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ABSTRACT

The problem of resonance line polarization including collisional redistribution is studied using simple theo-
retical models. The medium is assumed to be a static finite spherical shell atmosphere. The purpose of this
paper is to understand the behavior of line polarization when elastic and inelastic collisions cause frequency
redistribution upon scattering. All the redistribution mechanisms that are astrophysically relevant are con-
sidered in a simple two-level atom picture. The dependence of resonance line polarization on physical param-
eters of the two-level atom formulation and on the collisional parameters is shown in detail. The
Domke-Hubeny generalized collisional redistribution matrix for polarized radiation is employed in most of
the examples shown in this paper. It is shown that different types of collisions that affect photon redistribution
in both resonance and subordinate lines can be distinguished through the characteristic changes they produce
in the intensity and linear polarization profiles. The simple asymptotic expressions of partial redistribution
theory are shown to be useful in the interpretation of model intensity and polarization profiles.

Subject headings: line: formation — polarization — radiative transfer — stars: atmospheres

1. INTRODUCTION

Several aspects of line formation theory including polarization of radiation fields have been well explored in the past two decades.
In an important article Rees & Murphy (1987) review the developments achieved in this area, and the future prospects. Since a
detailed reference to earlier work is listed in that article, we refer only to the work done in recent years with specific emphasis on
radiative transfer computations involving collisional redistribution of radiation during scattering. Saliba (1985) made a detailed
study of the linear polarization in the solar Ca 11 K line in a realistic solar atmosphere. He included the effect of collisions in a partial
frequency redistribution (PRD) model, according to the well-known method of Omont, Smith, & Cooper (1972) and Ballagh &
Cooper (1977). His approach is practically very useful in modeling the observations of linear polarization of resonance lines in
general. A similar kind of calculation is presented in McKenna (1984, 1985). The most general method to date to solve the transfer
problems including collisions and weak magnetic fields is due to Faurobert-Scholl (1991, 1992, 1993 and references therein). In this
important series of papers, she has included one of the most general collisional redistribution matrix for polarized radiation derived
by Domke & Hubeny (1988). The presence of weak magnetic fields leads to the Hanle effect in the resonance lines. The general
method developed earlier for the Hanle effect with PRD (Faurobert-Scholl 1991) is cleverly adopted to include the Domke-Hubeny
redistribution matrix also (Faurobert-Scholl 1992, 1993). The collisional and radiative branching ratios are computed for a realistic
solar atmosphere, and theoretical resonance line model profiles are fitted to the polarization observations of Stenflo, Baur, &
Elmore (1980). Some aspects of polarized resonance line transfer using this matrix are also presented in Mohan Rao & Rangarajan
(1993). In an important series of papers Landi degl’Innocenti, Bommier, & Sahal-Brechot (1990 and references therein to their series
of papers) have developed a very general quantum electrodynamical formulation of the redistribution of polarized radiation in
resonance lines, and methods to solve those equations. It is very important to note that Faurobert-Scholl (1991) has also established
the “equivalence” of conventional approach (meaning the use of Hummer’s redistribution functions along with independent
coupling to statistical equilibrium equations, e.g., as described in Mihalas 1978) and the formulation of Landi degl'Innocenti and
collaborators. It is useful to note that the calculations as presented in our paper are a limiting special case, when magnetic field
strength in zero, of the general approaches developed in Faurobert-Scholl (1990, 1991, 1992) and Landi degl’Innocenti et al. (1990).
The quantum mechanical collisional redistribution matrix for polarized radiation is derived by many authors (see Ballagh &
Cooper 1977 and references therein to earlier work). Recently Domke & Hubeny (1988) and Streater, Cooper, & Rees (1988) have
derived general redistribution matrices where certain simplifying approximations made in earlier work are relaxed. In all the
references mentioned above, the line-forming region is assumed to be stratified in plane parallel layers. The PRD resonance line
polarization problem in spherically symmetric atmospheres is presented in Nagendra (1988, 1989). This paper is devoted to
exploring certain finer aspects of collisional redistribution on resonance and subordinate line polarization in spherical atmospheres.
In § 2 we present the transfer equations. In §§ 2.1 and 2.2 we discuss the collisionless redistribution matrices and elementary
redistribution functions, respectively. In § 2.3 we describe the Domke-Hubeny polarized redistribution matrix. In § 3 we discuss the
results of our computation with the help of a large number of models.
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2. GOVERNING EQUATIONS OF THE PROBLEM

2.1. Polarized Line Transfer Equation

The vector transfer equation in spherically symmetric (SS) media for polarized vector intensity U = 4nr?I, with I = (I Q) is
1 written as

[T992A

aU(x, K, r) 1— “2 aU(x’ K 1‘)
u + =
or r ou

_X(x, i, r)U(x’ H, r) + "(X, H, r) >

in the conventional notation of two-level atom line transfer problems. The total absorption coefficient is given as

X%, g 1) = MO, p 1)+ 250, 1 1) + XX 1 1)

The optical depth scale is dt(r) = — x"(r)dr, defined in terms of averaged atomic absorption coefficient at the line center y’(r). The
reduced frequency x is defined as x = (v — v,)/Avy, where Av;, = (vo/c)(2kT,/M*)!/2, where v, is the line center frequency and M? is
the mass of radiating atom. The Doppler width Av), is independent of optical depth since the medium is isothermal (T, = constant).
In the expression above, x€ and x° are, respectively, the coefficients of continuous absorption and electron scattering (y* = N, o,
where o, is classical Thomson scattering coefficient and N, the electron number density). The profile function is represented by a
Voigt function

() = ﬁ HG, %),

where damping parameter a is the ratio of total damping width I' to the Doppler width Avj, (see eq. [54]). The emission coefficient
vector n(x, u, r) in the transfer equation is defined as

n(x, p, 1) = e, g, 1) + 1%, 1 1) + %, 1 1),
in analogy with total absorption coefficient y(x, u, r). The total “ vector source function ” is written as

_ Sl(x’ H r) _ '](X, Hs r)
Sl 1) = [Sg(x, " r)] s )

_ PX)SHx, p, 1) + BESU(r) + BoS(x, 1, 1)
B o(x) + B + p°
where the unpolarized continuum source vector S€(r) is defined as
Sr)=Br1=B1; 1=[1 0].

The continuum absorption parameter B¢ = [x(r)/x%(r)] is assumed to be frequency independent across the entire bandwidth of
the line. The polarized line transfer equation given above is solved in spherically symmetric systems by giving boundary conditions
at both the inner and outer boundaries. The Schuster boundary condition employed by us represents the photospheric boundary
condition

Ux,p1=TH=[1 0]" and Ux,pt=0=[0 0]",

which is useful for optically thick (or semi-infinite) slabs or spherical shells. For simplicity, we have taken B(t = TZ) to be frequency
independent and angularly isotropic across the entire bandwidth of the line. The method of solution continues to be the same as in
Nagendra (1988). The model parameterization is also the same as before. In the following sections, specific requirements of model
parameterization are mentioned as and when required.

2.2. Basic Concepts of Polarized Redistribution Matrices: The Collisionless Case
In this section we give general expressions for line source vector, in the case where collisional redistribution is neglected. A
two-level atom line source vector for this case is given by
S;‘(X, K, r)] — (1 — €)
So(x m )] 24(x)

where € is the probability per scatter that a photon is destroyed by collisional de-excitation. The redistribution matrix R(x, u, X', ')
can be approximated following the hybrid model

+ o +1
S(x, p, r) = I: J dx’' f R(x, y, x', W)I(x', i, r)dy’ + €B1 , 1)
— -1

R(x, u X', W) = P(u, W)R(x, x') 2
of Rees & Saliba (1982) which completely decouples angle and frequency dependence. The angular phase matrix is

1 2n
Py, i) = o j Plp, ', A)dA 5 A= (¢ —¢), 3
T Jo

in the conventional notation that direction (i, ¢) represents incoming ray and (u, ¢) the outgoing ray. Employing the expressions
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for the phase matrix P(u, u', A)inthe (I Q)7 representation (cf. Chandrasekhar 1960),

3(1 + cos? @) 3(1 +cos? ®) — 3 + 3(1 — p?) sin? A 1 0
" A)=E 4 4 2 2 _
P ¥, 8) ‘[%(1 +oos? @) —§+3(1—pYsi? A 31 +cos? ®)— 302+ wsinra |TETENg o) @

where (1 — E;) measures the amount of atomic depolarization. Some remarks are made about the physical meaning of E, in the
next section on redistribution functions. In all the computations presented in this paper we have taken E; = 1, excepting its indirect
parameterization in the Domke—-Hubeny redistribution matrix. In the equations that follow, we have assumed E, = 1. This does not
cause any ambiguity. The scattering angle ® in equation (4) is given by the expression

cos @ = up’ + (1 — p)?(1 — w?»*? cos A, 5)

where u = cos 6, and y' = cos @' are the polar angles measured in the rest frame of the star (laboratory frame), in which all
geometric and physical variables are measured. We now define three auxiliary functions that together constitute the redistribution
matrix. They are

2n

1
RA4(x, u, x', i') = R(x, x) P J 1dA = R(x, x'), (6a)

0

1 (*3
RE(x, u, x', i) = R(x, x') — J = (1 + cos? ®)dA
2n ), 4
r 3 2.2 1 2 ’2
=R(x,x)z L+ pp +§(1—#)(1—#) ) (6b)

O 1
RE(x, u, x', W) = R(x, X)) P f sin? AdA = = R(x, X) . (6¢)
n Jo 2

The redistribution matrix for the scattering of azimuthally symmetric, linearly polarized light in the base (I Q)T is written as
RY(x, p, X', ) R2(x, p, X', i)
R (x, p, x', ) R**(x, p, x', )]

In can be noticed that the first two expressions of equation (6) represent, respectively, the scalar isotropic scattering and Rayleigh
scattering (or dipole scattering) redistribution functions, which are extensively employed in astrophysical line transfer problems. The
individual matrix elements in equation (7) are given by

R(x, u, x', 1) = [ M

RY(x, p, x', W) = R%(x, p, X', ) , (8a)
RY(x, p, x', @) = R¥(x, p, X', @) — 3RA(x, p, X'y @) + 3(1 — wP)Rx, p, X', ), (8b)
R*(x, p, X', p) = R%(x, p, X', p) — 3RA(x, i, X', o) + 3(1 — W)Rx, p, X', ) @)
R*(x, p, X', ) = R¥(x, p, X', ¢) — 3% + WHR(x, p, X', ) . (@d)
The normalization conditions to be satisfied in the finite angle and frequency representation of the redistribution functions are
f e j R4, X, = 90, ©)
Cw -

for the isotropic and dipole scattering weighted redistribution functions. Further, the normalization condition

+ o +1
f a f (1 — WRCs i, x, Wyt = 22 (10
-1

— o0

for the function R%(x, u, x’, i) is derived by demanding that the polarization on scattering should vanish (Q = 0) in an isotropic
diffuse radiation field. This requirement implies

+ o +1
J dx's f R*!(x, p, x', w)dp' =0 (n
— o0 -1

in the equation (7) for redistribution matrix. The quantity R(x, x') in equation (2) is the conventional angle-average laboratory frame
redistribution function (see Mihalas 1978). In this paper we have studied some commonly used elementary atomic redistribution
functions. Thus we can write R(x, x') in a generic form as

R(x,x)=R,_4(x,x); i=ILILV (12)

in Hummer’s conventional notation. These functions can also be classified as mathematical redistribution functions (see Hubeny
1985b). Analogous to equation (1), we can write the electron scattering source function S%(x, u, r) as

