. Moreover
if one wants to avoid wasting excessive computing time in re-
peated I/O operations, the polarized redistribution matrix has
to be stored in the main memory. Depending on the grid reso-
lution, this leads to a large demand on the computer memory
also (4–40 GB for normal to good resolution!). For a real at-
mosphere one can follow the same procedure, but the redistri-
bution weights have to be stored at all depths.

In the present code we have optimized the matrix multipli-
cation R̂I in the integrand, by completely avoiding the random
access in (x, n; x′, n′; I Q U) space inside nested do loops. This
has been achieved by constructing and storing the redistribution
matrix as an array suitable for 1D-ordered access. This speeds
up the code by a factor of 5–10 compared to the conventional
approach.

The requirements of memory and the CPU time to com-
pute good solutions make the perturbation method a very de-
manding one. Computing time can be reduced by optimizing
the code, and running on a parallel processor.

3.3. Parameterization of model atmosphere
and the model atom

In this section we describe only those parameters, which are
common to all the figures shown in this paper. All the results

are presented for an isothermal and homogeneous slab. The at-
mospheric model parameters are [T, a, ε, β, Bν0], where T is the
optical thickness of the slab. For Figs. 3 to 7 the model pa-
rameters are [T, a, ε, β, Bν0] = [2 × 104, 10−3, 10−3, 0, 1]. The
slab is assumed to be self-emitting. There is no incident ra-
diation on the boundaries. The magnetic field parameters are
[ΓB, θB, ϕB] = [1, 30◦, 0◦] unless stated otherwise. The mag-
netic field strength parameter ΓB has a sensitivity range of
0.3 < ΓB < 3 for the Hanle effect. We have chosen ΓB = 1 in all
our numerical experiments. The magnetic field parameters are
assumed to be independent of depth. The absorption profile is a
Voigt function. The scalar redistribution functions that appear
in the computation are of either AA-type, RII−AA and RIII−AA

or of AD-type, RII−AD and RIII−AD. The choice of collisional
parameters is specific to each figure. Their values are given in
the discussion concerning each figure. All the results in this
paper are presented for a = 10−3. The grid-resolution in physi-
cal variables is [Nτ,Nx,Nµ,Nϕ]. The quantity Nτ represents the
number of points per decade in a logarithmically spaced τ grid,
with the first depth point τ1 = 10−2. The frequency points are
equally spaced in the line core, with a gradual switch over to
logarithmic spacing in the wings, and satisfy φ(xmax)T � 1 in
the far wings. Unless stated otherwise, we used 6 points per
decade for Nτ, Nx = 41, Nµ = 7, and Nϕ = 16.

3.4. The general characterization of collisions

There are different ways of studying the effects of collisional
parameters in a parameterized manner (Domke & Hubeny
1988; Nagendra 1994, 1995). We have used the following
approach:

i) Specify the thermalization parameter ε; strength of elastic
collisions through ΓE/ΓR; the field strength through the param-
eter ΓB, and the intrinsic de-polarization parameter W2 = 1.

ii) Then compute the composite branching ratios α and β(K)

using the Eqs. (A.14) and (A.15). The modified Hanle parame-
ters Γ′′ and Γ′2 are given in Eq. (A.13).

We note here that the work of Bommier [B97b] has con-
tributed to stabilize the definitions of the parameters ΓB and of
the branching ratios α and β(2).

In the case of pure coherent scattering (pure RII), the
Hanle phase matrix involves the product αΓB (see Eqs. (A.11)
and (A.13)). Here and in recent work ([B97b]; Faurobert-
Scholl et al. 1999; Fluri et al. 2002), the denominator of αΓB is
ΓR +ΓI +ΓE. In Faurobert-Scholl (1993, 1994), this denomina-
tor is ΓR +D(2), whereas it is ΓR +ΓI+D(2) in Bommier (1996),
Faurobert-Scholl et al. (1997) and Nagendra et al. (1998). In
stellar atmospheres, one has in general ΓI � ΓE and ΓR � ΓE,
hence the different choices of αΓB should lead to essentially the
same surface polarization.

For a combination of coherent and incoherent scattering,
it is the product β(2)ΓB which controls the Hanle phase matrix
at line center (see Eqs. (A.8), (A.11) and (A.13)), if we leave
out the differences between RII and RIII or consider quantities
integrated over the line profile. The denominator of β(2)ΓB is
ΓR + ΓI + D(2).
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Fig. 4. The Hanle effect for different values of magnetic field inclination θB. The results are presented for the case of a pure RII type redistribution
(no elastic collisions). The curves are identified by the values of θB. Notice that AD approximation is more sensitive, than the AA approximation,
to changes in θB. See Sect. 4.1 for more details.

