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The maximum mass of neutron stars 
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The choice of a suitable topic for this talk posed a problem for me. Should I talk about 
some work I have done recently? Or, should I talk about something which is not yet 
resolved, but of great contemporary Significance? The latter has the advantage that it 
might inspire some of the younger persons in the audience to think about it. And that is 
what I am going to do. 

The topic I have chosen is the "Maximum Mass of Neutron Stars". This may appear 
at first sight to be an academic question, an esoteric one at that (I); but this is not so. 

1. An overview of the problem 

The present epoch is undoubtedly the golden age of Relativistic Astrophysics, the era of 
neutron stars and black holes. Recent observations have provided exciting evidence for 
the countless number of supermassive black holes that power the Quasars and the Active 
Galactic Nuclei. As for black holes of stellar mass, the sample has been growing steadily 
ever since the discovery of Cygnus X-I. It is in this latter context that the concept of 
the maximum mass of neutron stars plays a central role. As the number of black holes 
in binary x-ray sources grows, and as their "mass spectrum" begins to take shape, the 
limiting mass of neutron stars acquires greater significance. Indeed, the maximum. mass 
of neutron star is one of the most important predictions of the general relativistic theory 
of stellar structure. UnfOrtunately, although there have been strenuous efforts to pin 
down the value of this limiting mass, the picture is unclear more than siXty years after 
the pioneering attempt by Oppenheimer and Volkoff (1939). In this talk I will attempt 
to outline some of the attempts made in recent years and, in particular, highlight the 
reasons why this problem has rema.ined a cba.llenging one. 

The first question to ask is this: why should there be a limit to the masses of neutron 
stars? In a sense a possible answer is implicit in the theory of white dwarfS due to Chan­
drasekhar. Let us recall the remarkable discovery made by him in 1930. Chandrasekhar 
showed that the sequence of white dwarfs in which the gravitational pressure in balanced 
by the degeneracy pressure of the electnmr has a limiting mass given by 
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where /Le is the mean molecular weight per electron (Chandraseliliar, 1931). This lim­
iting mass is reached when the electrons become ultrarelativistic. Interestingly, in this 
extreme relativistic limit the pressure of a degenerate ideal gas of fermions 
is independent of the rest mass of the particle. Thus, if one were to construct a 
sequence of neutron stars in which gravity is balanced by the degeneracy pressure of an 
ideal neutron gas then this sequence, too, will have a limiting mass of 5.76 M0 . 

But, of course, Chandrasekhar could not have envisaged such. stars since the neutron 
had not been discovered when the limiting mass of white dwarfs was discovered! Very 
soon after the discovery of the neutron, Baade and Zwicky (1934) did hypothesize neutron 
stars. By 1936 Gamow had conjectured that "neutron cores" would form in massive stars 
when the supply of thermpnuclear fuel is exhausted. In 1939, Oppenheimer and Volkoff 
wondered whether this conjecture by Gamow would be valid for arbitrarily massive stars, 
or to put it in their own words "to investigate whether there is some upper limit to the 
possible size of such a neutron core". 

To calculate the radius of a star for a given mass, one has to integrate the equation 
of hydrostatic equilibrium with an assumed equation of state (EOS), Le. pressure as 
a function of density. Oppenheimer and Volkoff realized that for a neutron star the 
modification of Newtonian gravity due to general relativity would have to be taken into 
account. The equation of hydrostatic equilibrium in general relativity reads as follows: 

dP G[M(r)+41rr3~] [p(r) + P(r)/c2] 

- dr = r2 [1- 2G~(r)] 
(2) 

This generalization of the familiar Newtonian equation takes into account the fact 
that in general theory of relativity all forms of energy contribute to gravity. p in the 
above equation is the mass-energy density. Consequently, M is not the rest mass of the 
star but its gravitational mass. This is less than the rest mass or the baryonic mass by 
the binding energy of the star. The above equation, known as the Tolman-Oppenheimer­
Volkoff equation, reduces to the Newtonian one 

GM(r)p(r) --= 
r2 

dP 
dr 

(3) 

in the limit c -+ 00. 
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For the equation of state governing t.he neutron star, Oppenheimer and Volkoff as­
med that the neutrons could be treated as an ideal fermi gas. The equilibrium config­

:ations obtained by them is shown in the figure, 
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Figure 1. A plot of the gravitational mass Ver8fJ8 central density (from Shapiro and Teukolsky, 
1983). The curve labelled OV is the Oppenheimer-VoIkoff result. The maximum mass for the 
neutron stars is O.7M0, and there is no minimum mass. Also shown in the figure is the sequence 
of wh.ite dwarfs with a corresponding limiting mass. Anticipa.ting our discussion of the equation 
of state of dense matter in section 3, one has attempted to smoothly join the white dwarf equa.tion 
of state and the OV equation of state with the Harrison-Wheeler equation of state (HW). 

which is a plot of mass versus the central density. It may be recalled that stable configu­
rations correspond to the SEl(:tioll.s of the curve where ~ > O. At the extrema - turning 

. h fr Pc pomts - t e equency of the fundamental radial mode goes to zero and the star becomes 
unstable to compression. Consequently, the mass corresponding to the extremum repre­
sents the maximum mass of the star. From their calculations Oppenheimer and Volkoff 
concluded that the maximum mass for neutron stars is 0.7 Me. For completeness the 
figure also shows the white dwarf branch, with a corresponding limiting mass equal to 
lAM0 · 

How good an estimate is this of the maximum mass? Not very good and the reason is 
rather easy to see. Altho~gh Oppenheimer and Volkoff had properly taken into account 
the gravitational effects, they had assumed that the neutrons could be regarded as an 
ideal fermi gas. Indeed, this is what Chandrasekhar had assumed for the electrons iil 
a white dwarf. Curiously, the assumption of an ideal gas is quite rigorously valid for 
electrons, but is a very poor assumption for neutrons. Let us digress to appreciate this, 
since this continues to be at the heart of the difficulty in determining the maximum mass 
of neutron stars. 

