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SUMMARY

A Vlasov-Maxwell description of the ubiquitous solar coronal structures is
presented. It is found that an equilibrium plasma configuration can live with spatial
gradients in density, temperature, current and drift speeds of the charged particles.
Any stability study must be carried over this inhomogeneous equilibrium state. In
addition, the Vlasov description admits the investigation of kinetic processes like
heating and radiation and unlike a fluid description, it does not require an equation of
state to determine the individual variations of temperature and density.

1 INTRODUCTION

Solar coronal loops have been studied conventionally
through magnetohydrodynamic processes, since their shapes
betray the underlying magnetic fields. Coronal loops are
especially favoured for their ability to pick up energy from
the convection zone and deposit it in the corona. The foot
points of the loops suffer continuous turning and twisting,
producing complex magnetic geometry in which current
sheets have been shown to form. One believes that ohmic
dissipation of current in these sheets can maintain a ~10° K
corona. Attempts to show the formation of extremely small-
scale current sheets have been carried out by Parker (1983,
1987), Low (1987), Low & Wolfson (1988), Van Ballegooijen
(1985, 1986), Karpen, Antiochos & De Vove (1990) and
many more. The MHD equilibria of coronal loops have been
investigated by Priest (1981), Hood & Priest (1979), Vaiana
& Rosner (1978), Tsinganos (1982), Krishan (1983, 1985)
and Krishan, Berger & Priest (1988). In this paper, we
explore a Vlasov-Maxwell treatment of a current-carrying
cylindrical plasma. In this description, it is possible to derive
the spatial profiles of equilibrium plasma parameters and the
exact particle velocity distributions without invoking
equations of state and the exact particle velocity distribution
functions. It is found that the system develops strongly-
peaked current density profiles under very commonly
occurring conditions. It is perhaps the disturbance of these
current density configurations that leads to the heating and
acceleration of particles in coronal loops.

2 VLASOV-MAXWELL EQUILIBRIA

We will closely follow the recent work of Mahajan (1989)
on Vlasov-Maxwell equilibria for several systems, the

exemplary cases being Z pinches and Tokamaks. A coronal
loop will be represented by a cylindrical column of plasma
with current density J, along the axis of the cylinder and with
no gravity. The actual geometry of a coronal loop consists of
the two ends (the foot prints) of the cylindrical plasma
embedded in a sub-photospheric region. A small twisting
motion of the foot points may introduce a small amount of
azimuthal current J, which we neglect at present. The sub-
photospheric region contains a high-f plasma where S is the
ratio of gas kinetic pressure to magnetic pressure. As a result
the magnetic field lines move on a time-scale much longer
than the coronal time-scales. This line tying reduces the
region of unstable excitations, especially those of long wave-
length. The neglect of gravity reduces the coronal loop to an
essentially horizontal cylinder. Of course, while studying the
stability of an equilibrium, the end effects, gravity and curva-
ture must be properly taken into account. The particle den-
sity n, the temperature 7, and the particle drift speeds u are
in general, spatially varying quantities. Here we allow all
spatial variations only in the radial direction since there is
observational evidence for such variations. The plasma is
embedded in a uniform axial magnetic field, B,. The relevant
equations for an equilibrium system (with 9/9¢=0) are

df, e | 4 R af,
—<——|E+—X(B+ =t
I/r or me|: CX(B ezBO):} 1% 0 (1)
of, e | 2 R af;
V,—+—|E+—X(B+é,B,) | ==
ot m - (B+é.B,) YT 0 (2)
10 4n
== (rBg)=—1, (3)
ror
V-E=0 (4)
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VXE=0 (5)
= —e[d*Vu (f.~f) (6)

where f, , are the single particle distribution functions, (E, B)
are the self consistent fields. Equations (1) and (2) are col-
lisionless Boltzman equations for electrons and ions describ-
ing the conservation of particles in phase space of positions
and momenta. These are also known as Vlasov equations
which are valid at high temperatures when Coulomb colli-
sions can be neglected. In addition the fully ionized plasma
considered here experiences only electromagnetic forces. All
non-electromagnetic forces, such as gravity, are neglected.
Further, the axial dependence of particle density is neglected.
This is valid for loops of length smaller than the density scale
height. Equation (3) is the axial component of Ampere’s law
describing steady state fields. Equation (4) is Poisson’s equa-
tion under the condition of zero charge separation which is
justified for an equilibrium study since charge separation
occurs over extremely short time-scales such as those of
electron plasma oscillation. Equation (5) is Faraday’s Law
for steady fields. Equation (6) defines current in terms of the
particle distribution function for electrons and ions. Let a
displaced Maxwellian of the form

fu= s expl = (V=ut Vo, Jglr) @)

e,i
provide a self-consistent solution for equations (1)-(6). Here
ny is the ambient density, v2;=2T,;/m,; and u$' are,
respectively, the thermal speed and the drift speed, T,; and
m,; are the temperature and mass and g(r) is the density pro-
file factor which is same for electrons and ions under the
assumption of no charge separation.