4. Results and discussion

In this section, we present the results computed on the Hanle
scattering problem with fully angle-dependent (AD) partial re-
distribution matrices. They are compared with the correspond-
ing AA results. In the presence of an external magnetic field,
the axi-symmetry of the diffuse radiation field about the ver-
tical direction is lost. The atmospheric coordinate system in
which the transfer equation is solved, consists of a z-axis (the
normal to the planar slab), and the x-axis with respect to
which the radiation field azimuthal angle (ϕ) and the magnetic
field azimuth (ϕB) are measured (see Landi Degl’Innocenti &
Landi Degl’Innocenti 1988; Frisch 1999). The polar angles of
the radiation field and of the magnetic field are denoted θ and
θB, respectively. In Sect. 4.1, we examine the θB dependence
of Q and U and in Sect. 4.2, their dependence on ϕ.

The model atmosphere is described in Sect. 3.3. In
Sects. 4.1 and 4.2 we are considering a pure RII case. It cor-
responds to ΓE = D(2) = 0. Since D(0) = 0, we have
α = β(0) = β(2). We have chosen ε = 10−3 which corresponds
to α = 0.999. Only the RII related domains D4 and D5 become
relevant. The associated polarization phase matrices are given

in Eqs. (A.11) and (A.12). In Sect. 4.3, we consider the gen-
eral case with elastic and de-polarization collisions (ΓE � 0;
D(2) � 0).

4.1. A study of the Hanle effect for different field
inclinations θB

In Fig. 4 we discuss the effect of varying θB on Q and U. The
sensitivity of Q is small in the AA case but becomes significant
in the AD case in the near wings. At line center, the sensitivity
is about the same in the AA and AD cases. For a horizontal
magnetic field (θB = 90◦) the AA and AD give about the same
values of Q. The difference is maximum for θB = 0◦.

In the AA case, Stokes U is zero for θB = 0◦, due to sym-
metry, and departs from zero as soon as the field is non-vertical.
Note also that, in the AA case the sensitivity o U to θB is
not significant, at least in the range 30◦ < θB < 90◦. In con-
trast, in the AD case Stokes U strongly depends on θB and
we observe that U � 0 when the magnetic field is vertical
(θB = 0◦), in contradiction to the expectation that U = 0 due
to global symmetries. Accurate observations of the U profile,
should make it possible to determine the orientation θB of the
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magnetic field, provided the modeling is performed with an AD
approximation.

The case of a vertical magnetic field has already been dis-
cussed in Frisch et al. (2001), and Faurobert et al. (2002). We
summarize here the arguments presented in these references to
explain that we may have U � 0 in the AD case. For simplicity,
we consider the pure Hanle phase matrix in the scattering term
in Eq. (3). The redistribution matrix then takes the form of a
product

R
(
x, x′, µ, µ′, ϕ, ϕ′

)
P̂H
(
µ, µ′, ϕ, ϕ′; θB, ϕB, ΓB

)
, (6)

where R can be any properly normalized scalar redistribution
function. Both R and the phase matrix P̂H can be expanded in
a Fourier series with respect to (ϕ − ϕ′).

Since the medium is axi-symmetric, we can assume that the
incident radiation field is independent of ϕ′. In addition we as-
sume for simplicity that it is unpolarized. Using the expression
for P̂H corresponding to a vertical magnetic field (see Stenflo
1994, p. 89; and Frisch et al. 2001), we find that the scattering
integral may be written

Se(x, µ) =
∫ +∞
−∞

1
2

∫ +1

−1
T
(
x, µ, x′, µ′

)
Si
(
x′, µ′
)

dµ′ dx′, (7)

where Se and Si are the emergent and incident Stokes vectors.
Here

T̂
(
x, µ, x′, µ′

)
= R0

(
x, µ, x′, µ′

)
P̂0
(
µ, µ′
)

+
3
4

R1
(
x, µ, x′, µ′

)
cosα1 sin θ sin θ′

×
[
cosα1 P̂2

1
(
µ, µ′
) − sinα1 P̂2

−1
(
µ, µ′
)]