A gas may be regarded as ideal if the energy of interaction between the particles 
can be neglected. in comparison with the kinetic energy. A degenerate electron gas has 
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the peculiar property that as the density increases it becomes more and more 'd all 
The kinetic energy of the electron increases inversely as the square of the inter-p:r:· l' 
spacing (or n'l./3, where n is the number density of electrons), while the coulomb ene~ce 
of interaction increases inversely as the mean particle spacing (11.1/ 3 ). Thus, in the li! 
of high densities kinetic energy dominates over the potential energy. But this is not so 
for a collection of nucleons because the nuclear energy of interat.iiion increases very much 
more dramatically with increasing density than the kinetic energy .. Thus the nucleons 
inside an atomic nucleus, or in a neutron star (whose density is roughly the same as 
that of atomic nuclei) represent a strongly interacting system. Indeed, this is also the 
case with a collection of atoms or molecules interacting via van der Waal's forces at 
terrestrial densities and temperatures. Interesting phenomena like phase changes are a 
manifestation of interaction effects. 

The moral. of this discussion is the following. If one wishes to model neutron stars 
better than Oppenheimer and Volkoff then one must come to grips with nucleon-nucleon 
interaction. Furthermore, it is naive to think that a neutron star consists only of free 
neutrons. During the past three decades there have been numerous attempts to construct 
realistic equations of state for a neutron star. Before reviewing these, let us recall the 
overall structure of a neutron star. 

2. Internal structure 

One may gain considerable insight into the internal. structure of the star by regarding 
it as self-gravitating matter in its ground state. This first principle point of view may 
be justified as follows. In. the formation of a neutron star nuclear processes take place 
sufficiently rapidly that matter in most of the star, except perhaps the outermost layers, 
can be considered to be in complete nuclear equilibrium. In. other words, strong, elec­
troma.gnetic and weak interactions adjust the nuclear composition at each point to the 
thermodynamically most favourable one. Within a few years after its birth in a supernova 
explosion the neutron star would have cooled to temperatures i"V 108 K. This tempera­
ture is low compared to the characteristic excitation energies in the nuclei which are N 

MeV (1010 K). Therefore, to a good approximation one may regard neutron star matter 
as being in its lowest energy state at each. point, subject only to charge neutrality and 
conservation of baryons. 

What is the absolute ground state of matter? For matter at zero pressure the ground 
state consists of (i) the neutrons and protons packaged into Fe56 nuclei, the most tightly 
bound nucleus, (u) the nuclei arranged in a. lattice to minimize the configurational energy, 
and (iii) the electrons being in a ferromagnetic state. So one may confidently expect the 
surface layers to be a ferromagnetic iron lattice. 

As one goes deeper, and as the density increases due to gravitational pressure, the 
ch.a.racterlstics of the matter will change. By the time the density reaches 104g cm-3 , 
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the atoms will be fully ioniz~. At a ~ensity '"" 107 9 em-3 the electron gas will be 
lativistically degenerate, wIth a Ferrru energy ,..." IMeV. At this stage inverse beta 

~ecay will set in. Electrons at the top of the Fermi sea will combine with protons in the 
nuclei to form neutrons, with the neutrinos escaping and thus lowering the energy. Under 
these conditions, Ni62 is the most stable nucleus. At a depth where the density reaches 
tv 2.7 x 108 9 em -3, Ni64 will be the favoured nuclei. Thus, as one goes deeper one will 
encounter more and more neutron-rich nuclei. The sequence of nuclei up to a density of 
4.3 )( 1011 9 em -3 will be as follows 

N'62 1 , 

N'78 1 , 

The nuclei listed above have dosed shell configurations. The nuclei in the second line 
have 50 neutrons, those on the third line have 82 neutrons. 

Above a density of 4.3 x 1011 9 em-3 , neutrons begin to "leak out" of the nuclei 
and form a degenerate liquid, This regime is known as the "neutron drip regimti'. This 
state of affairs, namely, a lattice of exotic neutron-rich nuclei immersed in a degenera.te 
neutron ftuid and a. degenerate electron gas, will persist until one reaches a density ('oJ 

2.5 x 1014 9 em-3 when the adjacent nuclei begin to "touch" one another. Beyond this 
density, the nuclei will merge into a fluid of neutrons and protons. The relative numbers 
of neutrons and protons will be determined by the condition of beta equilibrium. 

(4) 

This implies that the chemical potential of the neutrons must be equal to the sum of 
the chemical potentials of the protons and electrons. This condition yields a proton 
concentration,..., 5%. 

The very neutron-rich nuclei, as well as the free neutrons are stabilized against beta. 
decay by the high degeneracy of the electrons. The beta decay of the neutron will be 
inhibited as long as the energy of the electrons produced is less than the Fermi energy of 
the electron gas. This has an important consequence for the minimum mass of neutron 
stars. 

There is a broad agreement up to this point in the description of the internal structure 
of a neutron star and this is summarized in the figure. The disagreement-sometimes 
P8.'lSionate!- is about the nature of the matter at densities much in "excess of terrestrial 
nuclear density (2.5 x 1014 g em-a). We shall return to the origin of this disagreement a 
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Figure 2. A schematic cross--section of a 1.4M0 neutron star based upon a. stiff equa.tion of 
state (fr()Ill. Sauls,1989). 

little later. For the moment let us accept the above picture of a neutron atax, and discuss 
the equation of state, viz. the variation of pressure with density. 