Case 1

The self-consistent solutions of equations (1)—-(7) for the case
when g(r), describing the entire spatial variation are found
to be

g(r)=[1+r?/462]"* (8)
and

bs,= — (-65 [1+ 72467 (9)
where

eusBy o 28 Vi(l-u)!
=T Sl 1
bYen 0T 2wy (10
and

= (uif )

Here eis the charge, cis the speed of light and w,,,=(47ne?/

m,)"? is the electron plasma frequency. Thus one obtains a
density profile peaked at the axis with a characteristic length
scale 0, which will be estimated in a later section.

Case I1
Here, in addition to density gradient, the spatial variation of
temperature is also allowed. The drift speeds uS' are still
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homogeneous. It has been shown (Mahajan 1989) that a
series representation for the distribution functions gives a
valid solution of the inhomogeneous Vlasov-Maxwell
system, the expansion parameter for the series being (u/v),
the ratio of drift and thermal speeds. This is appropriate for
the considerations in coronal loops as discussed later. Using
the smallness of (u/v), we write for the distribution function
as

__ml) [ et
Jei P 1/Jen) GXP{ (v;"we,i)z]

[HZ“:ii ( )( v H (11)
Vo a= =0 UO UO’we,i

where 1, describes the spatial variation of electron tempera-
ture and v§ is the thermal speed on the axis (r=0). Since
we are interested in equilibrium solutions, we assume
Y.= ¥, =y and B, = B, ie. the electrons and ions have iden-
tical temperature profiles. With the assumption that density
variation is generally steeper than temperature variation, one
can take 8, = ;= — 8, where C,,=1and C,, = 8.

Using equation (11), and retaining terms only up to (u/v),
one finds the profile functions as

Y=(1+r/40 %) 22 (12)

g=(L+r2[40%) 208252 (13)
-1

soa=(¥ 1| (14

where

Oesr=(20,/58—2).

The temperature

Toc g2 =(1+ r248%) 415~ (15)

The current density

Joegy?=(1+r2/40%,)? (16)

The pressure

prgy?=(1+r’j405,)* (17)

One observes that, depending upon the value of f, the
radial variation can be positive or negative. Thus for 8>3,
both density and temperature fall away from the axis,
whereas for 3> 8>, the densuy increases and temperature
decreases away from the axis. For <3} the temperature
increases towards the surface and this is very much remi-
niscent of the cool-core- and hot-sheath-type loops observed
by Foukal (1978) and Krieger, de Feiter & Vaiana (1976), and
modelled through variational principle in MHD by Krishan
(1983, 1985). The other parameter, J,, which characterizes
the spatial variations, is related to the skin depth. We shall
see in a later section that the measure of J,, which determines
the steepness and extent of the current density profile is com-
mensurate with the requirements laid down by the joule
heating of the loop plasma.

Case Il
Here, we allow gradients in density and drift speed. It is
found that the presence of temperature anisotropy permits a
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displaced Maxwellian solution of the system where the dis-
tribution functions are given by

2 2 e, 2
_ nog(r) v+, [v,~ ugfei(r)]
foi= ﬂmviivi’i GXP[_ U:,i - (vez:z,i) 2 (18)

Here, we have taken ¢.=¢,=¢ with ¢(r=0)=1, and
g(r=0)=1. The equations relating the density profile, g(r),
and the drift speed profile, ¢, are found to be

1o op)\_ 24 |{ub| o
75(’5)‘ 5 p[() (¥ ”] ")
and

u(e)z g 2
g(,r)=eXP[(7) (¢ —1)] (20)
where

A=(ve—v2)/2(u)' =

(21)

Equation (19) has been solved numerically and here we will
reproduce some of the figures from Mahajan (1989), since
the spatial behaviour of the density, the magnetic field and
the current density are essentially a function of the dimen-
sionless parameter A.

Coronal loops

Coronal loop, a bipolar structure is characterized by an elec-
tron density n,~10'°-10'? ¢cm~3; a temperature varying
from a few tens of thousands to a couple of million K, a
length of 10°-10'" ¢cm and a radius of 103-10° cm with an
axial magnetic fields of a few Gauss. The current flows essen-
tially along the axis of the cylindrical plasma column and
produces an azimuthal component B, of the magnetic field.
Observations in EUV has shown that loops of different tem-
peratures are coaxial and this has led to the identification of
cool-core and hot-sheath-type loops, (Foukal 1978; Krishan
1983, 1985). The X-ray observations further reinforce the
inhomogeneous nature of the underlying heating mechan-
isms. Resonance absorption of surface MHD waves, as well
as the joule dissipation of high-density current sheets (in
addition to the ubiquitous mini magnetic reconnections) are
some of the favoured candidates for heating of the solar
corona in general, and coronal loops in particular (Hollweg
1981). Here we find that the exact solution of a Vlasov—
Maxwell system naturally admits the peaked spatial profiles
of current density and magnetic field, and we believe it is this
equilibrium configuration, which when disturbed, gives rise
to sporadic flaring phenomena, acceleration and heating. It
has been shown by Rosner ez al. (1978) and Hollweg (1981)
that for the joule dissipation to provide enough heating to
balance the radiation losses for the typical conditions of elec-
tron density, magnetic field and temperature, the current
sheath must have a thickness of a few hundred to a thousand
cm, and anomalous instead of the collisional resistivity must
be operative. The latter gives us a clue to the relative elec-
tron-ion drift velocity that must exist to excite ion—acoustic
turbulence which may be responsible for anomalous resis-