— Si(x’ #3 r) __l e ’ ! e, ’ ’ ’ ’ ’
S‘e(x, K, r)_[ eQ(x, I r)]—zj_w dx . R(X, U X ”)I(x, ,u,r)dy . (13)
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The electron scattering parameter ° = [x(r)/x*(r)] gives the probability that a line photon is redistributed by scattering on an
electron having a Maxwellian distribution of velocities. Since all the equations (2)—(11) hold exactly for the electron scattering also,
we do not repeat them again. As in the case of atomic scattering, we have always selected E$ = 1 in this paper. The generic form of
the redistribution function for electron scattering can be written as

R(x, x') = R{_ 4(x, x'} ;  j = CES, CRES (14a)
(see Mihalas, Kunasz, & Hummer 1975). The symbols CES and CRES stand for coherent electron scattering and complete
redistribution in electron scattering, respectively. The explicit expressions for these choices are
Régs— 4(x, X) = (x — x); and Réges—_4(x, x)=1. (14b)
Note that the profile function for electron scattering is constant (due to Thomson scattering cross section o, being constant).
2.3. Elementary Redistribution Functions

In this subsection, we mention some of the laboratory frame redistribution functions that are frequently used in astrophysical
radiation transfer theory. An elegent description of physical nature of the functions R;_ ,(x, x'), i = II, III along with plots of the
corresponding emission coefficients can be found in Mihalas (1978). A complete description of R;_ 4(x, u, X', ), i = L, II, ITI, V can
be found in Heinzel (1981) where the angle-dependent emission coefficients for different angles are also shown. The angle-averaged
versions of the redistribution functions can be computed by a direct numerical integration of the corresponding angle-dependent
functions (see Heinzel & Hubeny 1983; Hubeny & Heinzel 1984). It is important to note that redistribution functions R;_ ,(x, x'),
i = L IL, III derived by Hummer (1962) are special limiting cases of the more general function Ry _ 4(x, x') derived by Heinzel (1981).
The simplest function that can be employed as a line scattering mechanism is coherent scattering (CS) in the laboratory frame. But it
represents a highly unrealistic and extreme case, and hence not useful in practice. It is defined as

R(x, x) = 8(x — x')p(x) . (15)

An extremely useful redistribution function that is widely used in literature is the complete noncoherent scattering in the
laboratory frame (a situation opposite to that of CS). This function referred to as complete frequency redistribution (CRD) is given
by

R(x, x) = dp(x)p(x) . (16)

CRD can be used as a good approximation to represent resonance scattering in resonance or subordinate lines. The type II — A
and type III — A redistribution functions of Hummer are given in Mihalas (1978). The model profiles computed for Ry;_ ,
redistribution function resemble the corresponding CRD profiles in certain frequency ranges in the line. However, unlike CRD
function, Ry _ 4(x, x') is employed mainly to represent the situation where collisional damping or collision-induced decay of the
upper level is “dominant” over the radiative decay. The type V — A redistribution function of Heinzel is obtained by an accurate
angle averaging of the corresponding angle dependent function given by

R(x. x') = Ry _ 4(x, x') = 8n? J. Ry(x, X', ®) sin © dO , 17)
0
where the angle-dependent function is given by (Heinzel 1981):

, 1 O\ x+ X' (O] 0\ x —x' ® ,
RV_A(x,x,®)—nsin®{Hl:a,,sec<2>, > sec<2>]H|:a,csc<2>, > csc<2>]+Ev(x,x,®)}. (18)

The correction function Ey(x, x’, ®) is given (after simplifications in the original expressions of Heinzel 1981) by

Ey(x, x', ®) = sin (©/2) Re J e”2‘2““"|[(cos 2xt + cos 2x’t){H|:a 15 % sec (%):I - H[az, X -; X sec (%):I}
Jn 0

— (sin 2xt + sin 2x’t){K[al, % sec (%):I - K[az, X ; X sec <%>]}]ldt , (19

where the composite damping parameters a, and a, are defined as
a, = a, sec (0/2) + t cos (0/2) + a, sec (©/2) ; and a, = a, sec (0/2) + t cos (0/2) .

The H and K Voigt functions are the real and imaginary parts of the complex Dawson function defined as

D(w) = H(p, q) + iK(p, q) , with w=p—iq. (20)
These H and K functions are computed using accurate methods given in Matta & Reichel (1971). The profile function to be
employed when using Ry _ ,(x, x') in the transfer equation, is computed from

$(x) = ﬁ H(ay, x) = f “Ry_ax, X)dx' | @)

with a,; = a, + a,. The redistribution function Ry _ 4(x, x') refers to the case of a subordinate line in which both the upper and lower
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levels have finite widths caused by pure radiative damping of each level. This function represents partial noncoherence (fluorescence)
in the atom’s frame. This function is characterized by a joint probability of emission maxima in the wing and near the line center.
The nature of core emission is like that of R, _ 4(x, x) and the nature of wing emission is like that of Ry _ 4(x, x').

2.4. Physical Redistribution Functions

Since collisions of radiating atoms with neutral and charged perturbers is one of the basic causes of frequency redistribution, the
name physical redistribution functions can be used to refer to those functions that explicitly include the effect of collisions. Such
functions for spectral lines formed under partial frequency redistribution mechanism, are derived in Omont et al. (1972). They
showed that, for resonance lines (no lower state broadening), the effects of collisional redistribution can be represented by taking a
linear combination of elementary redistribution functions Ry, _ ,(x, x") and Ry, _ 4(x, x"). The renormalized version of their collisional
redistribution function is written as

R(x, x') = ARy _ 4(x, x') + (1 = ARy 4(x, X') . 22
The renormalized branching ratio (also called coherence fraction) A is given by
_ e+ Ty
Tr+ T+ 05"

where T'g, I';, and Qj are the radiative broadening rate, inelastic collision rate, and elastic collision rate, respectively. The
corresponding expression for subordinate lines (for which both the levels are radiatively and collisionally broadened), was derived
by Heinzel & Hubeny (1982). It is expressed as a linear combination of functions Ry _ ,(x, x") and Ry, _ 4,(x, x"), with a branching ratio
A now computed taking account of broadening of both the levels. It is written as

R(x, x') = ARy _ 4(x, x') + (1 — A)Ryy;_ 4(x, X') . 24)

A 23)

It is clear that equation (22) is a special case of equation (24). A detailed study of collisional redistribution on resonance and
subordinate lines is made by Hubeny & Heinzel (1984). The equations (22) and (24) represent good approximations to study the
collisional effects on line formation. They are widely used in astrophysical literature. In recent years more exact formulations of the
collisional redistribution functions have been developed.

We shall now discuss a redistribution matrix which correctly takes into account the effect of collisions. Domke & Hubeny (1988),
and Streater et al. (1988) developed very general angle-dependent redistribution matrices, which represent the radiative and
collisional redistribution of an arbitrarily polarized beam of light. We shall give below the expressions which help us compute
angle-averaged version of the general Domke—Hubeny redistribution matrix which is employed in this paper. The general Domke—
Hubeny (DH) redistribution matrix is written as

Row(x, p, X', 1) = Wy o Ri(x, sy X', )P 1) + RRGx, p, X' )PP, ) + RECx, g1, X', w)PG, )]
+ (1 — Wyal Ril(x, . X', )P, )] + WoBPIRA(X, 1, X', )P u, ) + Ri(x, p x5 w)PP(u, ) + R(x, p X', )P, )]
+ (B — W, BONRA, p, X )P (e, 1)1, (25)

where the angular phase matrices are given by

N _3(0 1), NI ~_3[ o 1—-uy 7. L (10
PA(uaﬂ)__ ( )s pB(“’#)_<l 1>a ﬂ(ﬂ)#)—z[ :I, and p’(ﬂ,ﬂ)—<0 0)

2\1 0 (1—w? —@+u?
(26)
The frequency redistribution functions in equation (25) are defined as
1 f2n
Ri},m(X, u X', W)= ‘2‘7; Ru,m(x, w X, 1, A)1dA (27a)
JO
1 (2= 3
RE mlx, p, X', ) = 7 Ry (%, p, X', ', A) 2 (1 + cos? @)dA , (27b)
JO
1 f2n .
RS mlx, u, X', @) = P Ry m(x, . x', i, A) sin? AdA . (27¢)
JO

If we substitute Ry in equation (1) and employ Rees-Saliba prescription (eq. [2]) for angle and frequency decoupling, then these
equations (27) become equivalent to equations (6). The DH redistribution function refers to the radiative and collisional (elastic and
inelastic) redistribution process in resonance lines (a, # 0 and a, = 0). The thermalization parameter € is related to the collisional
parameters through the relation
€ Tyl — e~ MolkTe

with ¢
1+¢€ Tx

(28
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The branching ratios appearing in equation (25) for DH redistribution matrix are listed below:
T
TR+ + Q0

where a is the probability that reemission of radiation occurs before any type of collision. Scattering is thus coherent in the atomic
frame,

o 29

©) — o Ok 30

PO =a e (30)

where B is the probability that reemission occurs after an elastic collision but before an inelastic quenching collision occurs. In this

case, the correlations between frequencies of absorbed and emitted photons are destroyed by elastic collisions. Therefore scattering
causes a complete redistribution in the atomic frame,

Q5 — D

2) g —RE 2
b Ig+T;+D?’

@31
where f® is the probability that reemission occurs after the elastic collision that changes the phase of oscillating atomic dipole, but
does not change the alignment. In this case, also, as with the case of B?), scattering causes a complete redistribution of the atomic
frame. The quantity D® is the rate of elastic collisions that destroy alignment.

The sum of composite branching ratios (the factors which multiply the terms inside the square brackets in eq. [25]), which
decouple type II and type III redistribution functions of Hummer, in equation (25), is given by

__ I

P
It is traditional in astrophysical formalism of line formation theory to work always in terms of normalized redistribution functions.
Equation (25) is not normalized to unity when integrated over the solid angles representing incoming and outgoing directions of the

photons. The reason for this is that, the composite branching ratios a, §* and p® do not satisfy « + @ = 1, unless h = 0 (see eq.
[32] above). Now, to be consistent with the equation (1), we have to renormalize these branching ratios as follows:

r
Wyo + (1 — Wy + W, B + [ — W, P =a+ O =—L—=(1—h); h
I'r+71;

(32

o _ I'r+1I;
=dl=——", 33
T—h ""Terl,+0 9
(0) _ 0

£ g2 _(1_g), 34
a-n Pt e Y G4

B o - Qp— D@
— = —_— . 35
a-mn =P =% 1,4+ DO (33)

The new renormalized branching ratios &, %, and f® now satisfy the normalization condition

Wi + (1 — Wp)i + Wy @ + (B — W, f®) = 1. (36)

In order to use the DH redistribution matrix in the normalized form, in equation (1), we have to replace the original branching
ratios a, B, and B® by the corresponding quantities &, f®, and B®, respectively. It is useful to note that the redistribution
functions derived by quantum mechanical studies (for example the functions derived by Omont et al. 1972, and by Domke &
Hubeny 1988) are unnormalized. They are defined, to start with, in such a way that they do not necessarily have to be normalized to
unity. A detailed discussion of this important question of normalization of redistribution functions is presented in Hubeney &
Cooper (1986). The author is grateful to the referee for clarifying the essentials of this question of normalization of redistribution
functions. A given transition is characterized by the parameters I'g, I';, Qp, and W,. They can be computed exactly using the
quantum mechanical calculations (see Domke & Hubeny 1988). Since we are interested in the parameterized study of collisional
effects, we use simple expressions which give rough estimates of these quantities. We have taken these formulae mainly from
Faurobert-Scholl (1992), who have studied the Ca 1and Sr 1line formation problem in a realistic solar atmosphere.