3. The equation of state 

Now we shall briefiy review some of the landmark equations of state. But first, some 
definitions are in order. Formally, the pressure is 

(5) 

where E is the specific energy per unit rest m&;.; and Po = nmo is the rest mass density. 
Alternatively, 

(6) 
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h e is the energy density and n the ba.ryon number density. Broadly speaking one 
w er~elineate two regimes while calcula.ting the equations of state: the solid crust and 
!$h YfiUl'd core with 2.5 x 1014 9 em -3 as the dividing density. Within the solid crust 
t e' dr" "( 4 11 3 ' onelllust treat the "neutron- Ip regnne p> .3 x 10 9 cm- ) separately (and with 

care!). 

The energy density in the solid crust may be formally written as 

(7) 

In the above expression EN is the energy of the nucleus (A,Z) including the rest mass 
of the nucleus and nN is the number density of the nuclei; ee is the energy density of 
the electron gas of density ne; en is the energy density of the free neutron fluid (this 
is relevant only in the lower part of the solid (,"rust); eL is the lattice energy. Ofthese, 
the energy of the electrons and the lattice energy are relatively easy to calculate. The 
nuclear energy is not known experimentally for the kind of very neutron-rich nuclei that 
one expects in the inner crust, and must therefore be deduced theoretically. Historically, 
this was done by adopting the liquid drop model of the nucleus and a.ppealing to the 
semi-empirical mass formula so widely used in nuclear physics. 

3.1 The Equation of State Above the Neutron Drip 

Let us now consider the Pt'9perties of the condensed matter above the neutron drip density 
of 4,3 x 1011 9 cm-3 • This regime <:an be subdivided into two regions.(l) The inner crust 
with a free neutron fluid, extending roughly up to the nuclear density of2.5x 1014 9 cm-3 , 

and (2) the fluid core. 

The pioneering effort above the neutron drip density was by Baym, Bethe and Pethick 
(1971b). There are two subtle things to worry about: 

1. As one goes towards the bottom of the crust there is less and less difference between 
the matter inside the nuclei and outside itl So one cannot have radically different 
approaches to calculating the energy of the nuclei and the energy of the free neutron 
ftuid. 

2. The importance of the lJur/ace enef"91l in determining the energy of the nuclei will 
decrease dramatically. After all, 88 the matter inside the nucleus becomes similar 
to that outside, the surface energy should van.ish. 

The various equations of state mentioned above are shown in :figure 3. Also plotted 
are the Chandrasekhar equation of state for an ideal degenerate electron gas with a 
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nuclear composition of pure Fes6 (labelled Ch). as well as the equation of state of 
ideal (n, p, e. _.) gas. The softening of this EOS as neutronization sets in '" 107 9 cm-8 ~ 
d~.a.rly seen. Figure 4: shows the Baym-Bethe-Pethick EOS. Also shown for compariso IS 
it! the Harrison-Wheeler EOS extrapolated to densities beyond the neutron drip densi; 
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Figure s. Several equatioll.S of state are shown in the figure: HW refers to the Harrison-Wheeler, 
and BPS to the Baym, Pethkk, Sutherland equation of state. The ideal degenerate electron gas 
model (withp. = I) is la.belled Ch (for Chandrasekb.a.t'), and n-p-e- eorrespondstothe,ideal 
(n - p - e-) gas. As one would expect, the latter deviates from the Chandrasekhar equation of 
state only for p ~ 107 gm em-3 where inverse fJ-deca.y becomes important (from Shapiro and 
Teukolsky 1983). 

3.2 The Liquid Interior 

The problems of calculating the energy density in the fluid core are vastly more complex, 
Nearly 50 years ago Hans Bethe.remarked that more man-hows of work had been devoted 
to understanding this problem than. any other scientific question in history. And there 
have been Herculean efforts since that statement was made. The way ODe has gone about 
the problem is the following: 
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Figure 4. The Baym.-Bethe-Pethick equa.tion of state. The Harrison-Wheeler equation of state 
is also shown for comparison (from Ba.ym et. aI. 1971b). 

1. One first tries to estimate nucleon-nucleon potential from n-n and n-p scattering 
experiments at energies below", 300M e V. 

2. The deduced 2-body potential is used to solve the many-body SchrOdinger equation 
and calculate the energy density as a functions of the baryon density. The most 
popular technique is BOme form of variational principle. 

There are two checks: The 2-body potential is used to compute the saturation energy 
and the density of symmetric nuclear matter, as well as the binding energies of light nuclei 
with A < 4. To get these right, modem 2-body potentials include as many as 14 different 
contributions such as central potential, spin-orbit potential etc'! 

A number of groups have worked hard over the past couple of decades to· construct 
the equation of state of the liquid interior along the lines outlined above. One of the 
important conclusions that has emerged from these studies is that one must include 3-
body forces as well (it may be recalled that 3-body potential cannot be described by a 
superposition of pair-wise potentials). 
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The next figure shows several calculations of the energy per nucleon as a function of 
the baryon number density. 
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Figure 5. Energy per nucleon tJerst18 baxyon density with and without 3-body forces in pure 
neutron matter. UV14 and AV14 use only 2-body forces, while the curves with the additional 
labels UVII and TN! include 3-body forces (from Wiringa., Fiks, Fabrocini 1988). 

For reference it may be noted that the nuclear density of 2.5 x 1014 g em-3 corresponds 
to a number density of 0.16 baryons/fm3 . The curves marked UV14 and AV14 were 
obtained using the 2-body potential derived by the Paris-Urbana group and the Argonne 
group, respectively: The other three curves with additional labels UV II or TN I include 
3-body forces. It is clearly seen that the inclusion of 3-body interactions has the effect 
of stiffening the equation of state compared to those calculated using 2-body forces 
alone. The pressure P is calculated from the energy per nucleon, E, through the relation 
P == n20E jon. It should be noted that there is considerable uncertainty in the equation of 
state at densities above the nuclear density, with different calculations yielding different 
results. Despite this, there is growing consensus that (i) the i.nclusion of 9-body forces is 
important, and (ii) that this inclusion will stiffen the equation of state. 