+
3
8

R2
(
x, µ, x′, µ′

)
cosα2

×
[
cosα2 P̂2

2
(
µ, µ′
) − sinα2 P̂2

−2
(
µ, µ′
)]
. (8)

R0, R1 and R2 are the coefficients of order zero, one and two in
the Fourier azimuthal expansion of the redistribution function.
In the AA case, R1 and R2 are zero. The coefficients α1 and α2

depend only on the magnitude of the magnetic field. The ma-
trix P̂0 is the Rayleigh phase matrix. The matrices P̂2

±1 and P̂2
±2

can be found in Stenflo (1994 pp. 88, 89). In P̂2
−1 and P̂2

−2, the
elements (3, 1) which couple U to I are different from zero.
Hence we find U � 0. The matrices P̂2

+1 and P̂2
+2 have elements

which couple Q to I. They come as a small correction to the
term arising from the Rayleigh phase matrix P̂0.

However, one recovers U = 0 when the radiation field is
independent of frequency (see Frisch et al. 2001). The proof
relies on the normalization of the redistribution function which
can be written∫ +∞
−∞

R
(
x, x′, n, n′

)
dy = φ

(
y′
)
, (9)

where φ represents the absorption profile and y and y′ stand
for x and x′, or x′ and x, respectively. This normalization holds
for any redistribution function constructed by folding an atomic
frame redistribution function with a Maxwellian velocity distri-
bution (see Hummer 1962). In the general case of a frequency-
dependent radiation field, we have∫ +∞

0
U(x, µ) dx = 0, (10)

for all values of µ. The proof relies on Eq. (9) with y = x.
We have verified numerically that this property holds to a
high accuracy (to 6th digit) if we employ an angular grid of
7 co-latitudes per half-space in θ, and 8 azimuth angles ϕ.
Condition Eq. (10) can be used to check the numerical accu-
racy of radiative transfer codes incorporating the Hanle effect.

4.2. A study of the azimuthal anisotropy
of the radiation

We concentrate on Q and U only, since I depends very weakly
on the azimuth. The figures correspond to θB = 30◦. For a ver-
tical magnetic field, Q and U are independent of ϕ.

In Fig. 5 we show the emergent Q and U profiles calculated
with the AA and AD redistribution functions for several values
of ϕ. In Fig. 6, we show the same quantities as a function of ϕ
for selected points in the frequency profile. In Fig. 5 we see that
the azimuthal dependence appears mainly in the line center and
near wings, i.e. in the frequency domain of the Hanle effect. We
note also that this dependence is stronger in the AD case than
in the AA case. This is particularly true for Stokes U. The mag-
nitude of U is about 3 times larger in the AD case than in the
AA case. This difference is due to the fact that we are properly
keeping the angle-dependence in the redistribution function.

For a better understanding of the results presented in Figs. 5
and 6, we recall the Fourier azimuthal expansion of the vector
source functionS given in Frisch (1999, Eqs. (25) and (26)) for
complete frequency redistribution (CRD). The Stokes vector
has a similar expansion (see Nagendra et al. 1998). For µ close
to zero, we have,

SQ 	 3√
8

S Q +

√
3

2
(S +2 cos 2ϕ − S −2 sin 2ϕ) + O(µ), (11)

SU 	
√

3
2

(S −1 cosϕ − S +1 sinϕ) + O(µ). (12)

For CRD, the expansion coefficients S Q, S ±1 and S ±2 are func-
tions of τ only and for PRD, with angle-averaged redistribution
functions, they are functions of τ and x. They depend on the
magnetic field. We roughly have |S ±2| < |S ±1| < |S Q |.

For the AA case, the results shown in Figs. 5 and 6
(panels a and b) can easily be interpreted with the help of
Eqs. (11) and (12). Stokes Q is not very sensitive to ϕ because
the ϕ-dependence appears only in the second order terms in
the Fourier expansion. For U, we clearly see the 2π-periodicity
(Fig. 6, panel b) and a close to exact symmetry about U =

0 (Fig. 5, panel b), which corresponds to U(x, µ, π + ϕ) 	
−U(x, µ, ϕ). As shown in Eq. (12), this symmetry would be ex-
actly satisfied for µ = 0. Note that it will hold for any direction
of the magnetic field.