Iy is the radiative de-excitation rate (or natural width) of the upper level u. The quantity I'; is the rate of inelastic quenching
collisions of perturbing atoms with the radiating atom, which result in the destruction of alignment (see Domke & Hubeny 1988). ',
and I'y are related through equation (28). The quantity Qgz(=I'c) is the rate of elastic collisions which result in collisional
broadening of the upper level u. If, for example; the elastic collisional damping is due to collisions with neutral hydrogen atoms (as is
true in most astrophysical plasmas), then we can employ

Qs = T¢ = yyw Nu(T,/5000)° (37
where yyw is the Van der Waal’s coefficient and Ny the number density of hydrogen atoms. A simple relation
D?® ~ 0.758(Q5/2) , (38)

given in Faurobert-Scholl (1992), is employed by us for computing the factor D'?. Now, the total damping parameter a that should
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be employed when doing computations with DH redistribution functions, is given by (with a, = 0 for resonance lines)

I'p+T¢

a=a,=(a,+a)= anAve
D

(39

Finally we have
W,=E,. (40)

where W, is the probability that intrinsic “level depolarization” does not occur during scattering. Notice that W, can also be
computed from expressions for E, given in Chandrasekhar (1960), or Ballagh & Cooper (1977). E, basically depends on the angular
momentum quantum numbers j, and j, of the transition involved. Clearly, as seen from equation (4), maximum polarization occurs
for transitions of the type (j, = 1 —j, = 0), for which E, = 1.

It is useful to note that DH redistribution matrix can also be expressed in a simpler form, in some situations, for instance by
making a deliberate choice of parameters:

W,=1; and D¥=0. (41)
With these choices, we get
&=A; and BO=fD=(01-A). 42
As a result, the normalized version of equation (25) can be rewritten in the form
Rou(x, 1, X', 1) = ALR{{(x, 1, X', w)PY(u, 1) + R, o X'y )PP, 1) + RE(x, o X', )P, )] + (1 = A)
x [Rii(x, p, X', )P “(us ) + Ri(x, p, X', )PB (1 W) + Riy(x, py X, ”/)pc (W], 43)

which is nothing but collisional redistribution analogue of the collisionless redistribution matrix (see eq. [7]). This statement can be
verified by substituting collisional redistribution function, R(x, x') given by equation (22), in equation (7).

For the sake of discussion of different collisional effects, we can rewrite the DH redistribution matrix (eq. [25]) in the following
form (dropping some of the arguments for clarity):

Rpy = Ci[R{} P* + R{ PP + R{P°] + C,[R{ P'] + C,3[R{ P* + R{ PP + R P°] + C,[Ri} P1], (44)
where the constants Cy, C,, C5, and C, are defined as
Ci=Wa; C=(1—-W)a; Cs =W, f?; Cy= (PO —W,$?).
Equation (44) can be written formally as
Ry = C [Ryf(anisotropic)] + C,[Ry(isotropic)] + C;[Ry(anisotropic)] + C,[Ry(isotropic)] . 45)
This equation can also be written in another conventional form as
Rpy ~ An{Rpay + AR ay (46)

where (- - ->,, is some kind of weighted average whose functional form is not of consequence for the present purpose. The branching
ratios of equation (46) are then given by

Ay=Ci+C,=qa, 47a)
which is the coherence fraction. The noncoherence fraction is
Am = Cs + C4 = (1 - An) = B(O) (47b)

The interpretational significance, of the renormalized branching ratios &, f, and ?, is not straightforward and simple, in the
same way as normalized redistribution functions (see Hubeny & Cooper 1986). However, we can write &, 5%, and f® as

d=0a+94, (48)
pO=(1-a)—34, 49)
_ Q — D@
A ey ey 2 L (50
where
I,
5_I“R+F,+QE' D)

The factor 6 —» 0 when I'; < (I'g, I'¢), a condition which is satisfied for all the models presented in this paper, except for models
3-6in Figure 3 (see Table 1 also). Hence C;, C,, C;, and C, can be used to understand the results of our computations. The physical
significance of all the terms of DH redistribution matrix are explained in Domke & Hubeny (1988; the paragraph that follows their
equations [497-[52]).
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TABLE 1
EFFECT OF VARIATION OF INELASTIC COLLISIONAL RATE I} ®

r

1 TFr

Model € (Hz) C, C, C, C, Ay Xpr (x10%)  xpp Tpp Xcs Ty
Lo, 0.0000 0 0.499 0.055 0.191 0.255 0.55 32 32 320 32x10% 564 0
2, 0.0001 2 x 10* 0.499 0.055 0.191 0.255 0.55 32 32 320 32x10° 564 1.0x10?
K JTU 0.3333 1 x 108 0.586 0.065 0.162 0.187 0.65 1.7 0.52 0.31 3.0 564 33 x 10°
Z 0.5000 2 x 108 0.642 0.071 0.139 0.148 0.71 14 0.28 0.27 20 564 50 x10°
L JU 0.6667 4 x 108 0.710 0.079 0.107 0.104 0.79 12 0.18 0.25 1.5 564 6.7 x 10°
6.iiennnnn 09999 2 x 10'2 ~09 ~0.1 5x107%  4x10°° ~1 ~1 0.10 0.22 ~1 564 1.0 x 10°

*Tp=2x 108 Hz, I'; = 1.6 x 10® Hz, Av, = 2.9 x 10° Hz, D® = 0.61 x 10® Hz, W, = 09, T,; = €T", Xg = min [x,, X;c] and tgr = min [7,, 5] = min
[rx0)s Tdx5c)]s Xpp = min [x,y, Xgc] and Tpp = min 1y, Tgc] = min [14(x,,); Tpe(x4c)]-

For a study of the effect of collisions on subordinate lines, we follow an approach suggested by Hubeny & Heinzel (1984),
according to which equation (24) is substituted in equation (7), to obtain the corresponding redistribution matrix. For simplicity, we
have not explicitly computed A, but selected certain values in the range (0 < A < 1) for a parametric study involving equations (22)
and (24). Note that explicit relations are given in Hubeny & Heinzel (1984) for computing the branching ratio A in terms of various
radiative and collisional rates, in a general picture of three-level atom. In passing we note that collisional redistribution model
employed by Saliba (1985) is a special case of DH model when B® = 0, that is, when Q; = D® in equation (35). In other words his
model represents an extreme case where all the elastic collisions are completely depolarizing.

3. RESULTS AND DISCUSSION

In this section we have several subsections, each one of which addresses a specific aspect of the problem. Each subsection is
self-contained in this way. However, the general role of collisional redistribution is highlighted so that this topic is appreciated in the
context of variation of each set of model parameters. Obviously the cases studied are theoretically oriented and sometimes may be
far from realistic situations. The main idea, therefore, is to understand general theoretical features of polarization profile when
collisional effects are dominant. For the sake of uniformity in convention we always refer to intensity, for example, as I(x, g, r)
instead of U(x, u, r). The percentage of linear polarization is referred to as p(x, u, r) = [Q(x, u, r)/I(x, p, r)] x 100. All the results
correspond to lines formed in a spherically symmetric shell atmosphere whose outer radius is 3 times the inner radius (R = 3). The
shell is bounded on the inner side by an isotropically emitting photosphere. The central core of the spherical shell is thus an opaque
emitting sphere. This picture resembles the conventional extended stellar atmospheres of stars. The spherical shell is assumed to be a
gray and isothermal [B(r) = 1] medium. All the opacities are taken to vary according to an inverse square law (y>%(r) = yr~2),
where the constant y = RT*/(R — 1). Hence the opacity ratios € and B° remain spatially constant in the atmosphere. All the
important line formation parameters, namely, broadening parameters (e.g, a, Avp, I'g, I, etc.), branching ratios, coupling constants,
atomic and electron number densities (see § 2), are also assumed to have constant values in the spherical shell atmosphere. Results
are shown on a smaller frequency bandwidth (0 < x < 10) except when electron scattering is considered. We have employed a
nonuniform frequency grid with 27-35 frequency points in the half space (0 < x < x,,,,) depending on the model. A logarithmically
spaced optical depth grid with 45 or 61 points, depending on the situation, is employed. A three-point Gaussian quadrature in the
range u € (0, 1) is used in the angle integration of the transfer equation. The angular resolution of three Gaussian points per
quadrant is sufficient for the kind of SS models considered in this paper. The models are characterized by small values of R(= 3),
large values of T* and opacity power-law index n = 2. This selection of global parameters, supplemented by the Schuster’s
boundary condition, and the presence of strong continuous absorption make the effects of angular peaking of the radiation field in
SS models negligible for most part of the line (see Mihalas et al. 1975). Hence there is no demand for a larger number of angle points
here. However, when we consider small values of T, larger values of R, and n > 2, we must take a larger number of angle points,
since peaking of radiation in outer layers leads to serious problems.

All the frequency and angle integrals that occur in the elementary redistribution functions are evaluated accurately to ensure
smooth and accurate representation of redistribution integral in equation (1). These functions, as well as the emergent specific
intensities and polarizations obtained after using them in radiative transfer computations, are checked by comparing the results
with the published models (cf. Heinzel & Hubeny 1982, 1983; Hubeny & Heinzel 1984; Faurobert-Scholl 1987, 1988, etc.). Also, the
electron scattering is neglected (¢ = 0) for all the figures except Figure 9. All of our models (excepting few cases) represent an
effectively thick line emission (€T* = 10? > 1). Further, the continuum is also effectively thick (T = ST = 10% > 1) resulting in
the presence of strong unpolarized continuum radiation throughout the atmosphere. The continuum radiation, when escaping
directly in the wings, can easily drive the wing polarization to zero. However, when it it repolarized upon scattering on atoms (and
electrons) in the atmosphere, it can lead to a complex frequency dependence in line wing polarization. Unlike monochromatic line
optical depth [t£ = ¢(x)T"], the continuum optical depth is frequency independent. For the sake of convenience, we have used the
symbol T everywhere instead of 7~ to represent the average optical depth variable.

We discuss our results mainly through emergent intensity and polarization profiles I(x, u; = 0.11, t = 0) and p(x, u; = 0.11,
7=0). It is also useful to present some macroscopic quantity, that characterizes a given model, namely, the optical depth
dependence of source functions S,(t) which is an angle and frequency-integrated source function for scalar intensity. In the third
panel of each figure we show the depth dependence of S,(7). In the fourth panel we have plotted a quantity Z(z) = Sy(1)/S,(t) which is
a measure of the total anisotropy of the source function in the atmosphere (see Rees 1978). It is well known that the angle-dependent
emergent intensities I(x, u, ) and Q(x, u, t) can be related to the respective source functions S; o[x, 4, T = pu/¢(x)] according to the
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Eddington-Barbier relation. This relation can be used to interpret the qualitative aspects of the emergent intensity and polarization
(i.e., limb darkening/brightening, sign changes of polarization profile, etc.). But we have preferred to plot the integrated quantities
§y(r) and Z(z), instead of S; o(x, u; = 0.11, 7) at selected frequencies, because it is instructive to know the march of anisotropy inside
the atmosphere in general, since it is the optical depth gradient of the source function Sy(z) (in other words the gradient of
temperature, etc.), that affect strongly the degree of emergent polarization than other factors. The source function S,(t) represents
the source of Q-component of the intensity generated locally as well as inscattered nonlocally from other depth points. Thus the
ratio Z(t) represents the rate of generation of local anisotropy or linear polarization.