All this is fine, but is our basic premise correct? We may be doing a wonderful job, 
but the scenario may have nothing to do with the inner core of a real neutron star! Let 
me give you a. couple of reasons why this may be so. 

3.3 Soft .Equations of State 

In the entire discussion so far we have assumed that the constituent particles in the 
star are neutrons, protons and electrons. This is perlectly justifiable up to a. density of 
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the order of the nucl~ density :vhlc~, as w~ ha.ve said, is the boundary between the 
lid crust and the fimd core. Smce 10 the mner parts of the core the densities will 

so eed nuclear density, there is some uncertainty about the composition of the neutron 
:~ matter. One m~y reason~bly ask if: besides neutrons and protons, other particles, 
including exotic partIcles, are likely to eXISt. From a conservative point of view one needs 
to consider only the 1r meson and the K meson. The 11" meson can be neutral or charged, 
and has a rest mass '" 140M e.V. The reason why these mesons can spontaneously occur 
at high densities ~ the follo~g .. We alr~~y m~ntioned that the neutrons and protons 
in the core will be ill beta eqmhbnum. ThIS lIDplies that J1.n = J.l.p + J.l.e. Since J1.e increases 
with density, there will be a critical density at which it will exceed the rest mass energy 
of the 1C' meson. It will then be energetically favourable for a neutron at the top of the 
Fermi sea to "decay" to a proton and a 11"- meson. Let us recall our earlier remark that 
neutron matter in the core is stable because the ,B-decay of the neutron is inhibited by 
the extreme degeneracy of the electrons. What we have said above is that beyond a 
critical density a new decay channel becomes available for the neutron. At the interface 
between the crust and the fluid core the chemical potential of the electrons will already be 
N HOMeV. Consequently, one would expect 1C' mesons (with a rest mass,... 140MeV) to 
spontaneously occur at a density slightly in excess of nuclear density. But this expectation 
is somewhat naive. A spontaneously produced 11" meson will interact with the surrounding 
and this interaction energy will also have to be budgetted for. Simple estimates allowing 
for this suggest that 11" mesons may occur at densities", twice the nuclear density. 

In a similar fashion K-mesons, one of the "strange particles", can also spontaneously 
occur at even higher densities. Again, simple minded estimates suggest tha.t the critical 
density for this will be 2:: 3 times the nuclear density. 

Despite the uncertainties, let us accept these possibilities for a moment and ask 
in what way they are likely to affect the star. Unlike the electron, proton and the 
neutron which. obey Fermi-Dirac statistics, the mesons obe1/ Bose-Einstein statistics. A 
fundamental property of an ideal Bose gas is that at low enough temperatures it will 
undergo "Bose-Einstein condensation" or cond~e into the zero-momentum state. 

The number of particles N(O) in the zero momentum sta.te is given by a simple 
expression 

(8) 

It may be seen from the above formula that all the particles will be in the zero momentum 
state at T ::::: OK. This phenomenon is known as Bose-Einstein condensation. It is, of 
course, a condensation in momentum state and not in coordinate space. This remarkable 
behaviour of a Bose gas is believed to be at the base of spectacular phenomena such as 
8uperfluidity. Since liquids such as Helium-4 (which exhibits superfluidity) are far from 
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being "ideal", the Bose-Einstein condensation is not as pronounced as one would expect 
in an ideal gas. But recent experiments in which Rubidium atoms are cooled to incredibly 
low temperatures by laser light dramatically reveal this 'condensation' phenomenon, and 
the associated onset of superfluidity. 

After this digression let us retum to the question of the possible occurrence of 7r­

mesons and K -mesons in a neutron star. If they do, then the majority of them will be in 
the zero momentum state. Consequently they will not contribute to the pressure. Since 
these particles appeared in place of the electrons (at supranuclear densities) the equation 
of state will be 'softened'. This, as we shall see, can have a profound implication for the 
maximum mass of neutron stars. 

Quark matter 

Before taldng up the discussion of models of neutron stars using modem equations of 
state, let us indulge in some more speculation. The key question is what will happen to 
an assembly of neutrons and protons as we go on increasing the density? This question 
acquires significance because according to the modern point of view neutrons and protons 
are not fundamental particles, but are made of three 'quarks', which are the fundamental 
building blocks. Therefore, it is not unreasonable to expect that at sufficiently high 
density the more appropriate description of 'nuclear matter' will be in terms of these 
'quarks'. In the technical jargon one would say that at these densities the quarks have 
been 'deconfined'. The meaning of this is simply the following. Free quarks do not exist 
because the force between the quarks increases with distance. By the same token, at very 
short distances or very high temperatures the force between the quarks may be neglected 
and they may be regarded as essentially "free". Inside a baryon like a proton or neutron, 
the quarks and the gluons which are responsible for the force between them are said to 
be 'confined'. But at high densities one may regard the nuclear matter as a Fermi sea of 
quarks. The quarks have been deconfined! It is interesting to ask whether such a quark­
gluon plasma will exist near the very centre of a neutron star. This is highly uncertain 
at the moment. Current estimates suggest that a phase transition from baryonic matter 
to a quark-gluon plasma might occur at a density somewhere between 5 to 10 times the 
nuclear density. If this situation obtains then it, too, can have a significant effect on the 
stability of the star since free ifUark matter will be softer than baryonic matter. 