In the AD case, we observe that Q has a dependence on ϕ
which is slightly larger than in the AA case (see Fig. 5) and a
mixture of the first and second Fourier harmonics (see Fig. 6).
For U we clearly see in Fig. 5 that the approximate symmetry
with respect to U = 0 does not hold anymore. We note also
for U a small negative ϕ-independent contribution. In Sect. 4.1
we have seen that there is a ϕ-independent term in U when the
magnetic field is vertical. Preliminary calculations have been
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Fig. 5. The emergent Stokes Q and U profiles for several values of the radiation field azimuth ϕ. Same model parameters as for Fig. 4 are
employed here. The curves are identified with the azimuth angle ϕ. The largest departures from axi-symmetry are around x ≈ vc(a) ≈ 3. They
are strong for U but remain very weak for Q. They appear mainly in the line core and near wings which are dominated by the Hanle effect. The
large differences, in values and shape, between the AA and AD results, for Stokes U are discussed in Sect. 4.2.

performed for an arbitrary oriented magnetic field. The varia-
tions of Q and U with ϕ are still of the form given in Eqs. (11)
and (12): in Stokes Q the ϕ-dependence is controlled at leading
order by the second order Fourier component and in Stokes U
by the first order one (the dominant Fourier component is the
component of zeroth order, i.e. the one that does not depend
depend on varphi). For U, there is an additional ϕ-independent
term as for a vertical magnetic field.

4.3. The effect of elastic collisions on Hanle scattering
polarization

In Fig. 7 we show the effect of elastic collisions and de-
polarizing collisions on I, Q and U for the AA and AD cases.
The redistribution matrix involves now contributions from both
RII and RIII type scattering. The AA case has already been ex-
plored by Faurobert-Scholl (1996 and references therein). The
atmospheric model is the same as in Figs. 4 to 6. The differ-
ences are in terms of the branching ratio ΓE/ΓR, which takes
the values ΓE/ΓR = 0, 0.1, 1, 10, 100. These 5 models are de-
picting a range, covering absence of elastic collisions, to the

presence of very strong elastic collisions. Such a range of vari-
ation is indeed possible, in the solar atmosphere, as one goes
down from the outermost shallow chromospheric layers to the
base of the photosphere. For all the models ε = 10−3 hence
β(0) = 1 − ε = 0.999. For the de-polarizing collision rate we
have D(2) = c ΓE with c = 0.5. The Voigt damping parame-
ter a is kept at 10−3. The variation of ΓE/ΓR affects only the
frequency redistribution and de-polarizing collisions.

Figure 7 shows that the I profiles become broader when
the elastic collision rate is increased, while the line core is not
modified. This is a standard result that can be understood in
terms of Eq. (5). In the line core RIII 	 RII, hence there is
no dependence on γcoh. In the wings, we go from the case of
pure RII type redistribution for ΓE/ΓR = 0 to a nearly pure RIII

type redistribution for ΓE/ΓR = 100. We recall that RIII behaves
essentially like complete frequency redistribution as soon as we
are dealing with optically thick lines.

The polarization matrices, including elastic collisions, are
defined in the Appendix. We give here simplified expressions
of the redistribution matrix that would help us to understand
the behaviors of Q and U. For simplicity we assume Γ′2 = Γ

′′
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Fig. 6. The non-axi-symmetry of Stokes parameters at selected frequency points x in the line. The results are presented for the same model as
that of Fig. 4. The curves are identified by the frequency points. Except for frequencies around x = 3, the Stokes Q parameter is axi-symmetric
to a good accuracy. As expected, Hanle scattering strongly affects the Stokes U parameter in the AD case, which is artificially averaged out in
the AA approximation. See Sect. 4.2 for more details.

(see Eq. (A.13)). The domains D1 and D2 have now the same
polarization phase matrix, namely:

P̂III(D1,D2) =
(
β(0) − β(2)

)
P̂(0) +

(
β(2) − α

)
P̂H. (13)

We recall that P̂(0) is the isotropic phase matrix. In the line core,
the relevant domains are D1 for RIII and D4 for RII and we can
assume RIII 	 RII. We thus find

R̂core 	
[(
β(0) − β(2)

)
P̂(0) + β(2)P̂H

]
RII. (14)

In the line wings, the relevant domains are D2 for RIII and D5
for RII, hence

R̂wing 	
(
β(0) − β(2)

)
P̂(0)RIII +

(
β(2) − α

)
P̂HRIII + αP̂RRII. (15)

In Fig. 8, we show the variations of branching ratios α, β(2),
β(0)−β(2) and β(2)−α as a function of ΓE/ΓR. All the parameters
have a monotonic variation, except β(2) − α. It is easy to show
that β(2) −α has a maximum at ΓE/ΓR = [(1− ε)√c ]−1. For our
model, the maximum is at ΓE/ΓR = 1.42.