It is important to note that the scaling laws used in this paper, to interpret the results, are borrowed from the plane parallel (PP)
case. In principle we must use the corresponding expressions derived for a spherically symmetric (SS) case. The situations under
which PP scaling laws can also be used, as a first approximation, to interpret the SS results are that (1) single flight escape
probability factors of PP and SS cases should be of same order of magnitude, (2) the ratio of the probablity of outward scattering to
the probability of inward scattering-bias factor in SS should approach unity (it is exactly equal to unity in PP case), (3) the
monochromatic spherical dilution factor should be of order unity across the bandwidth of the line, and (4) the mean number of
scatterings, the mean escape probability, and thermalization length, etc., should be of the same order of magnitude as the
corresponding PP case. Simple expressions are derived in Kunasz & Hummer (1974) for checking these four criteria mentioned
above. All the four criteria are satisfied for the models presented in this paper. However, care should be taken, when using the PP
scaling laws or escape probability arguments, in the SS case. The validity criteria mentioned above strongly depend on R, T%, n, m,
and €, where n and m are the power-law indices for radial dependence of opacity and Planck function. The “bias” in particular
should not differ much from unity. In a PP atmosphere scattering according to the CRD mechanism, a photon created near the line
center does not typically move far from its point of creation while undergoing frequency redistribution and finally escapes from the
medium in “single longest flight.” This provides the theoretical basis for CRD escape probability methods in PP slabs. In SS
systems, on the other hand, the bias leads to steady outward drift of photons as they are scattered, undermining the relevance of the
single longest flight. This makes the escape probability methods using this concept less reliable for SS atmospheres with large bias.
In the absence of a well-developed theory of PRD frequency thermalization in spherical geometry, we can perhaps use the
probabilistic expressions derived for PP slabs, as a first approximation, but only in cases where the four validity criteria mentioned
above are satisfied. Seen in this perspective, the probabilistic quantities given in Tables 1-7 are intended as a guide, rather than a
means, of interpreting the results computed by explicit solution of the SS transfer problems.

3.1. A Comparison of Lines Formed under Elementary Redistribution Mechanisms

In this section we study some of the redistribution mechanisms mentioned in § 2.2. The results are shown in Figure 1. The profiles
formed with Ry;_ , redistribution represented by long dashed lines merge with the pure coherent scattering (CS) profiles (dotted
lines) in the far wings of the line (x > 6). This is due to the wing coherence exhibited by R _ , redistribution function in general. The
intensity profile of CS is deepest of all the functions considered, and CS also corresponds to the largest degree of polarization (p) in
both the line core (x < 3) and line wings (x > 3). The frequency coherence during scattering is not directly related to the larger
degree of polarization. Indeed it is mainly the source function gradient, along with the frequency coherence that can directly lead to
a larger degree of linear polarization in the line. However, the frequency coherence can inhibit more effectively the global mixing of
positively and negatively polarized photons, compared to other PRD mechanisms. Due to this reason, CS represents, at least in the
line core, an upper limit on the degree of linear polarization. In a narrow frequency range of x < 0.6, however, Ry, _ , has a slightly
larger emission probability than even CRD. Due to this and larger correlations between incoming and outgoing photons, caused by
Doppler motion of atoms, the derivations of Ry;_ 4 polarization profiles from CRD are quite large in the line core. Since R;;_ , has a
degree of coherence next only to CS, the absolute values of polarization due to this mechanism is always larger than polarization
due to other mechanisms except CS in the entire frequency bandwidth. However, interesting situation of CRD polarization being
larger than the R, _, polarization in the range x < 0.3 occurs when a negligible amount of continuum opacity is present in the
atmosphere (see Faurobert-Scholl 1988, Fig. 1; Nagendra 1988, Fig. 13). The presence of a strong continuum opacity as we do have
now contributes positively polarized photons to emergent polarization. The formation of subordinate lines with R, _ , redistri-
bution function is discussed in detail by Hubeny & Heinzel (1984). The results for semi-infinite slabs and (a,/a;) = 10 in their paper
are useful in understanding the results of our computations [T = 10 and (a,/a;) = 9 in our models]. The intensity and polarization
profiles of R, _ , do not differ greatly from corresponding R;,_ , profiles. The emergent polarization profiles calculated with the
function R, _ , lie between those of R;;_ , and CRD, in the same way as the intensity profile. This behavior confirms the conclusions
of Hubeny & Heinzel (1984). However, the deparatures of R, _ , from CRD decreases gradually as a, — a,. It is well known that the
function R, _ , is characterized by an additional probability of a wing photon subsequent to an absorption, being reemitted in the
vicinity of line center apart from a probability of being reemitted almost coherently in the wing itself, purely due to lower state
broadening. The ratio of the probability of coherent reemission, to the reemission probability near line center is directly proportion-
al to (a,/a;). This characteristic of resonance scattering in subordinate lines is also responsible for the very close similarity of R;,_ ,
and R, _ , profiles in Figure 1, since clearly, R, _ , is a special case of R, _ , in the limit (a,/a;) — co.

Now we look into the variation of source functions S,(r) and the polarization rate Z(z) in Figure 1 as a function of optical depth
7(r) in the spherical shell. These two quantities together define the overall anisotropy existing inside the atmosphere of a given
model. The sign of the anisotropy rate as a function of 7 and the depth dependence are mapped into frequency dependence of the
emergent polarization profile. This mapping function, however, neither is linear nor has a simple analytic form for general PRD
transfer problems. The anisotropy rate for R;;_ , is highest in most parts of the outer layers (T < 100), essentially where the line core
is formed. However, in the region of the atmosphere where the near line wings are formed (100 < © < 3 x 10%), it is CS mechanism
that corresponds to the largest rate of anisotropy. The anisotropy rate of the redistribution functions CS, R;;_, and R, _ , reach
maxima somewhere in the range 10® < 7 < 3 x 103. On the other hand, for CRD the anisotropy rate is almost insignificant for
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FiG. 1.—Line polarization for different redistribution mechanisms. Emergent intensity I and polarization p in the direction u, = 0.11 are shown in the first two
panels. Abscissa for these two upper panels is the frequency x measured from line center in the units of a constant Doppler width. The model parameters are
described in § 3. Some of the global parameters (€, B, a, T*, f°) are shown inside the figure for easy reference. The electron scattering is neglected (8¢ = 0). The lower
two panels refer to the optical depth dependence of the intensity source function S,(t) and the polarization rate Z(r) defined in the text. The abscissa for these two
panels is logarithm of average optical depth variable 7. The numbers shown near the curves identify the models. Models (1)—(5) correspond respectively to the profiles
computed using CS, CRD, Ry;, Ry, and Ry, redistribution functions. See § 3.1 for further details.

depths beyond t = 10, and for Ry;_ , beyond t = 100. For these noncoherent redistribution functions, it appears as though a thin
polarizing layer of spherical shell surrounds a thick photospheric layer filled with unpolarized diffuse radiation field, when looked
through the monochromatic optical depth scale 7(x), or even the average optical depth scale. Wing coherence, on the other hand,
seems to be generally responsible for the peaking of anisotropy rate Z(tr) deep in the atmosphere for other redistribution mecha-
nisms (see curves 1, 3, and 5).

The models presented in this paper are moderately optically thick (aT%)!/3 = 21.5, as well as effectively thick eT* = 102. Even the
continuum is optically thick (T™ = 10?). Thus, it is necessary to indicate which of the parameters, namely, € (acting through
inelastic collisional de-excitation of atoms), or f€ (acting through continuum absorption/emission by atoms) controls transfer in the
coherent line wings; in other words, to specify which parameter dominates the frequency thermalization of the source functions.
Frequency thermalization (FT) refers to the frequency diffusion process leading to the arrival of PRD line wing photons at the line
core, where subsequent line scatterings can well be described by CRD, before escaping from the medium. FT is very effective when
line optical depths are large. To decide which of the two processes mentioned above is stronger, we compare 75X sc) and 7,(x,) the
characteristic depths at characteristic frequencies x4 and x,, respectively (Hubeny 1985a). The characteristic depth of frequency
thermalization of the source functions is given by ter = min [t(x,), TpdXc)], Where T5c(xpc) & a™V/4(B€)™** = 3.2 x 10° and
1{x) ~ a” e 3% = 108, that is, ey = 3.2 x 10%. From Figure 1 it can be seen that at this optical depth, the distinction between
source functions S,(r) corresponding to different redistribution mechanisms is negligible and only the anisotropy rate Z(z) is useful
in the study of depth variation of source functions. The characteristic frequency for frequency thermalization of intensity given by
Xpr = min [x,, Xzc] &~ min [e Y2, a"/4(f%)~"/4] = min [100, 3.2] = 3.2. Thus, clearly, the continuum absorption (8) controls the
frequency thermalization of the line wing photons. Similarly, the characteristic depth of photon destruction is given by 7pp = min
[t(xw), Tpclxp)] ~ min [e™1, a™Y/*(B€)¥*] = min [10%, 3.2 x 10°] = 3.2 x 10°, and the characteristic frequency of photon
destruction is given by xpp = min [X,,, Xpc) & (a3, a¥/4(€)™V/#] = min [4.6, 3.2] = 3.2. In these expressions, X, and Ty,(X)
refer to the loss of line photons to the thermal pool. Here again we see that the continuum absorption (8€) controls the photon
destruction process. Hence the transfer in the line wings in our saturated models (T » Tgp; TE > 1pp) is controlled largely by the
continuum radiation field.

Note also that the frequency point beyond which the overlapping continuum radiation dominates the total source function, and
where the residual PRD line contribution represened by R;_, can be treated as just coherent scattering, is given by xg =
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(mB/a)~ 1% = 5.6, a behavior that can be clearly seen in the polarization profiles. It is known that the physical properties of a
medium can affect the emergent intensity and polarization at frequency x, mainly in the optical depth interval [¢(x)] ' <1 <
7er(X), where [@(x)] ! is the mean optical depth T* that corresponds to the monochromatic optical depth 7(x) being equal to unity
at frequency x. The quantity te(x) is given by tg1(x) & nx3/(4a). Thus, for example, the polarization at frequency point x = 10 is
mainly due to contributions from source functions in the depth range (4.5 < log 7 < 4.9). From the curves of anisotropy rate Z(7) it
is clear that the polarization gradually tends to zero in our models for frequencies x > 10. It is useful to note that for frequency
points beyond x = 10, the mean free path of the photon between two consecutive scatterings is given by I(x) ~ [¢(x)] ™! ~ nx?/
a = 3.14 x 10*. Due to this, the photons of frequency x > 10 suffer very small number of scatterings when they are produced in
layers © < I(x), and the dominant contribution from the deeper layers 7 > I(x), which in turn have negligible anisotropy, naturally
leads to negligible polarization in the far wings. Finally we make a general remark that the polarization and intensity profiles
provide together a sensitive check on the usefulness of scaling laws and asymptotic analysis, than scalar intensity profiles alone. The
condition for the importance of PRD effects in line scattering, as compared to continuous absorption effects, given by € < a/n? is
satisfied by our models (10™* < 10~ 3). Thus all these models are scattering dominated. The essential features of redistribution and
thermalization via multiple scattering are basically unaffected by the geometry of the medium. The important differences between
polarized line formation in a SS media and a PP media is discussed in Nagendra (1988). It is helpful to refer to some of the models in
that paper, where continuum absorption plays a much stronger role in the wing polarization behavior, than the models presented
here.