tivity. The typical parameters in this scenario are chosen
from Hollweg (1981):

electron density in the sheath-n,=10° cm™3;

electron temperature in the sheath-7,=2.5x 107 K;
electron thermal speed-V,=2.7x10°cm s~ };

electron drift velocity u, > sound speed-=4.5X 107 cms™;

The magnetic field B, produced by the current density J, is
10 G, and the thickness (AR) of the current sheet turns out to
be ~10° cm. We recall from the previous section that J, is
the characteristic length-scale in the solutions of the
Vlasov-Maxwell system. Let us estimate it:

8, =S Ye( e Ty

wpe Ue

=1.04x103cmfor T,> T},
=0.9%x10°cmfor 7,=9 T;.

1.00 T T T

0.80f 4

0.40 4

0.20 b

0.00 L - + -
0.00 2.97 5.94 8.91 11.88 14.85

X

Figure 1. Variation of density profile function g(r) versus x=r/d,
for case I (equation 8).
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Figure 2. Variation of magnetic—field profile function (b J,) versus
x=r[0,for case I (equation 9).
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Figure 3. (a) Variation of temperature profile function y? versus x =r/d, for =0.5 (equation 15). (b) Variation of magnetic-field profile
function (b4,) versus x=r/d, for f=0.5 (equation 14). (c) Variation of density profile function g(r) versus x = /3, for = 0.5 (equation 13).
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Figure 4. (a) Variation of temperature profile function y? versus x = r/d, for 8=0.8. (b) Variation of magnetic-field profile function (bd,) versus
x=r/d,for B=0.8.(c) Variation of density profile function g(r) versus x =r/d, for 8=0.8.
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© ﬁ =0.8 Thus we find that current profile of small widths are the
1.00 : : outcome of the exact solutions of the Vlasov-Maxwell
system. Here we present a few examples of spatial variations
of plasma parameters. The variations of density and
0.84f magnetic-field profile factors (g and b, respectively) for case
I, where only the density is space dependent, are given by
equations (8) and (9) and shown in Figs (1) and (2). A sharp
0.68 1 fall in density away from the axis is obtained. This is remi-
o niscent of the condensations often observed at the axis of a
loop. The current density is therefore found to be maximum
0-52r on the axis. The spatial profiles for case II allowing tempera-
ture variation are given by equations (12), (13) and (14), and
0.5k | are shown in Figs (3), (4) and (5) for three values of the
' parameter §. In this case the temperature increase (equation
15) away from the axis for 8 <2/5. Case IIl gives very inter-
0.20 . . . . esting profiles where the current density appears in the form
0.00 3.00 6.00 9.00 12.00 15.00 of multisheaths (Fig. 6) for large values of the anisotropy
X parameter; the corresponding density profile (Fig. 7) is
. . almost flat. These profiles are reproduced from Mahajan
F 4- d
teure &= confinue (1989). Since all functions, as well as the variables, are
» $=0.2 £=0.2
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Figure 5. Variation of temperature profile function 2 versus x=r/d, for =0.2. (b) Variation of magnetic-field profile function (bd,) versus
x=r/d,for $=0.2.(c) Variation of density profile function g(r) versus x=r/0, for §=0.2.
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Figure 6. Variation of current profile function (gue) versus x=r/d,
showing formation of multisheaths for large values of temperature
anisotropy parameter 4 (from Mahajan 1989).

Figure 7. Variation of density profile function g(r) versus x=r/d,

expressed in dimensionless forms, we only need to provide
appropriate normalization. For coronal loops, the anisotropy
parameter

AT, V? JAT.
A=—r—5=18x10"—¢
T, 2u; T,

Thus for A=5 one finds (AT,/T,)=2.7x 1073, which is
reasonably small.

CONCLUSIONS

A Vlasov-Maxwell description of coronal loop plasma
admits a variety of equilibrium spatial profiles of mass
density, current density, the temperature, and the magnetic
field depending upon the type of inhomogeneities allowed.
The profiles vary from being flat to spiky and resemble the
ones derived from EUV and X-ray coronal observations.
The multisheath current profiles derived here complement
the magnetohydrodynamic study of current sheet formation
especially well. In addition, the Vlasov description allows the
determination of density and temperature profiles indi-
vidually, in contrast to the fluid description where equation

of state is required to extract the separate variations of
density and temperature from the pressure profile.

for several values of the temperature anisotropy parameter 4 (from
Mahajan 1989).
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