Panels b and e in Fig. 7 show that the sensitivity of Q to
elastic collisions and de-polarizing collisions is essentially the
same in the AA and the AD cases. We have already seen in pre-
vious sections that Q is not very sensitive to the coupling be-
tween frequency and angle redistribution. We observe in these

panels a decrease in the polarization in the line core, a broad-
ening of the wings, and in the wings, say for |x| > 6, a non-
monotonic variation of Q which first increases with ΓE/ΓR and
then deceases when this ratio becomes larger than unity. In the
line core, as shown by Eq. (14), the polarization is controlled
by the parameter D(2), a property stressed in previous work (e.g.
Nagendra 1994). Referring to Fig. 8, we see that β(0) − β(2) in-
creases while β(2) decreases when ΓE/ΓR increases. Hence both
terms in Eq. (14) contribute to decrease the polarization when
the rate of de-polarizing collisions increases.

We now examine the wings of Q. Asymptotic analyses
of radiative transfer for small values of ε (Frisch 1980) show
that there is no isotropization of the radiation field in the line
wings when they are formed under complete frequency redis-
tribution or RIII partial redistribution. Since Q is a measure of
the anisotropy of the radiation field, we can understand that Q
increases in the wings together with the contribution of RIII. In
the wings, loosely speaking, RIII is larger than RII, hence the
term with RIII in Eq. (15) will dominate over the term with RII,
in spite of the fact that (β(2) − α) < α (see Fig. 8). The non-
monotonic behavior of Q is thus a direct consequence of the
non-monotonic variation of β(2) − α. The properties of Q dis-
cussed here do not depend in any critical way on the magnetic
field. They should also hold for pure resonance scattering.
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Fig. 7. Effect of elastic collisions on Hanle scattering polarization. The strength of collisions is characterized by the ratio (ΓE/ΓR), which take
the values: 0, 0.1, 1, 10, 100. The curves are identified by this ratio. Notice that the Stokes U under the AD approximation is more sensitive to
the elastic collisions, than under the AA approximation. See Sect. 4.3 for more details.

For Stokes U, in the AA case (panel c, Fig. 7), we observe
a monotonic decrease of U at all wavelengths and no broad-
ening of the profile. We have seen in Sect. 2.3 (see Fig. 3)
that U reaches the Rayleigh limit U = 0 as soon as |x| > 4.5.

This result was obtained for pure RII. The parameter U is a
measure of departures from the axial symmetry. Increasing
elastic collisions, i.e. going from an RII redistribution to an
RIII redistribution should have little effect on the azimuthal
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Fig. 8. Generalized branching ratios for Bommier’s [B97b] domain based redistribution matrix. The dependence of these composite branching
ratios on elastic collision rate is plotted. For c = 0.5 the quantity

(
β(2) − α

)
asymptotically approaches α. Notice that, except for β(2) − α, other

quantities show a monotonic variation with ΓE/ΓR. See Sect. 4.3 for details.

variation of the radiation field. Hence there should be no broad-
ening of the U profile. It will remain in the region where the
redistribution matrix can be approximated by Eq. (14). As seen
above, both terms of this equation contribute to a decrease of
the polarization when ΓE/ΓR increases.

In the AD case (panel f, Fig. 7), we observe a decrease of
the polarization in the line core, which can be explained with
Eq. (14). More interesting is the appearance of very low but ex-
tended wings where U varies in the same non-monotonic way
as Q. We have seen in Figs. 4 to 6 that U has larger values in the
AD case than in the AA case because of the ϕ-dependence of
the redistribution function. This ϕ-dependence combined with
the broadening of Stokes I can explain the formation of wings
in the U profile. The non-monotonic variation of U is the sig-
nature of the magnetic field acting through the second term in
Eq. (15). For a vertical magnetic field, we should observe sim-
ilar extended wings in U.

A magnetic field effect has been detected recently by
Bianda et al. (2002) in the wings of the U profile of the Ca ı
4227 Å line. Whether this observation can be understood in
terms of the Hanle effect needs a realistic modeling including
an angle-dependent partial redistribution function.