3.2. A Simple Treatment of the Effect of Collisions on Polarization in Resonance and Subordinate Lines

The transfer problem in planar media, with noncoherent scattering in subordinate lines, including collisional effects, is well
explored in Hubeny & Heinzel (1984). A study of subordinate lines basically involves at least a three-level atom model. The
branching ratio A is thus in general a function of radiative and collisional rates of all the three levels. In this picture, the transitions
to other states from the lower level leads to a broadening of the original subordinate line we are interested in. However, we have
followed the approximate two-level approach suggested in Hubeny & Heinzel (1984). In Figure 2 we show qualitatively the effect of
collisions on resonance and subordinate lines. The effect of collisions is incorporated simply through a branching ratio A between
Ry_ 4 (or Ry, _,) and Ry, _ 4, as suggested in equation (22) or (eq. [24]). A factor A that combines Ry, and Ry, _ 4 in a laboratory
frame is called coherence fraction. An exact treatment of collisional redistribution in subordinate lines is developed in Heinzel &
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Fic. 2—Effect of collisions on line polarization. The figure shows the same quantities as in Fig. 1. The collisional effects are included through a simple
parameterized model, with branching ratio A between (Ry, Ry) or (Ry, Ry), being treated as an independent model parameter. Models (1)-(3) correspond
respectively to the profiles computed for A = 1,(3), () between (Ry, Ryy)- Models (5)—(7) correspond, respectively, to the profiles computed for A = (3), (3), 1 between
(Ry, Ryy), respectively. Model 4 corresponds to the profiles computed for A = 0, which represents the pure Ry, case. Results for model 4 are shown by thick solid lines.
See § 3.2 for details.
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Hubeny (1982) which is applicable even for resonance lines, since the latter is a special case of the former. The physical justifications
and limitations for using a simple form as in equation (24) are given by Hubeny & Heinzel (1984). The difference between Ry, _ ,
polarization profile (dotted curves) and R, _ , profile (thin solid curve) is the same as that shown in Figure 1. Similarly the pair of
curves corresponding to Ry, (A = %) and Ry, (A = %) differ by only a small amount, in fact lesser than the difference between
pure R,,_, and R, _ , profiles. Similarly, the pair of curves Ry (A = %) and R, , (A = %) differ much less than the corresponding
pair of curves for A = Z. Finally the pure Ry, _ , case representing A = 0 (see curve 4) gives an upper limit of the extent to which the
collisional redistribution (coupling with Ry;_,) can affect the emergent line profiles in our models. It is clear that there are
parameters (such as temperature) that vary in a stellar atmosphere, which can cause far more stronger changes in the line intensity
and polarization profiles, than the atomic collisional effects alone. Nevertheless when a careful modeling of a line profile is
necessary, it is better to take into account collisional effects, at very little extra computing effort, than being neglected. The S,(1)
source functions of all the cases merge around t = 107, the depth at which the anisotropy rate also changes over sign from negative
to positive.

Although it is known that the single flight escape probability concepts are not as useful for PRD as they are for CRD, they may be
employed for reasonable estimates of the behavior of detailed radiative transfer computations. In the case of Ry _ ,, the majority of
escaping photons get scattered to wing frequencies at fairly large optical depths itself, and then scatter nearly coherently many times
while spatially diffusing out of the atmosphere. Since these so-called coherent scattering “excursions” begin deep inside the
atmosphere for this particular case, the S,(r) source function of R;_ , case starts falling in magnitude compared to other PRD
mechanisms including CS (see Fig. 1). In a series of papers Gayley (1992a, b, c) has developed the escape probability arguments for
the PRD problem including collisional redistribution, generalizing the partial coherent scattering (PCS) approximation for PRD
line transfer (see Hubeny 1985a). For our purposes, we just use a quantity called “single excursion frequency ” x4(t) defined in
Gayley (1992a). It is the critical frequency for photon escape from a depth point t. Most of the scatterings in the lifetime of a photon
occur for frequencies x < xgg(r). When the photon is redistributed past the xg(), it escapes without further “redistributions.”
Adams (1972) showed that in the case of R;;_ 4, the overall PRD wing transfer can be described in terms of a “sequence” of nearly
coherent scatterings “ terminated ” utlimately by a highly noncoherent event (which causes redistribution back to the line core). The
sequence of coherent events at a stretch were shown to be equivalent to an effective “single longest excursion” between redistri-
butions. The number of coherent events in a sequence [ ~ 1/Agp(x) ~ 1/App(x); for the special case of R;;_ , it is ~x2] is not really
great for near wing frequencies (x < 10) as compared to the mean number of scatterings (N & 31/2) required to traverse a mean
optical depth t. The quantity Agp(x) is the “redistribution” probability per scattering of a wing photon (in contrast to the
destruction probability per scattering €). Still, a coherent sequence can physically displace a photon by 1/[3Agp(x)]*/? (with a
replacement RD — DD in case of R;;_ ,) mean free paths on the average. Thus xg(7) is a critical frequency point for a given optical
depth 7, which represents the last of a number of “coherent sequences” interspersed with (a smaller number of) “redistribution”
events, for a photon, scattered to a frequency domain x > xgg(7), finally escapes from the medium without further redistribution.
This general picture due to Adams (1972), devised originally for R;,_ ,, was shown by Gayley (1992a) to be applicable approximately
to all types of PRD redistribution functions as long as wing scattering is largely coherent, and redistribution mechanism concerned
can produce large frequency shifts in a single act of scattering. Starting from this hypothesis and by identifying the equivalence of
single longest “flight” of the CRD escape probability theory, and the “single longest excursion” between redistributions in the
PRD analog, Gayley (1992a) has derived the scaling laws for a wide range of redistribution mechanisms, namely, Doppler diffusion
(DD, due to random motion of atoms), elastic scattering (ES, due to perturbation by charged particles—Stark effects; and pertur-
bation by neutrals—Van der Waals broadening), inelastic scattering (IS, due to line interlocking in a multilevel atom model), etc.
Using the conceptual advances made in representing the general PRD source function by the PCS approximation (Hubeny 1985a),
new escape probability methods are developed in Gayley (1992b, c). Using the concept of PCS it is possible to derive appoximate
PRD scaling laws for PRD redistribution functions, and their combinations thereof, in general (see Hubeny 1985a; Gayley 1992a, b,
c). The xgg(7) at the mean optical depth 7 is related to the general PRD redistribution probability A[xgg(t)] through the equation

1
SE = —. 52
[ xse(7)] AL (52)

For the special case of R;;_ , where redistribution is purely due to the Doppler diffusion, the thermalization depth X, is given by
Tpp = (1/€) = 10* and the cutoff frequency at thermalization depth is given by xse(Epp) = (a/€)'/® = 4.6. It can be noted that the
so-called core/wing break point, or depth-dependent division frequency of Hubeny (1985a) corresponding to © = X, is given
approximately by (aZpp)!/® = 4.6. Thus it appears that the frequency point where the polarization reaches positive maxima can be a
reasonable indicator of the critical frequency point for R;_, wing thermalization and the division frequency at R, _, wing
thermalization depth as long as a and e remain nearly constant in the atmosphere. The strong coupling of frequency diffusion
(roughly —1 Doppler width per scattering directed from wings to the core) and spatial diffusion, in the diffusion equation for R;;_ ,
source function (see Frisch 1980), is specific to Ry _ ,. The inverse square variation of line and continuum opacity in SS case thus
generally affects most strongly the Ry, _ , function compared to other functions.

3.3. An Exact Treatment of the Effect of Collisions on a Resonance Line

In this section we discuss the effect of collisions on resonance lines using the generalized redistribution matrix of Domke-Hubeny
(1988) which we denote as Rpy _ 4(x, x'). Faurobert-Scholl (1992, 1993) has modeled the polarization observations of solar resonance
lines using the DH redistribution matrix in a multilevel transfer problem solved in a realistic solar atmospheric model. Although
ours is a parameterized study, the nature of parameterization is new, and we show the effect of variation of individual collision
broadening mechanisms more clearly when the rest of the broadening parameters are held fixed. In these subsections (3.3.1-3.3.6)
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the following constant model parameters are employed: R = 3; TX = 10%; B¢ = 1074; g = 0; B(r) = 1; T, = 5000 K; 4 = 5000 A;
xSX(r) = xr~%; R = Rpy_ 4. The rest of the quantities required in two-level atom models are either fixed at the values shown below
or parameterized as the case may be. These parameters are the following: € = 1074, a = 10~ 2; W, = 0.9; mass of the radiating atom
M® =40 amu; Avp = (vo/c)2kT,/M*)*? = 0.29 x 10'° Hz (or parameterized by changing only M?); 'y =2 x 10® Hz; I'c =
(4naAvy — T'g) Hz; D'® = 0.379T ¢ Hz; I'; = 2 x 10* Hz. The purpose of presenting a series of models in § 3.3 is to understand the
way in which a selected “ individual parameter ” would affect a general collisional redistribution, when that parameter happens to be
the most crucial one, oblivious of other parameters. It is clear that in reality, all the collisional parameters are multilaterally
dependent on a host of other parameters. The dependence could be nonlinear in general depending on the state parameters of the
plasma. In a realistic situation, the total collisional effect can thus be understood to be some kind of weighted average of the effects
shown in §§ 3.3.1-3.3.6.

The thermalization scales xgp, and ter used in this paper are basically derived to describe the random walk of wing [where
¢(x) ~ a/nx*] photons. Further, except for models 3—-6 in Table 1, all the models satisfy xpp = Xgr, and 7pp = tpr. Now, the four
models 3-6 in Table 1, for which the characteristic frequencies xpy are well within the line core, the global behavior of diffuse
radiation field and source functions (thermalization information), are reflected in the usual thermalization scales x,, and 7,,(x,)
derived assuming the creation and destruction of line photons during redistribution. As such, xzr and 7g; are not relevant for these
four models. Indeed, even for the rest of the models in this paper, xgr and 1 are only approximately valid, since xg; values are
sometimes quite small (~ 3). We hope that the statements above put our interpretation of numerical results, based on the PRD
scaling laws, into the correct perspective.