4. Models of neutron stars 

After that lengthy digression into the equation of state of neutron star matter let us 
return to the task at hand, viz., to model neutron stars. The procedure is the same as 
the one used for constructing white dwarf models. 
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1. Pick a value of the central mass-energy density Pc· The assumed equation of state 
will give a corresponding value for the central pressure Pc. 

2. The Tolman-Oppenheimer-Volkoff equation is integrated out from r = 0 using the 
initial condition at the centre. Each time a new value of the pressure is obtained 
the equation of state will give the corresponding density. 

3. The value r = R at whkh P = 0 is the radius of the star, and the mass contained 
within this is the radius of the star. 
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Figure 6. Density profiles of a 1.4M0 neutron star caleulated with various equations of state. 
In addition to the three modern equations of state which include 3-body forces, the figure also 
shows the density pro£le corresponding to a. very soft equa.tion of state (P A) and a very stiff 
equation of state (TI). All the three modern models predict a radius for the star R: 1O.5km, and 
a central density"" 6fJQ. The crust is only ..... lkm thick in these models (from Wiringa, Fiks, 
Fa.brocini 1988). 

Figure 6 shows the mass-energy density profile of a 1.4M0 neutron star calculated 
with modern equations of state which include 3-body forces. In addition to the three 
equations of state introduced earlier the ugure also shows the mass-energy density profile 
for a very soft equation of state (PA) due to Friedman and Pandharipande (1981) and 
also for a very stiff tensor interaction equation of state (T 1) due to Pandharipande and 
Smith (1975). A noteworthy feature of the models calculated with the modem potentials 
is that all of them predict roughly the same radius !::! 10.5 - 11 km, and a central density 
N 6pnllc- The crusts of these stars are only tV 1 kIn thick. 

The next Figure shows the gravitational mass as a function of the central density 
for sequences of neutron star models calculated with the same equations of state shown 
in the previous ugure. The maximum mass: of neutron stars predicted by the modem 
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Figure 1. Gravitational mass versus central density. The modern equations of state predict 
maximum mass '" 2 M0, while the very soft equation of state CPA) predicts a maximum ma: 
::; 1.5 Me. The horizontal line is the estimated mass of the neutron star in the x-ray binat 
4U0900-40 (from Wiringa, Fiks, Fabrocini 1988). 

equations of state is tv 2Me. The 'soft' equation of state (PA) predicts a maximum mas 
which is just about l.4Me! The reason why all these calculations yield a maximum mas 
significantly larger than 0.7 Me, the value obtained by Oppenheimer and Volkoff, is clear 
Oppenheimer and Volkoff treated the neutron star matter as an ideal neutron gas. A 
densities ~ nuclear density the repulsion between the nucleo~ plays an important role iI 
supporting the star against gravity. This is why one can make neutron stars with largeJ 
masses. 

The ~radius relation obtained for the iamilies of models is shown in the next 
figure. A very interesting feature of this figure is that the modern equations of sta.te 
predict rougbly the same radii for neutron stars for all masses (except for the very low 
mass stars, M:':; O.5M0 )! 

Returning to the Mass tis. Central Density plot, the maximum mass predicted by the 
various stiff equations of state is comfortably larger than the measured masses of radio 
pulsars (which clUster around 1.4M0 ), as well as the (less accurately) deduced masses 
of the neutron stars in X-ray binaries (the horizontal line in the figure corresponds to 
the estimate of 1.55M0 · for the neutron star in the binary 4U0900(40). But the one 
soft equation of state included in the figure predicts a dangerously low maximum mass. 
Recent calculations with other soft equations of state don't provide much comfort either. 
A recent equation of state with kaon condensate is that due to Thorsson, Prakash and 
Lattimer (1994). This yields a maximum mass '" 1.5M0 . Given various uncertainties, 
this could plausibly be pushed up to,..., 1.65Me (see Brown, 1999 ). 
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Figure 8. The mass-radius rela.tion for neutron stars (from Wiringa., Fiks, Fabrocini 1988). 

To summarize, all one cau say more than sixty years after the pioneering calculation 
by Oppenheimer and Volkoff is that the maximum mass of neutron stars is most likely 
in the range 1.5M0 to ;?: 2M0 _ 

5. Rapidly rotating neutron star models 

So far we have considered non-rotating stars. Since in ma.ny interesting astrophysical 
situations one encounters rapidly rotating stars (such as the millisecond Jlulsars) one has 
to assess the extent to which the conclusions of the previous section will be altered by the 
inclusion of rotation. That rotation will have a stabilizing effect is intuitively clear. A star 
supported by both pressure and rotation will be less dense and will have smaller gravity 
than the corresponding non-rotating spherical star. Consequently the upper mass limits 
for rotating neutron stars ttrill be larger than those of non-rotating stars. The question is, 
by how much? 

The main conclusion arrived at by a number of very discerning physicists is that 
~ot~~ion increases the maximum mass by approximately 15 - 20%. The change in the 
lirrutmg mass are COnstrained by the fact that neutron stars cannot maintain differential 
rotation. Although the neutron star has a fluid core one doesn't expect much differential 
rotation between the crust and the core. This U:due to large viscosity of the core. 
Interestingly, this conclusion remains even if the core is a 8uperjluid (and the arguments 
~ it being a superfluid are ~y compelling). The occurrence of superfluidity and strong 
VlSCous coupling to the crust may seem paradoxical, but there are beautiful and deep 
reasons for itJ 
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To return to our discussion, we remarked that detailed calculations show that th 
maximum mass of a neutron star is increased only by about 15 - 20% by rotation an~ 
that this is due to rigid body rotation of the star. White dwarfs, in contrast, can r~tate 
differentially. And these can have masses as large as 2.5 times the Chandrasekhar limiting 
mass for non-rotating white dwarfs (Dunsen, 1975). 