4.4. The case of Hanle PRD scattering
in an effectively thin slab

We have also considered a slab with an optical thickness T of
only 200, which is effectively thin, which means that the radi-
ation field does not thermalize at the slab center. We refer to

this model as the thin slab. The full characteristics of the model
are [T, a, ε, β, Bν0] = [200, 10−3, 10−3, 0, 1]. We consider the
pure RII case with α = β(0) = β(2) = 0.999. The magnetic field
is defined by ΓB = 1.0, θB = 30◦ and ϕB = 0◦. The medium is
assumed to be isothermal and self emitting. The grid resolution
is: Nd = 41 (5 points/decade); Nµ = 7; Nϕ = 8; Nx = 39.

In Fig. 9 we show I, Q, and U for AA and AD redistri-
bution cases. It can be seen in Fig. 9b that there is large dif-
ference in the Q profile depending on whether we employ AA
or AD redistribution functions. This difference is considerably
smaller for the effectively thick slab, as can be seen for instance
in Fig. 5. In the thin slab case, in contrast to the effectively thick
case, the radiation field does not become isotropic at large opti-
cal depths. This is the reason why using an AA redistribution is
highly inadequate. We remark also that the ratio (Q/I) for the
thin slab case is smaller than in the thick slab case (compare
with Fig. 7). This ratio is controlled by the limb darkening of
the I parameter, which is much smaller for a thin slab, than a
thick slab.

For Stokes U, we see the same kind of difference between
the AA case and the AD case as for an effectively thick slab
(see Fig. 4). Contrary to Q, the ratio (U/I) has similar value in
the thin and thick slab cases. This is because Stokes U is mainly
controlled by the breaking of the axi-symmetry of Stokes I.

4.4.1. Comparison of exact and simple domains
for the Hanle PRD problem

We have seen in the preceding sections that the Hanle effect is
active mainly in the line core and the Rayleigh effect in the line
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Fig. 9. The thin slab case. Comparison of simple and exact domains
in the Hanle PRD problem. The simple domain refers to the vertical
stripe, while exact domain means the use of the domains shown in
Figs. 1 and 2 for the AD and AA cases, respectively. Notice that the
use of a simple domain is sufficiently accurate in the computation of
polarized emergent line profiles. See Sect. 4.4 for more details.

wings. This has lead to a standard cut-off approximation, which
we refer to as the vertical stripe approximation. It is assumed
that the Hanle effect acts only for |x| < xHanle and the Rayleigh
effect for |x| > xHanle, with xHanle given a priori. In this sec-
tion we compare the emergent Stokes vector calculated with
the method described in this paper and with the vertical stripe
approximation, for the thin slab case. In the thin slab model (see
Sect. 4.4), we have assumed a pure RII frequency redistribution.
Hence, the approximation amounts to replace the domain D4
by a vertical stripe. This means that we are neglecting the Hanle

effect in the wings and thus we expect |Qexact| < |Qapprox|, and
|Uexact| > |Uapprox|.

We have seen in Sect. 2 that a physically meaningful cut-
off frequency is xHanle 	 vc(a), with vc(a) the transition fre-
quency between the Gaussian core and the Lorentzian wings
in the absorption profile. In Fig. 9 we compare the Stokes pro-
files calculated with the true domain D4 and the approximate
one. We observe that the vertical stripe approximation underes-
timates the Hanle effect, as predicted. This conclusion holds for
the AD and the AA case, with the effect being slightly larger in
the AD case. For a mixture of RII and RIII, the under-estimation
could be more pronounced because the vertical stripe approx-
imation also neglects the contribution of the domain D2 to the
Hanle effect.

Hence we suggest that in a preliminary modeling work, the
vertical stripe approximation is good enough. The same con-
clusion was reached in Faurobert et al. (1999). For the cut-off
frequency, xHanle = vc(a) should be preferred to a fixed value,
say xHanle = 3.5.

5. Conclusions

In this paper we have solved the problem of Hanle effect with
PRD, using the theory developed by Bommier (1997b). This
theory identified two levels of approximation, involving respec-
tively AA and AD scalar redistribution functions. The coupling
between frequency redistribution and angular redistribution is
properly taken into account, when one uses the AD redistribu-
tion function. This coupling is ignored when working with AA
redistribution function.