3.3.1. Effect of Variation of Inelastic Collisional Rate (I"})
The rate of inelastic quenching collisions I';, which also destroy the alignment of the atom in the upper level, is directly related to

the important parameter ¢, the probability that a photon is destroyed by collisional de-excitation. So we have parameterized the
variation of I'; through the equation
eT €

R ¢ (53)

T1-¢’

where we have selected a series of values for ¢, leading to the set of six curves shown in Figure 3. The characteristic parameters of

I =1
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FiG. 3.—Effect of collisions on resonance line polarization. The collisional redistribution is treated exactly, with the Domke-Hubeny (DH) formalism. This figure
shows the effect of variation of inelastic quenching collision rate I'; on the line intensity and polarization. The models are identified in Table 1 and discussed further
in § 3.3.1. The positive peaks in polarization arise due to double-peaked nature of polarization rate Z(z) in these highly thermalized models. The following
types—dotted (1), medium dashed (2), long dashed (3), dash-dotted (4), dash dot-dotted (5), and thin solid line (6)—in sequence always represent cases (models) (1)-(6),
respectively, in every figure, except Fig. 2.
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these six models are shown in Table 1. The models are identified by the numbers near the curves. The series of models are analogous
to those in which the parameter € is considered asa free parameter in the conventional style (see, e.g., Nagendra 1988). Some more
characteristics of the models are shown in the Table 1 and mentioned in § 3.3. The dotted curves correspond to the € = 0 case in
which there are no inelastic collisions. Further, as the value of € is increased from 1072 to ~ 1, the inelastic collision rate takes on
values in such a way that it is negligible (I'; = 2 x 10* Hz) compared to [y (see curve 1) in the beginning; then becomes as strong
(T'; = 2 x 108 Hz) as T'g and I'¢ (see curve 4); and finally dominates (I'; = 2 x 102 Hz) over I'y and I';. (see curve 6). Notice that as
I, increases the intensity profiles become shallow and weak, and finally when € ~ 1, namely, whenT'; = 2 x 10'2 Hz, almost no line
is formed. As I'; increases starting from zero, the polarization gradually becomes positive even in the core (x < 3), and then
decreases until it is almost zero when € ~ 1. The positive peak polarization is maximum for € = § case (i.e., when Ay = 0.65). At the
line center, € = 3 case (I'; ~ I') gives maximum polarization. As e is increased from 0 to 1, the depth dependence of intensity source
function §(t) gradually becomes weak, and finally for € ~ 1, as in the LTE case, the source function becomes constant (because our
models are isothermal). The polarization rate Z(r) however shows interesting variation with optical depth. As € is increased, to
values of the order unity, a secondary maxima is formed in Z(z) in the optical depth region t ~ 1, which is responsible for positive
polarization peaks around x ~ 1.5. The characteristic depths 7y in general represent a crossover (see models 1 and 2) from the
e-dominated region (r < ) in the optical depth space to the f°-dominated region (z > 7). From the values of characteristic
frequencies xpp, of photon destruction (PD) in Table 1 it can be seen that, whereas in models 1 and 2, the parameter € controls
photon redistribution through multiple scattering random walk, it is inelastic collisions (through destruction and creation of
photons during collisional random walk) which dominate in the last four models 3—6. Further, the fact that the collisions come to
play an important role even in shallow layers of the atmosphere (as far out as t ~ 1) explains the polarization for these four models
becoming small at the inner core of the line x < 0.5 itself. For the same reason, intensity profiles are also shallow (or may even be in
emission, when the medium is isothermal and T* < 10%). Also, polarization becomes generally small throughout the line profile for
models 3-6, due to an approach to the LTE situation when the collisions are too strong, compared to other modes of photon
de-excitation.

The values of Ay, for models 1-6 are listed in Table 1. It represents the probability that a de-excitation occurs before any elastic
collision. The quantity (1 — Ay) represents the probability that an elastic collision which does not destroy alignment occurs,
followed by a de-excitation of the atom. The equations (44)—(47) give a rough estimate of the relative strength of R;_, type
redistribution as compared to Ry, _ 4 in the exact redistribution matrix. From the table of scaling laws for PRD mechanisms, given in
Gayley (1992a), we can see (after identifying Voigt CRD with Ry _ , for estimates), that for models 3—6 the thermalization depths are
very small for Doppler diffusion process which is basically responsible for Ry, , redistribution (Zpp = tpp). Also the “single flight
escape frequencies” are well inside the line core xgg(Zpp) = Xpp. The corresponding quantities for Ry;_ , are even smaller in
magnitude (see Gayley 1992a). It is clear from these discussions that the inelastic collisions when € ~ 1 have a strong influence on
line formation in the real atmospheres.

3.3.2. Effect of Variation of Radiative Damping Rate (I g) of the Upper Level
The total damping parameter a depends on the radiative broadening parameter I'y through the equation

_TetTec
T 4mAvp

We have parameterized the variation of I'g by selecting a series of values for the ratio (['g/T'¢), holding I'.. fixed (see Table 2). The
values of I'; are computed using equation (53). The results are shown in Figure 4. This selection leads to a set of six curves
characterized by the parameters shown in Table 2. This series of models differ from those in which the total damping parameter a is
considered as a free parameter in the conventional picture, since the collisions specifically play a dominant role in the present series
of models. The model parameters other than those mentioned above are listed in § 3.3. The polarization corresponding to curve 1 is
almost zero throughout the bandwidth. This happens because of the branching ratios in the Domke-Hubeny redistribution matrix.
Since C, multiplies the isotropic and noncoherent part of the DH redistribution matrix, there is a complete domination of angularly
isotropic (unpolarized) radiation field everywhere in the atmosphere for model 1. The set of branching ratios for model 1 are
somewhat unrealistic, but this case represents an extreme situation. The curve 2 also represents a situation similar to that of curve 1.
However, the curves 3-6 are represented by the values of radiative and collisional rates which are common in a wide range of
astrophysical plasmas. The role of Ry_ , redistribution becomes important only in models 4-6. Since the damping parameter a
undergoes a change of two orders of magnitude, going from model 1 to model 6, Figure 4 also reflects indirectly the effect of

(4

TABLE 2
EFFECT OF VARIATION OF RADIATIVE DAMPING RATE I'g?

r r

R 1 ) TFT

Model (Hz) (Hz) a C, C, C, C, Ay xer (% 10%) Xcs T
| S 2 x 10% 2 x 10! 55x107* 00009  0.0001 0.001 0.998 0.001 217 37 42 17.7
2. 2 x 108 2x10*  56x107® 00089  0.001 0.014 0.976 0.010 27 37 42 178
3o 2 x 107 2x10*°  61x107% 00820  0.009 0.106 0.803 0.091 28 36 44 18.3
4ol 2 x 108 2 x 10* 1L1x1072 0450 0.050 0.203 0.297 0.500 32 31 59 223
Seviinenn. 2 x 10° 2x10°  61x1072  0.820 0.090 0.049 0.041 0.911 5.0 20 14. 39.4
[ JP 2x10'° 2x10° 55x107!  0.891 0.099 0.0055  0.0044  0.990 8.6 12 42. 82.2

*Te =2 x 10°Hz, Avp = 29 x 10°Hz, D® = 0.758 x 10°® Hz, W, = 0.9, Xpp, = Xgy, Tpp = Tpps Typ = (aTH2.
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variation of a. The characteristic diffusive type variation of Ry, _ , source function S,(7) and anisotropy rate Z(z) is clearly seen only in
curves 5 and 6, since only these two models represent a dominant contribution of Ry, _ , to the DH redistribution matrix. As shown
in Figure 1, the source function S;(z) ) and anisotropy rate Z(z) of Ry, _ 4 exhibit a variation similar to that of CRD. All the models in
Figure 4 are optically and effectively thick [eT™ = 102; (aT*)'/®* » 1] and controlled by continuum absorption parameters S°.
Hence multiple scattering of diffuse radiation field inside the atmosphere plays a crucial role in all these models (it is instructive to
contrast them with e-controlled models 3—6 in Fig. 3). As damping parameter a increases, the wings of intensity profiles get highly
damped. The polarization profiles also become wide. The crossover point from negative to positive polarization moves out into the
wings. The coherent wing point (frequency beyond which Ry, , behaves like CS) for model 6 is x5 = (a/nf€)!/? = 42. For the model
6, the thermalization depth for Doppler diffusion process Zpp(t,,) = (1/€) = 104, and single flight escape frequency Xge(Zpp) = Xy, =
(a/e)*’® = 17.7. Clearly model 6 is dominated by R, _ , redistribution, and the frequency diffusion process is controlled by radiative
transitions rather than Doppler redistribution. The models shown in Figure 4 have parameters typical of those found in stellar
atmospheres. These series of profiles may depict different resonance lines (say, with different a) formed in a given atmospheric model.
The overall effect of incresing the radiative broadening rate I'y is to increase the width of intensity and polarization profiles. This
happens because of an increase in coherence fraction Ay, or in general, & factor (see eqs. [47a] and [33] for meaning of &).

3.3.3. Effect of Variation of Elastic Collisional Damping Rate (I'¢) of the Upper Level

The total damping parameter a depends on the elastic collisional damping rate I'¢ through the equation (54). The quantities I'y
and I'; are held fixed (see Table 3). We have parameterized the variation of I'; by selecting a series of values for the ratio (I'¢/Tg).
This selection leads to the set of six curves shown in Figure 5. The relevant asymptotic quantities are given in Table 3. The examples
of elastic collisions are Van der Waal’s broadening of nonhydrogenic lines, mainly by neutral hydrogen and other neutral per-
turbers. When the perturbers are free charges, then the elastic collisions cause quadratic Stark effect in the radiating nonhydrogenic
atoms. However, when the radiators are hydrogenic atoms, and the perturbers are charged, the elastic collisions cause the
well-known linear Stark effect in the radiating atoms. The elastic collisions increase the wing opacity at the expense of core opacity
through a strong Ry, _ , redistribution component which is basically noncoherent. It is well known that elastic collisions in general
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F16. 4—Same as Fig. 3, but now showing the effect of variation of radiative damping rate I',. Highly radiatively damped models show broad shoulders in
polarization profile, with no change in sign of polarization. See Table 2 and § 3.3.2 for details.

F1G. 5—Same as Fig. 3, but now showing the effect of variation of phase changing elastic collision rate I'¢, on resonance lines. When this kind of collisions are
predominant, the line polarization is simultaneously driven toward zero at both the core and wing frequencies. See Table 3 and § 3.3.3 for discussions. Compare with
Fig. 4 as well.
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TABLE 3
EFFECT OF VARIATION OF ELASTIC COLLISIONAL DAMPING RATE I'?

I'c D@ Ter

Model (Hz) (Hz) a C, C, C, C, Ay Xgr (x10%) Xcs T
Tl 2 x 10° 7.6 x 10+ 55x 1073 0.899 0.100  0.0006  0.0004 0999 2.7 37 42 17.7
2ot 2 x 106 7.6 x 10° 56 x 107  0.891 0.100  0.005 0.004 0.991 2.7 37 42 17.8
3o 2 x 107 7.6 x 10° 6.1x 107> 0818 0.091 0.049 0.042 0.909 2.8 36 44 183
4. 2 x 108 7.6 x 107 1.1x 1072 0450 0050  0.203 0.297 0.500 32 31 59 223
5. 2 x 10° 7.6 x 108 6.1 x 1072  0.082 0.009  0.106 0.803 0.091 5.0 20 14. 39.4
6.connninn 2 x 10*° 7.6 x 10° 55x 107! 0.0089  0.001 0.014 0.976 0.010 8.6 1.2 42. 82.2

*Tp=2x 10°Hz T, = 2 x 10*Hz, Avp, = 29 x 10° Hz, W, = 09, Xpp = Xer, Tpp = Tpp, Top, = (@TH.

cause a destruction of photon correlations (viz., phase of the oscillating atomic dipole) in the atom frame, which results in CRD in
atom frame. The branching ratios defined in Domke—Hubeny (1988; see their egs. [10], [50], and [51]) are slightly modified by
Faurobert-Scholl (1992) to include the rate D® of elastic collisions that destroy alignment. This is done through a replacement

vi® =T+ D, (55)

where y<® (see Domke & Hubeny 1988) is the rate of destruction of electric quadrupole of the level e (in our two-level atom model e
is upper level). In other words, it is the total rate of all collisions that change atomic alignment during collisions. In the special case
of normal Zeeman triplet (W, = 1), we get

D@
Ig+T;+D?®°

which is the probability of reemission after an elastic collision that changes alignment (Domke & Hubeny 1988; Faurobert-Scholl
1992). In the case W, # 1, we get the following expressions for the same probability (with @ = I'¢):