6. Theoretical upper limit to the mass 

Due to the considerable uncertainty in the EOS at supranuclear densities the maximum 
mass of neutron stars continues to be elusive. Given the great significance of this number 
one may ask, can one appeal to some very general principles to constrain the EOS at 
ultrahigh densities and derive a limiting mass. The answer is "yes". There are two 
condition one can confidently impose: 

1. : ;::: o. This is the microsc9Pic stability condition. If this is violated then the 
matter would spontaneously collapse. 

2. : :5 t? This is the "causality condition" that the speed of sound should not 
exceed the speed of light. 

Historica.lly, and around the same time, two sets of investigators approached this problem 
from slightly different points of view. We sha.ll first mention the treatment due to Rhoades 
and Ruffini (1974). Their starting point was the Tolman-Oppenheimer-Volkoff equation. 
As for the equation of state, they assumed that it was well determined up to a density 
Po. They then performed a variational calculation to determine the equation of sta.te 
at p > Po, subject to the two general conditions mentioned above, which maximizes the 
mass. They found this way that 

(9) 

They chose Po == 4.6 X 1014 9 em-3 and adopted the Harrison-Wheeler equation of state 
for p < Po. Given this choice for the combination of equations of state (above and below 
the matching density), by integrating the equation for equilibrium structure Rhoades and 
Ruffini found 

(10) 

This is a much quoted result in the context of the formation of stellar mass black holes. 

We turn next to a parallel effort by Nauenberg and Chapline (19'73) who approached 
the problem from the point of view of the stability of the star. Earlier, while discussing 
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the seminal work of Opp~nheimer and Volkoff, we referred to the turning point criteria 
to isolate the extrem:un ill mass .. We .al~ remarked that this point the star becomes 
unstable to compressIOn. But this cOIncldence between the maximum mass and the 
instability point holds only for stars whose equilibrium and pulsations are governed by 
the saIne equation of state. This, however, need not be true in general. 

In the 1960s Chandrasekhar undertook the first systematic study of the dynamical 
stability of stars in the exact framework of general relativity. This study yielded an exact 
stability criterion in general relativity. It is illuminating to look at the Newtonian limit 
of the stability criterion obtained by him since it gives an insight into the destabilizing 
effect of relativistic gravity. A Newtonian star will be unstable to radial oscillations if 
the adiabatic "I = ~~~ becomes less than ~; more precisely, when 'Y averaged over the 
star with respect to the pressure becomes less than ~. In the post Newtonian limit, the 
stability conditions derived by Chandrasekhar reduces to 

4 (2GM) 
"(c> 3" +K M (11) 

wb.ere K is a constant of order unity (Chandrasekhar, 1964). General relativity's stronger 
, gravity leads to instability at larger values of 'Y. This, as Chandrasekhar pointed out, 
is what makes supermassive stars, in which radiation pressure dominates collapse (since 
'Y f::j ~). This is also true for massive white dwarfs in which the electrons are relativistic 
(again,"I R:S *). What is interesting is that this instability implied by general relativity 
sets in (in the two cases mentioned above) when the stars are nearly Newtonian with 
radius 

(12) 

As Chandrasekhar and Tooper (1964) showed. a white dwarf close to the limiting mass 
becomes dynamically unsta.ble when its radius is I'J 5000 Scb.warzscb.ild radii! 

Let us now return to the effort by Nauenberg and Chapline. For an assumed equation 
of state they determined the ma:l'.."im'Um mass by locating the limit of stability against 
radial perturbations. The limiting case when the velocity of sound equais the velocity of 
light yielded a theoretical upper limit to the ma.ximum mass of a neutron star 

(13) 
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The agreement between the results obtained by the two groups discussed above is not 
surprising because the assumption of uniform density is remarkably good for masses near 
the maximum value. A couple of remarks are in order before leaving this topic. 

1. The value of 3.2M0 for the maximum mass obtained by Rhoades and Ruffini is 
often given the status of a rigorous upper limit in astrophysical literature. It is 
not! The limit on the maximum mass obtained in this manner is sensitive to the 
"matching density" {IfJ. Hartle and Sabbadini (1977) have studied this carefully and 
give the following empirical formula: 

1 

( 2 X 1014 9 em-S) 2" 
Mmaz < 4.8M0 {IfJ (14) 

Where (IfJ is the density at which the causality limited equation of state is "attached" 
to a.known and "reliable" equation of state. The value of 3.2M0 corresponds to 
a particular choice of Po = 4.6 X 1014 9 em -3 that Rhoades and Ruffini chose to 
make. 

2. So far we have considered non-rotating stars. Friedman and Ipser (1987) have 
derived the following empirical formula for uniformly rotating models 

(15) 

7. Discussion 

We began by remarking that the real stumbling block in determining the maximum mass 
of neutron stars is the equation of state of neutron star matter at densities above the 
nuclear density'" 2.5x1014 g em-s. After four decades of strenuous effort by several 
groups there is still considerable uncertainty concerning the equation of state: is the 
matter in the core of the star "stiff" or "soft"'! This depends on whether or not Bose­
Einstein Condensates, such as pion condensate or kaon condensate, occur at supranuclear 
densities, and whether asymptotica.lly free quark matter occurs at even higher densities. 
Till this question is resolved all one can say is that the maximum mass of neutron stars 
is somewhere in the range 1.5 - 6M0 • It seems to us that the best one can do at present 
is to appeal to observations. 

7.1 The observed Masses of Neutron Stars 

There are three types of observations that can efiectively constrain the equation of state: 
the measured masses of neutron stars, their spin frequency and their cooling rate. Let us 



The maxim/lnl mass of neutroll st{/rs 
541 

first summarize the situation concerning the measured masses. 