For lines with very large optical thickness (strong reso-
nance lines), the Q parameter is fairly well represented by the
angle-averaged approximation. In contrast, very large differ-
ences between angle-averaged and angle-dependent approxi-
mations exist in the emergent Stokes U parameter. Hence this
coupling is definitely to be taken into account for accurate mod-
eling of the Stokes U parameter, and subsequent determina-
tion of the magnetic field orientation. We have noticed an inter-
esting effect of elastic collisions which can produce extended
wings in the Stokes U parameter when ΓE/ΓR 	 1. These wings
show up only with the AD redistribution functions and seem to
be a signature of the Hanle effect. As pointed out in Bianda
et al. (2002), the mechanism could be radiative excitation in
the line core followed by a collision shift at a wing frequency,
without destruction of the atomic polarization.

For weak lines, both Q and U parameters are very sensitive
to the coupling between frequency and angular redistribution.

Our calculations have been carried out using the idea of
“combined frequency domains” proposed in Bommier (1997b).
Each domain refers to a given redistribution mechanism (RII

or RIII), and to a polarization mechanism which is a combina-
tion of Rayleigh and Hanle scattering. We have also carried out
some calculations with a simple domain decomposition, where
the Hanle effect holds only in the line core, and Rayleigh scat-
tering holds in the wings. It is found that the latter is a very
good approximation. Thus, one feels confident that the use of
such simple domains is sufficient in the radiative transfer anal-
ysis of polarimetric data.
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Our calculations have clearly shown that it is necessary
to make simultaneous measurements of Q and U with high
polarimetric sensitivity (up to 10−4) if one wants to properly
determine the orientation of weak magnetic fields in the so-
lar atmosphere. Measuring Stokes U with a high accuracy is
also necessary to distinguish between an oriented or a micro-
turbulent magnetic field (randomly oriented on scales smaller
than typical photon mean free paths). The signature of a micro-
turbulent field is a Stokes Q smaller than predicted on the
basis of resonance scattering and a zero Stokes U. For a micro-
turbulent magnetic field, the redistribution matrix can be aver-
aged over the random orientations of the magnetic field and
one is left with a resonance scattering problem with a re-
normalized de-polarization parameter which incorporates the
effect of the magnetic field (Stenflo 1994). For resonance scat-
tering, as shown in Faurobert (1987, 1988), the effects of an-
gular dependence in the frequency redistribution function are
quite small.
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Appendix A: The frequency domains
and polarization phase matrices

For the convenience of the reader, we recall here the definitions
of the frequency domains and of the polarization phase matri-
ces that have been introduced in [B97b]. We write the latter in
a slightly different form.

A.1. The angle-dependent frequency domains

The domains for RIII−AD can be defined as follows:

If {|x′ − xcosΘ| < vc(a/sinΘ) sinΘ

and |x| < vc(a)| cosΘ| + vc(a/ sinΘ) sinΘ

and |x − x′ cosΘ| < vc(a/ sinΘ) sinΘ

and |x′| < vc(a)| cosΘ| + vc(a/ sinΘ) sinΘ}
then: Domain D1

else, if {|x| < vc(a) or |x′| < vc(a)}
then: Domain D2

else: Domain D3

endif. (A.1)

The structure of the angle-dependent domains for RII−AD are as
follows:

If {|x + x′| < 2vc(a/ cos(Θ/2)) cos(Θ/2)}
then: Domain D4

else: Domain D5

endif. (A.2)

These relations involve a function vc. For a Voigt function
of damping parameter a, vc(a) is the frequency at which the
Gaussian core becomes equal to a Lorentzian with parameter a
(see [B97b] Eq. (85)). The values of a which appear in the defi-
nition of the domains can be understood by considering the an-
alytical expression of the AD redistribution functions (Mihalas
1978; [B97b]).

A.2. The angle-averaged domains

The angle-averaged redistribution functions are defined as
follows:

RAA(x, x′) =
1
2

∫ π
0

RAD(x, x′,Θ) sinΘ dΘ. (A.3)

Angle-averaging the exact redistribution matrix as in Eq. (A.3),
Bommier [B97b] has constructed frequency domains for the
Level-III approximation. With z = 2

√
2 + 2, the definitions of

the RIII−AA domains may be written as:

If {zvc(a)|x′| − (x2 + x′2) < (z − 1)v2c(a)

and zvc(a)|x| − (x2 + x′2) < (z − 1)v2c(a)

and |x′| < √2vc(a)

and |x| < √2vc(a)}
then: Domain D1

else, if {|x| < vc(a) or |x′| < vc(a)}
then: Domain D2

else: Domain D3

endif. (A.4)

The structure of the domains for RII−AA are as follows:

If {x(x + x′) < 2v2c(a)

and x′(x + x′) < 2v2c(a)}
then: Domain D4

else: Domain D5

endif. (A.5)

A.3. The polarization phase matrices

For a two-level atom, the Rayleigh and Hanle phase matrices
can be written in terms of a multi-polar expansion of the form

P̂(n, n′) =
K=2∑
K=0

W (K) (J, J′) P̂(K) (n, n′) , (A.6)

with W (K)(J, J′) the de-polarization parameter(see e.g. Eq. (26)
of [B97b]; Landi Degl’ Innocenti 1984). The term with K = 1
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corresponds to circular polarization which is not considered in
this paper. Here we consider a normal Zeeman triplet J = 0,
J′ = 1. Hence the W (K) are equal to unity. The zeroth-order
term P̂(0) is the isotropic scattering phase matrix (the ele-
ment (1,1) is unity and the others are zero).

The analytical expression of the Hanle Phase matrix P̂H is
given in Landi Degl’ Innocenti & Landi Degl’ Innocenti (1988)
for an arbitrary reference frame. It depends on the orientation
of the magnetic field, nB, and on the non-dimensional magnetic
field strength parameter

ΓB = gJ′
ωL

ΓR
; with ωL =

eB
2mec

· (A.7)

The quantity gJ′ is the Landé factor of the upper level and ωL

the Larmor frequency.
The polarization phase matrices introduced in Eq. (4) are

common to the AA and AD cases. In [B97b] they are defined
in terms of P̂(0), P̂(2)

R and P̂(2)
H . Here they are expressed in terms

of the full matrices P̂R and P̂H. For the domains D1 to D5, we
have

P̂III(D1) =
(
β(0) − β(2)

)
P̂(0)

+ β(2)P̂H
(
n, n′; nB, Γ

′
2
) − αP̂H

(
n, n′; nB, Γ

′′) , (A.8)

P̂III(D2) =
(
β(0)−β(2)

)
P̂(0)+

(
β(2)−α

)
P̂H
(
n, n′; nB, Γ

′
2
)
, (A.9)

P̂III(D3) =
(
β(0) − β(2)

)
P̂(0)+

β(2) − α
β(2)

×
[(
β(2)−α

)
P̂H
(
n, n′; nB, Γ

′
2
)
+αP̂R

(
n, n′
)]
, (A.10)

P̂II(D4) = αP̂H
(
n, n′; nB, Γ

′′) , (A.11)

P̂II(D5) = αP̂R(n, n′). (A.12)

The collisional rates Γ′K and Γ′′ are given by

Γ′2 = β
(2)ΓB; and Γ′′ = αΓB, (A.13)

where α and β(2) are the collisional branching ratios introduced
below.

A.4. The collisional redistribution branching ratios

Following [B97b] we employ branching ratios defined as:

α =
ΓR

ΓR + ΓI + ΓE
, (A.14)

β(K) =
ΓR

ΓR + ΓI + D(K)
, (A.15)

where K = 0 or 2. The quantity ΓR is the radiative de-excitation
rate (natural width of the upper level), and ΓI is the rate of
inelastic collisions between radiating and perturbing atoms
which causes destruction of the upper excited level. The to-
tal rate of elastic collisions ΓE causes collisional broadening
of the upper level and destruction of photon correlations in the
atomic frame. They produce large non-coherence in frequency
in atomic and hence also in the laboratory frame. All types of
elastic collisions are included in ΓE. In astrophysical plasma,
the major source of perturbation are neutral hydrogen atoms.

The quantity D(K) are the K-multi-pole de-polarizing collision
rates. For K = 0, we have D(0) = 0, and D(2) is a simple func-
tion of ΓE, such as

D(2) = c ΓE, 0 ≤ c ≤ 1. (A.16)

The D(K) are most effective causes of decreasing the linear
polarization in spectral lines, because they destroy the atomic
alignment. In the computations presented in this paper, we have
employed c = 0.5. We note that the branching ratio (β(2) − α)
which multiplies the Hanle phase matrix in Eqs. (A.9) and
(A.10) corresponds to elastic collisions which do not destroy
the alignment.

The parameter ε in Eq. (3) is given by

ε =
ΓI

ΓR + ΓI
· (A.17)

In the definition of ε we have neglected stimulated emission.
The Voigt damping parameter a is defined through the relation

a =
ΓR + ΓE

4π∆νD
, where ∆νD =

ν0
c

√
2kTe

Ma
· (A.18)
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