_ _ T D@
= (RO _ ) = (1 — c
Ca= B =Wo =01 WZ)FR+1“,+1“C+W2 Tg+ T, +D?’
The elastic collision rate D'® is computed using equation (38), an expression useful when inelastic scattering is weaker, that is,
when (I';/T"g) is small (see Faurobert-Scholl 1992). This series of models seems to be analogous in the outset to those presented in the
previous section (cf. Fig. 4), in the sense that both of them have the same principal parameters (e, 8, a), but they are different, since
the branching ratios in the DH redistribution matrix are completely different from each other. In partlcular model 6 represents an
extreme case, since C, multiplies the isotropic and noncoherent part of the DH redistribution matrix, resulting in emergent
polarizations being extremely small. The Ry, _ , type redistribution is important only for models 1-4. All the models shown in Figure
5 are optically and effectively thick as well as dominated by continuum absorption. The curves 1-3 are dominated by R;_,
redistribution. Curves (5) and 6) are dominated by Ry, _ , redistribution. In Figure 4 as well as Figure 5, the decrease of emergent
polarization irrespective of dominance of R;;_ , or Ry;_ , mechanisms, is associated with an increase of the branching ratio C,. In
Figure 4, as we increased the rate of radiative broadening I'g, the intensity and polarization profiles got increasingly broadened, and
polarization in particular increased due to an increase in the anisotropy part C, of the R;,_ , redistribution. On the other hand, in
Figure 5 the inrease of elastic collision rate I'; leads to a broadening of wings of intensity profiles associated with an increase in the
intensities of lines for x < 1.8. The polarization decreases gradually throughout the profile, with models 1-4 crossing over from
negative to positive polarization around x ~ 2.8 (see Faurobert-Scholl 1992, Figs. 2 and 3 where similar behavior is seen in a more
general case of Ca 14227 A line formation in a realistic solar atmosphere model). This behavior of polarization profiles is due to
uniform increase of C, as we go from model 1 to model 6. The coefficient C, also decreases uniformly. However C, increases going
from model 1 to model 4 where I'c = ', and decreases again to ~10~2 in model 6. Thus, the fall in anisotropy of Ry _ ,
redistribution which controls models 5 and 6 is responsible for polarization approaching zero all over the line. Indeed it is expected
that the R, _ , scaling laws that we have used everywhere cannot be exact in situations where R;;_ , is fully dominant. We have
always used R;;_ , scaling laws mainly because, for the parameteric range we are concerned with, the characteristic frequencies are
generally closer to line core and xpp = Xgr, €Xxcepting a few models. In Figure 4 the crossover frequency point of polarization moved
away from line center as I'; was increased. By now, the crossover point remains nearly the same in spite of an increase in damping
parameter a, perhaps due to a constant value of ', for models shown in Figure 5. The overall effect of increase in the rate I'¢ of
phase changing elastic collisional broadening, is to make the intensity profiles shallow and the polarlzatlon tend to zero, across the
bandwidth of the line. This happens because of an increase in noncoherence fraction (1 — Ay), or in general B© factor (see egs. [47b]
and [34] for the meaning of f* factor).

C,= B(O) _ ﬁ‘(z) = (56)

(7

3.3.4. Effect of Variation of Alignment Destroying Elastic Collisional Damping Rate (D®)

The branching parameter §® depends explictly on the alignment destroying elastic collision rate D'?. We have parameterized the
variation of D by selecting a series of values for (D®/I';.). The results are presented in Figure 6 and Table 4. As D@ is increased, the
constant C, decreases and C, increases, both of which lead to a gradual decrease of polarization in the line core. As already
mentioned earlier, C, represents in our models the probability that an alignment destroying elastic collision occurs followed by a
de-excitation of the atom. The factor C, represents the probability that a purely phase changing elastic collision occurs followed by
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FiG. 6.—Same as Fig. 3, but now showing the effect of alignment changing elastic collision rate D® on resonance lines. This mechanism affects only the
anisotropy fraction of the scattering. Compare also with Fig. 5. The details of the models are shown in Table 4 and discussed in § 3.3.4.

a reemission. However, the relative strength of these two processes dictates the final state of the radiating atom. Notice that the
coherence fraction A, remains constant. Therefore the contributions of R;,_ , and Ry, _ , are nearly equal and the same for all the
five models. It is important to note that although D*? is changed by four orders of magnitude, the changes in the intensity profile is
negligible, and only polarization profile is sensitive to changes in D'® (see Faurobert-Scholl 1992 also). The increase of D'® factor
neither broadens the intensity profiles nor makes them shallow, unlike inelastic collision rate I'; which, apart from destroying
alignment of atoms, destroys the photons, thereby causing strong changes in the intensity profile, particularly when I'; exceeds other
radiative and collisional rates. The alignment changing elastic collisions represented by D® can thus be seen purely as polarization
destroying (or depolarizing) kind of collisions. They affect the polarization by destroying phase relations and causing a simultaneous
reduction of anisotropic scattering (C,), and enhancement of isotropic scattering (C,) in the redistribution process. In normal stellar
atmospheric conditions we have I'; < (I'c, D®). Thus the polarization profile can provide a better diagnostic of elastic-type
collisional perturbations (although it is difficult to distinguish, in the line core region, the role of I'c from that of D'®), than the scalar
intensity alone. The important difference between the effect of I'c and D® on polarization is that the former affects intensity profile
and the polarization profile over a large bandwidth, while the latter manifests itself only through polarization changes in a narrow
bandwidth x < 3. In reality both the upper and lower levels are broadened by collisions in general, which makes it mandatory to
invoke a combination of R, _ , and Ry;_ , type redistribution functions in the exact DH redistribution matrix. The overall effect of
D@ parameter is thus to depolarize the line irrespective of the type of redistribution or the level structure of the transition under

TABLE 4
EFFECT OF VARIATION OF ELASTIC COLLISIONAL DAMPING RATE D®®
D(2)
r (Hz) C, C, C, C, Ay

0.001 1.6 x 10° 0.499 0.055 0.401 0.045 0.554
0.010 1.6 x 10® 0499  0.055 0394  0.058 0.554
0.100 1.6 x 107 0.499 0.055 0334 0112 0554
0.500 0.8 x 108 0.499 0.055 0.143 0.303 0.554
1.000 1.6 x 108 0.499 0.055 0000 0446  0.554

*Tg=2x10% Hz, I', = 2 x 10* Hz, I'c = 1.61 x 10® Hz, Av, =29 x 10° Hgz,
W, = 0.9, Xpp = Xpp, Tpp = Tpps Xpp = 3.2, Tpp = 3.2 X 103, xg = 5.64,r = DPT..
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TABLE 5
EFFECT OF VARIATION OF DEPOLARIZATION FACTOR (1 — W,)*
Model w, C, C, C, C, Ay
| 0000 0000 0554 0000 0446 0554
2o, 0333 0185 0369 0071 0375 0554
3o 0500 0277 0277 0106 0340  0.554
4. 0.667 0369 0185 0142 0304  0.554
Seveiinnn. 1.000 0554 0000 0212 0234  0.554

*Tr=2x10%Hz, I'; = 2 x 10* Hz, I'¢ = 1.61 x 10® Hz, Avj, = 2.9
x 10° Hz, D® = 0.61 x 108 Hz, xpp = Xgr, Tpp = Tpps Xpr = 3.2, Tpp =
32 x 10°, xcs = 5.64.

consideration. Faurobert-Scholl (1993) has shown that the collisional depolarization alone cannot fit the observed polarization of
solar Sr 14607 A line, and an additional weak field Hanle depolarization in the photosphere of the Sun is necessary. Although it is
difficult to extend that analogy to stellar photospheric polarized line formation, it is apparent that the role of collisional redistri-
bution cannot be ignored when modeling a high spectral resolution polarimetric data that may be available in future, which can
possibly distinguish the role of major line broadening mechanisms. It is also important to recognize that in a certain region of
parameter space [namely, (I'c, D?) < T'g], both I'c and D® (say, due to van der Waal’s type interaction) strongly affect only
polarization in the core and leave the intensity profile unaffected. This situation is realizable in reality, and has important diagnostic
potential.

3.3.5. Effect of Variation of Level Depolarization Factor (W,)

The factor W, is the probability that intrinsic level depolarization does not occur. It is the same as the factor E, in the Rayleigh
phase matrix for dipole scattering of resonance line photons by atoms (see Chandrasekhar 1960). W, depends purely on the level
configuration of the transition under consideration. For a strong resonance line arising in a (j, = 1 - j, = 0) type of transition,
W, = 1. But, for a subordinate line, such as for an example due to a (j, = 5/2 — j, = 3/2) type of transition, W, = 0.53. We have
parameterized the variation of this intrinsic depolarization factor W, by taking a series of values for W, in the range (0, 1) as shown
in Table 5. The results are shown in Figure 7. For an s — p — s transition in a normal Zeeman triplet there is no intrinsic
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F1G. 7.—Same as Fig. 3, but now showing the effect of variation of atomic level depolarization factor (1 — W,) on resonance lines. Mainly the line polarization is

affected. When W, = 0, the polarization is equal to zero in the line. Compare with Fig. 6 also. The details of the models are given in Table 5 and discussed further in
§3.3.5.
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depolarization (W, = 1). The choise W, = 0 case represents complete depolarization (no polarization) and other intermediate values
represent partial intrinsic depolarization. The importance of this atomic depolarizability (1 — W,) on emergent polarization, as
compared to the collisional redistribution, can be gauged by observing the way in which it strongly couples the various branching
ratios. For example, in the C, factor, there is a branching between phase-changing elastic collisions weighted by (1 — W,) and the
alignment changing elastic collisions by W,. From Figure 7 we can see that the variation of W, causes negligible change in the
intensity of the profile. In this respect the effect of variation of W, on intensity profile is quite similar to that of D®, Notice that
although the coherence fraction Ay is the same in both these sets of models, the behavior of emergent polarization is somewhat
different. Variation of W, affects the polarization in the line core as well as wings and affects the collisional branching ratio for
coherent and noncoherent process in a rather symmetric manner. As we go from W, = 0 to W, = 1, the polarization in the entire
line increases. The crossover point from negative to positive polarization (at x ~ 2.8) is not affected however. Each profile in Figure
7 can depict a different line with different level depolarizability. The overall effect of W, is to change the polarization by affecting the
angular anisotropy of the local radiation field, irrespective of the kind of frequency redistribution and collisional redistribution that
control the line formation.

3.3.6. Effect of Variation of Doppler Width (Avp) of the Line

The Doppler width Avy, depends on line center frequency v, temperature T,, and mass M*° of the radiator. We have parameterized
the variation of Avy, purely by selecting a set of values for M“ and keeping v, and T, constant (isothermal medium). The values of M*
correspond roughly to the atomic weights of Sr, Ca, Mg, He, and H, respectively. The rest of the model parameters are shown in
Figure 8 and Table 6. The branching ratios of all the models are identical. The R _ , redistribution with anisotropic scattering
(through the factor C;) dominates the coherence fraction Ay, which remains at a constant value of 0.5, meaning equal contributions
from both Ry_, and Ry, _ , redistribution mechanisms. As the Doppler width Avy, decreases, the damping parameter a increases.
This results in the broadening of intensity profiles, for frequencies x > 2.2. The profiles are well resolved only in the intermediate
(2.2 < x < 10) frequency band. The polarization profiles show a somewhat unusual behavior. For core frequencies x < 2.2, decrease
of Doppler width causes a decrease in the magnitude of polarization. For frequencies x > 6, a reversal of this behavior is seen. In the
intermediate frequency bandwidth (2.2 < x < 6.0) the polarization curves successively change over their frequency dependence
relative to each other. This is essentially due to the variation in the location of the frequency region which separates CRD-
dominated core and coherent scattering-dominated far wings (see xcg in Table 6), when Doppler width is changed as a model
parameter. The source function S,(z) for all the models reach the same equilibrium value for © > 7,(x,,) = 10*. As the Doppler width
decreases, the source function S,(r) uniformly decreases for 7 < 7,,(x,,) and the polarization rate Z(r) uniformly increases for
7 < T = 102. The polarization rate also shows same behavior for > 102. This behavior of line core (x < 3) polarization uniformly
decreasing in magnitude in spite of polarization rate Z(t) increasing uniformly in the relevant range of optical depths © < 10? is
peculiar to the cases in which the damping parameter a is increased uniformly keeping all other collisional and radiative parameters
constant. It is basically due to the fact that we force the emergent line core intensity to increase, through increased photon escape
[see S)(t) curves], but the corresponding source function for Stokes Q parameter Sy(7) increases only weakly in 7 < 102, for an
increase in the damping parameter a in the above said manner. Thus the emergent degree of polarization (Q/I) decreases in the core,
although the emergent Q Stokes parameter shows a small increase in magnitude as we increase the damping parameter a. Notice
that a similar behavior is seen in Figure 5 also, but the reason for such a behavior there, is the strong decrease of coherence fraction
A, when I'c was increased. The effect of variation of a on the frequency thermalization and Doppler diffusion is discussed briefly in
earlier sections. The overall effect of decreasing the Doppler width Avy, uniformly is to broaden the wings of intensity absorption
profiles at the expense of the core, and to increase the polarization only in the far wings. The profiles 1-5 shown in Figure 8 may
depict the resonance lines of different elements emitted at same wavelength 4, = 500 f But the 1/(M?)!/? dependence of Doppler
width on atomic mass makes this effect of Avy, rather weak, when compared to the changes caused by radiative and collisional rates.