BinarY pulsars 

In the case of the Hulse-Taylor system (two neutron stars in a tight, eccentric orbit) 
and a few other pulsars one has been a.ble to precisely determine the masses of both the 
stars, thanks to general relativistic effects. The masses of neutron stars determined in 
the fashion are shown in the figure. It is extraordinary that the masses are remarkably 
close to l.4Me • 

o 
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Figure 9. Neutron star masses from. observations of radio pulsars in binary systems. All error 
bars indicate central 68% confidence limits. The masses of neutron stars in five double neutron 
star 811nema is shown at the top of the diagram. In two cases, PSR 1518+49 and PSR. 2303+46, 
the average of the masses of the two neutron stars in the system is known with much better 
accuracy than. the individual masses; these average masses are indicated with open circles_ Eight 
neutron star-white dwarf systetn$ are shown below these. The bottom most entry is the mass 
of a. neutron star with a main sequence star as the companion. The vertical lines are drawn at 
m = 1.35 ± O.04Me (from. Thorsett and Chakrabarty 1999). 

The conclusion one can draw is that whatever be the nature of the equation 
of state, the maximum Dl8.S8 of neutron stars is greater than 1.4M0 - Therefore, 
any equation of state which predicts a. lower maximum mass can be ruled out! 
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7.2 Bosonic Condensates and Quark Matter 

One of the central questions is whether 1f mesons and strange particles like the K meson 
spontaneously occur in neutron star matter. As mentioned before, these particles will be 
produced, in principle, if the chemical potential of the electrons exceeds the rest mass of 
these particles. For example, at sufficiently high densities electrons will change into K­
mesons 

(16) 

with the neutrino leaVing the star. The difficulty arises due to the fact that K- meson 
so created is in a me(lium and therefore one has to know the interaction energy with 
the medium before one can estimate the density (and therefore the value of the chemical 
potential of the electrons) at which this process will occur. This is a complex many-body 
problem, with inherent uncertainties in estimating the interaction energy. This is where 
the ongoing relativistic heavy ion collision experiments will shed light. These experiments 
directly probe the stiffness of matter at densities well in excess of nuclear densities. The 
picture will become clear in a few years. 

It turns out that not only labomtory experiments of heavy ion collision at relativistic 
energies will help to resolve this issue, but also some astronomical observations. The 
occurrence of pion codensate or Kaon condensate or quark matter will have a dramatic 
effect on the temperature evolution of neutron stars. This is because such states will have 
very high neutrino luminosities. 

And this has a profound significance for the cooling rate of neutron stars. Till the 
core temperature of a neutron star drops to '" 108 K the predominant cooling mechanism 
is neutrino emission. Cooling due to photon emission is important only at lower temper­
atures. Thus the cooling rate of young (~ lOSyears )neutron stars will be dramatically 
different if they have bosonic condensates or quark matter. This is illustrated in the 
figure. 

X-ray Qbservations of neutron stars with reliable age estimates (through, for example, 
their association with historical supernovae) will help to resolve this question. The already 
existing observations (with satellites such ROSAT) do not appear to need ultra rapid 
cooling of neutron stars. But more sensitive observations with CHANDRA Observatory 
should shed light on this important question. 

To summarize, all one can say at present is that there are no astronomical. observations 
that compel us to invoke Bose-Einstein condensates or quark matter in neutron stars. 
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Figure 10. Cooling curves for neutron star interior. The various curves correspond to various 
processes acting alone. As may be seen, the presence of Bose condensates and/or Quark matter 
will result in an ultra rapid cooling of the neutron star (from Baym and Pethick 1979). 

7.3 Constraints from Rotation Rates 

As already mentioned, for a neutron star of a. given mass the maximum angul~ velocity 
with which it can rotate is constrained by the equation of state. It is now generally 
accepted that the first-born neutron star in a. binary system will be spun up during the 
phase when it accretes from the companion. Very rapidly spinning neutron stars, such 
as the millisecond pulsars, are believed to be such spun up pulsars. The question is, 
what limits the period to which they are spun up? According to the traditional. point of 
view, this limitation arises from the accretion rate (with the Eddington rate providing an 
upper limit) and the magnetic field (smaller the field, smaller is the final. period). But it 
could also be limited by instabilities arising due to rotation. Mass shedding a.t the Kepler 
frequency is an example. Let us briefly discuss some other important possibilities. 

Nonaxisymmetric il18tability 

It is well known that Newtonian stars that rotate sufficiently rapidly are unstable to a 
bar-mode instability associated with a perturbation having angular dependence cos mt/>, 
for m = 2. This is the point at which the sequence of Maclaurin spheroid bifurcates into 
the sequence of Jacobi ellipsoids. In 1970 Chandrasekhar made the important discovery 
that the Jacobi sequence is unstable after the bifurcation point, and that this instability 
is driven by grovitational radia.tion (Chandrasekhar, 1970). It should be stressed that 
this instability has no Newtonian analogue. In 1978 John Friedman made the remark­
able discovery that a. non-axisymmetric instabili.ty driven by gmtJitational radiation is a 
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generic feature of rotating perfect-fluid stars in general relativity (Friedman, 1978). Every 
rotating, self gravitating fluid is unstable in general rela.tivity! This instability sets in not 
through m = 2 mode, but through modes of large m. This instability may be understood 
in the following way. 

These are non-radial modes, and there will be a pair of them: one that moves forward 
with respect to the star and one that moves backward with respect to the star. In a slowly 
rotating star these modes will be damped out by gravitation waves in the follOwing way. 
Gravitational waves will remove positive angular momentum from the forward moving 
mode and negative angular momentum from the backward moving wave (with respect 
to the star), thus damping out the oscillations. If the angular velocity of the star is 
sufficiently large, the mode travelling backward with respect to the star will be dragged 
forward with respect to an inertial obsertJer. Gravitational waves will now remove posititle 
angular momentum from this mode also. But since this mode is moving backwards with 
respect to the star, it has negative angular momentum. Thus the angular momentum 
(of the oscillation) will become more negative due to the emission of gravitational waves. 
In other words, gravitational radiation will drive this mode! Detailed calculations show 
that the limiting value of rotation rate when the above non-axisymmetric instability sets 
in will be reached before the Kepler frequency is reached (see Friedman and Ipser, 1992). 
This is true for most of the equations of state. The precise value of this limiting angular 
frequency will, of course, be determined by the stiffness of the equation of state. This is 
clearly illustrated in the figure from Friedman and Ipser (1992). 

The angular velocity is plotted against the parameter T jW, the ratio of the rotational 
energy to the modulus of the potential energy. The various labelled curves correspond 
to sequences calculated with various equations of state. G is the softest and L and M 
the stiffest equation of state. The termination point of each of the sequence corresponds 
to the Kepler frequency OK. The diagonal line crossing these curves is the estimate of 
the smallest rotation rate at which the gravitational wave instability will set in. It is 
interesting to note that since the curves are fairly "flat" this instability limit is within 
15% of the Keplerian limit. 

Presently, the population of millisecond pulsars is close to a couple of dozen. It is 
a curious and remarkable fact that the two fastest rotators among them PSR 1937+214 
and PSR 1957+20 have very nearly the same angular frequencies, 4033s-1 and 3910s-1, 

respectively. These are within 3% of each other. Since the magnetic field of these pulsars 
differ by a factor "" 2, the near coincidence of their angular frequencies would have to he 
accidental.. A more appealing argument is that {1 ,..., 4 x 10-3 s-lis the limiting frequen? 
for gravitational wave instability. The discovery of a couple of more pulsars near this 
frequency would clinch. this argument. But let us take this conclusion seriously for a 
moment. A glance at the figure shows that of the 10 equations of state only the stiff ones 
(L, M, N, and 0) are consistent with a mass of 1.4 M0 and the period ofthese millisecond 
pulsars. By the same token, future discovery of even faster pulsars with submillisecond 
periods will require soft equations of state. While no definite statement can be made at 
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Figure 11. Sequences of uniformly rotating neutron stars of baryon masses MB = 1.4M0 for 
various equations of state. The angular velocity Q is plotted against T/IWI, the ra.tio of rota­
tional energy to the potential energy of rotating stars. The termination point of each seque~ce 
corresponds to Q = QK. The diagonal line crossing the sequences is a. conservative estimate of 
the smallest rotation rate for which the model could be unstable to non-axisymmetric pertur­
bations. The horizontal dashed lines are the angular velocities of the two fastest pulsars: PSR 
1937+214 (upper line) and PSR 1957+20 (lower line). The main conclusion is tha.t only the 
stiff equations of sta.te (L, M, N and 0) are consistent with a mass of 1.4M0 and the observed 
periods of these pulsars (from Friedman and Ipser 1992). 

the moment, it is heartening that general relativity predicts an instability which can, in 
principle, constrain the equation of state. 

But there is a qualificationl For a perfect :fluid the growth time of an unstable m~de 
driven by gravitational radiation is the radiation reaction time. If the viscous damping 
time is less than this then viscosity will stabilize the unstable modes (Detweiler and 
Lindblom, 1977; Lindblom and Hiscock, 1983). Consequently, ordinary gaseous stars 
are unlikely to develop these nonaxisymmetric instabilities. As for neutron stars, the 
picture is unclear. This is because of the relativlty poor understanding of the viscosity 
of neutron star matter (we refer the reader to Lindblom and Mendell, 1995 and Lai 
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and Shapiro, 1995 for a recent diHcllssion of this topic). The current opinion rna b 
summariiled as follows. Although this may seem paradoxical, the viscosity of the ~Ui~ 
core may be more if it is in a 8uperfiuid state! This is because, as mentioned earlier if 
superll.uidity sets in it will be in a vortex state. It is this array of vortices, with their 
"normal cores" , that enhances the viscosity (It may be recalled that electrons scatter off 
the vortex cores very efficiently). Having said this, it should be stressed that superfluid 
hydrodynamics is sufficiently complicated to introduce considerable uncertainty in the 
estimate of the viscous timescale. But jf one accepts the above conclusion for a moment 
viz., the viscosity of the fluid core may be less if the fluid is normal, than. if it is ~ 
superll.uid, then one may advance the following scenario. 

Accretion induced collapse of a white dwarf: According to one point of view, rapidly 
spinning neutron stars with weak magnetic fields (such as the millisecond pulsars) may 
be formed when a white dwarf is pushed over the Chandrasekhar limit due to accretion 
from a companion. If this happens then the new-born neutron star will be hot, with core 
temperature in excess of 1010 K. Interestingly, the superfluid transition temperature is 
estimated to be ::; 1010 K (see 3auls, 1989). It is therefore likely that as the white dwarf 
collapses, and spins up due to the conservation of angular momentum, the stellar matter 
may be in the normal state with low viscosity. So one may expect the spin period of the 
new-born neutron star to be limited by nonaxisymmetric instabilities. 

Recycled pulsars: The other and more favoured route for the formation of millisecond 
pulsars is that they are the first-born neutron stars in binary systems which are spun 
up during the mass transfer x-ray phase (Srinivasan, 1989). In this scenario, too, the 
minimum period to which the neutron star is spun up may be limited by gravitational 
wave instabilities if enough heat is generated during accretion, and superfluidity in the 
core is destroyed. Again, one is not in a position to make definitive statements at this 
state. 

To conclude, although the maximum mass of neutron stars has acquired great significance 
in contemporary astronomy, it continues to be as elusive as ever! 
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