3.4. Effect of Electron Scattering on the Wing Polarization in Resonance and Subordinate Lines

In this section we study the near wing collisional redistribution in the presence of electron scattering in the atmosphere. For this
purpose we selected the parameterized models representing collisions, as in § 3.2. The results are presented in Figure 9 and Table 7.
Our choice of B¢ value corresponds to an electron scattering optical depth of T° = g¢T™ = 10* which results in a large thermaliza-
tion of photons by this process. Mihalas, Kunasz, & Hummer (1976) have studied the PRD line formation in SS atmospheres
including electron scattering, in the presence of a strong continuum. In that paper the authors have shown that the so-called
complete frequency redistribution in electron scattering (CRES) is a good approximation, to the exact electron partial redistribution

TABLE 6
EFFECT OF VARIATION OF DOPPLER BROADENING RATE Avp,?

Avp

TFT
Model r (x10° Hz) a C, C, C, C, Ay xpp (X103 xg T,
| DU 0.025 18 1.8 x 1073 0.45 0.05 0.2 03 0.5 2.1 49 24 12.1
2 0.100 9 35x 1073 045 0.05 0.2 0.3 0.5 24 4.1 33 152
3 0.500 4 7.8 x 1073 0.45 0.05 0.2 0.3 0.5 3.0 34 5.0 199
4. 1.000 3 1.1 x 1072 045 0.05 0.2 0.3 0.5 32 31 59 22.3
Seiiiiiin 2.000 2 1.6 x 1072 0.45 0.05 0.2 0.3 0.5 35 29 71 25.0

*Tg=2x 10% Hz, T = 2 x 10® Hz, T'; = 2 x 10* Hz, D® = 0.758 x 10% Hz, W, = 0.9, 4, = 5000 A, xpp, = Xpr, Top = Teps
T, = @TH'2, r = (M°/M2,), M?, = 40amu, T, = 5000K.
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FiG. 8—Same as Fig. 3, but now showing the effect of variation of Doppler width Avy, of the line. The models could depict the lines of different elements formed in
the same isothermal spherical shells. See Table 6 and § 3.3.6 for discussion. Also compare with Figs. 4 and 5.

Fic. 9.—Effect of electron scattering on line polarization in spherical atmospheres. The collisional redistribution is included through a linear combination of
redistribution functions, in a parameterized way (A = 0.83) as in the case of Fig. 2. Model 7 is represented by thick solid line. Electron scattering in general leads to a
constant polarization of ~ 1% in the line wings, for §° = 10~* models, as compared to negligible wing polarization in models where electron scattering is neglected
(B¢ = 0). See Table 7 and § 3.4 for details.

function, and provides a practical way of including electron scattering when B¢ < B° in transfer computations. Hence we have
employed only CRES in our computations to represent noncoherent electron scattering. The approximation involved in the use of
CRES is that the electron Doppler width is so large that the electron scattering contribution is dominated by the local mean
intensity compared to diffuse scattering on electrons. The CRES is better than other limiting forms, namely CES, and is simpler than
the use of appropriate redistribution function (see Mihalas et al. 1976). The curves 1 and 2 represent the CRD line formation with
B¢ =0 and 104, respectively. The CRES approximation is employed for electron scattering redistribution function. The curves 1
and 2 show the impact of electron scattering on a resonance line. Since we have selected the branching ratio of A = 0.83 in equation
(22), the line is not dominated by collisional redistribution.

The electron scattering does not allow the line wing photons to easily thermalize to the continuum level and completely
redistributes the line photons over a large frequency bandwidth and over several mean free paths in the atmosphere, leading to easier

TABLE 7
EFFECTS OF ELECTRON SCATTERING AND COLLISIONAL REDISTRIBUTION?

Trr

Model Rx, x) Ré(x, x') pe B Xpr (x10%) Xcs
) DU CRD 0 0 1074 42 24 9.8
20 CRD CRES 1074 2x 1074 3.5 14 6.9
L JOOTR Ry 0 0 1074 4.2 24 9.8
4.......... Ry CRES 1074 2x 1074 35 14 6.9
S Ry 0 0 1074 42 24 9.8
6.eennnnnn Ry CRES 1074 2x 1074 35 14 6.9
Teveieinnn Ry 0 1074 2x 1074 35 14 6.9

*W,=09, A=083 B=p+p, a,=27x10"%, 4,=03x10"2, a=a, +a,
Xep = Xer, Top = T, Ty = 102, T = (10%,2 x 10%), T,,, = 144.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...432..274N

T T A32C CZT4AND

]

r 992

294 NAGENDRA Vol. 432

escape of photons. Hence the source functions S,(t) for ¢ = 10~ * falls drastically below the S,(t) of regular (8¢ = 0) cases for optical
depths 7 < 10, resulting in the overall weakening of the line in the entire bandwidth. Further, the far wing (x > 100) intensity
profiles develop broad shoulders. Due to overriding influence of electron scattering on line formation, the identities of individual
atomic redistribution processes involved are completely lost, and all of them saturate to a constant positive polarization of ~1%. A
similar behavior is seen in the intensity profiles also [see the pairs of curves (1, 2), (3, 4), and (5, 6)]. The pair of curves (3, 4) show the
effect of electron scattering on a resonance line when collisions are included. Similarly the pair of curves (5, 6) refer to subordinate
lines. Notice that the polarization curves of all these cases clearly show the gradual transition from dominance of atomic redistri-
bution in the line core to the dominance of electron scattering over the rest of the frequency bandwidth. The number of times a
typical line photon can be scattered by electrons before it is absorbed by the continuum in the very far wings (x > 100) is given by
[(BC + B°)/(B)], which is equal to 2.0 in our case. The electron scattering can also be considered as a random walk in the spherical
shell with a mean free path given by 1/[x€(r) + x%(r)]. In a spherical medium, it becomes an outward biased (to larger radius) random
walk, although the bias is quite small in our models since R is small and T is large. The presence of an atomic continuum
absorption € acts as a moderator to the electron redistribution by limiting the number of electron scatterings. The main effect of
electron scattering on polarization is that it reaches a nearly constant (frequency independent) value of ~ 1% extending up to very
far on the wings. Curve 7 shows the case where the electron scattering opacity represented by f° is treated as just another source of
isotropic continuum absorption, and arithmetically added on to € as is normally done. The intensity absorption profile deepens
further (compare to curve 3) at all the frequency points in general, and the degree of polarization decreases in magnitude throughout
the profile, as also reaching the zero polarization level faster than the case where ¢ = 0. Thus it is not advisable to add the electron
scattering opacity to the atomic continuum opacity as just a source of opacity in accurate modeling of observed line profiles.

Note that we can recover our expression for total source function (see § 2) from the expressions given in Hubeny (1985a; his egs.
[40] and [41]), by a replacement 8¢ — B¢ + B Hence all the expressions derived in that paper for PRD transfer in the line can
generally be used as a first approximation, for cases including noncoherent electron scattering also, However, this replacement
implies that electron scattering is treated only as scattering part of the continuum source function whose thermal emission part is
the frequency-independent Planck function B. Thus our new defintion of the condition for importance of PRD effects now reads
(BC + P°) < (a/n?), instead of the usual € < (a/n?) when electron scattering was neglected. While this replacement g€ — (B¢ + B°) is
exact when electron redistribution is a purely coherent type (CES), it is only a numerical approximation for electron complete
redistribution (CRDE). During CES the frequency correlation of line photons are not effectively destroyed, which is not the case
with CRES mechanism.

4. CONCLUSIONS

The main conclusions of our computations are as follows: polarization profiles provide a sensitive diagnostic of different types of
collisions that affect the line formation. The line core polarization is as useful as the wing polarization for the purpose of diagnosis.
It is also seen that the scaling laws and the asymptotic expressions derived for scalar transfer theory are very useful in the
interpretation and understanding of polarization results. The positive polarization maxima near the line core, for the models
considered here, can provide an estimate of the critical frequency point for wing thermalization in situations where a considerable
amount of wing coherence exists, which is practically the case with resonance lines. In the exact treatment of collisional redistri-
bution according to the Domke—Hubeny redistribution matrix, it is possible in principle to differentiate more accurately the elastic
and inelastic (I';) collisional effects, if we so require. This point is very useful in theoretical modeling of resonance lines in stellar
atmospheres, if elastic and inelastic collisions are dominated by different kinds of perturbers (like in the cases presented in this paper,
where the elastic collisions are mostly those with neutral hydrogen atoms, while the inelastic ones are those with free electrons).
Unlike other collisional rates, only the pure radiative rate (I'g) leads to a broadening of the intensity and polarization profiles, in the
conventional sense of line broadening. The phase-changing collisions (I'¢) and alignment-changing collisions (D®), on the other
hand, cause what can be generally called collisional depolarization, although the later can affect only the polarization profile and
not the intensity profile. The intrinsic level depolarization (1 — W,) caused by the nature of the atomic transition considered should
be included as a basic atomic data in modeling line polarization profiles. The rather weak dependence of polarization on the
variation of Doppler width through existing temperature structure or otherwise, is advantageous from the modeling point of view.
The sensitivity of polarization to the various branching ratios also shows the need to compute them accurately. Although electron
scattering leaves the atomic redistribution effects (including even collisions) somewhat unaltered in the line core, it completely
dominates the far line wing polarization, in our models (which have a strong continuum absorption). Thus the general effect of
electron scattering is to increase and maintain a constant level of linear polarization up to frequencies very far in the wings, in spite
of an increased photon escape caused by itself. A variety of physical processes whose role is yet to be established affect the frequency
redistribution in general, and polarization in particular (see Hubeny 1985b for an illuminating discussion of many physical effects
that are yet to be included in an ideal frequency redistribution model, not to speak of multilevel effects, realistic atmospheric models,
etc.). The results shown in this paper conform to what is classified as “standard PRD problem under nonstandard conditions” by
Hubeny (1985b, p. 53).

I am grateful to I. Hubeny, for his critical remarks and suggestions which helped me to improve the paper a great deal. I am
grateful to M. Faurobert-Scholl for useful information regarding Domke—Hubeny redistribution functions. I am grateful to B. A.
Varghese and R. Surendiranath for their help regarding figures.
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