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GLOBAL MODES CONSTITUTING THE SOLAR MAGNETIC CYCLE

III. “Shapes’ and ‘Sizes’ of the Sunspot Cycles and Maintenance of MHD
Spectrum by Energy Cascade
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Abstract. The ‘sunspot occurrence probability’ defined in Paper I is used to determine the Legendre—
Fourier (LF) terms in the ‘rate of emergence of toroidal magnetic flux, Q(8, t), above the photosphere
per unit latitude interval, per unit time’. Assuming that the magnetic flux tubes whose emergence
yields solar activity are produced by interference of global MHD waves in the Sun, we determine how
the amplitudes and phases of the LF terms in the toroidal magnetic field Bg, representing the waves,
will be related to those of the LF terms in (}(8, ¢). The set of LF terms in ‘Q)’ that represents the set
of waves whose interference produces most of the observed sunspot activity is {l = 1, 3, ..., 13;
v = nv.,n =1, 3, 5}, where v, = 1/214 yr~ 1. However, among the ‘shapes’ of sunspot cycles
modeled using various sets of the computed LF terms the best agreement with the observed shape,
for each cycle, is given by the set {{ = 3 orl = 3,5;and n = 1, 3 or n = 1, 3, 5}. The sets
ofterms: {{ = 1,3,5,7;n =1}, {{ =1,3,5,7,n =3}, {{ = 9,11, 13, 15, n = 1} and
{l =9, 11, 13, 15; n = 3} seem to represent four modes of global MHD oscillation. Correlations
between the amplitudes (and phases) of LF terms in different modes suggest possible existence of
cascade of energy from constituent MHD waves of lower [ and n to those of higher [ and n. The
spectrum of the MHD waves trapped in the Sun may be maintained by the combined effect of this
energy cascade and the loss of energy in the form of the emerging flux tubes. The primary energy
input into the spectrum may be occurring in the mode {l =1, 3, 5, 7; n = 1). As expected from the
above phenomenological model, the size of a sunspot cycle and its excess over the previous cycle
are well correlated (e.g., ~ 90%) to the phase-changes of the two most dominant oscillation modes
during the previous one or two cycles. These correlations may provide a physical basis to forecast
the cycle sizes.

1. Introduction

From the Legendre—Fourier (LF) analysis of the magnetic field (‘Bjy¢’) inferred
from sunspot data during 1874—1976 it has been shown earlier (Gokhale et al.,
1992, Paper I) that the sunspot activity may be originating in the interference
of Sun’s global magnetic oscillations represented by sets of LF terms in Bjys
having odd degrees (‘I’) and frequencies close to v, (= 1/21.4 y) and to a few
odd harmonics of v,. In Paper II (Gokhale and Javaraiah, 1992) it was shown
that the superposition of the dominant LF terms of frequency v, with average
amplitudes and phases during 1874—1976, can reproduce not only the average
butterfly diagram but also the observed average behavior of the magnetic field in
middle and high latitudes (e.g., the poleward migrations of the weak fields, the
polar activity cycle and the polar reversals, all in the right phases) even though the
data used for determining the LF terms in the ‘inferred” magnetic field is only from
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the low (< 35°) latitudes. This indicated that the computed LF terms in Bjy may
be representing a set of real global MHD oscillations of the Sun and not merely a
mathematical transform of the latitude-time distribution of the data.

In the present paper we examine the following questions which would arise if
the solar magnetic cycle is really a consequence of superposition of global MHD
oscillations.

(1) How would superposition of global MHD oscillations lead to formation and
emergence of the magnetic flux tubes that produce the solar activity ? What kind
of MHD oscillations are needed for this purpose ?

(1) How is the rate of production of activity related to the amplitudes and
phases of the superposed oscillations (waves)?

(ii1) What set of LF terms represents the set of the global waves that produces
most of the observed sunspot activity?

(iv) What minimal set of LF terms can be used to model the variation of the
amount of the annual sunspot activity during each sunspot cycle (i.e., the ‘shapes’
of the sunspot cycles)?

(v) How is the spectrum of the global waves maintained?

(vi) Which LF terms represent the primarily excited waves?

(vii) Can the analysis be used for forecasting the amount of sunspot activity?

In this investigation a key step is to model the observed variations in the rate of
production of sunspot activity (‘shapes’ and ‘sizes’ of the sunspot cycles). For this
it is necessary to modify the normalization of the ‘inferred magnetic field’ (Bijnt)
as explained in Section 2.1. The ‘renormalized Biys” which we denote as ‘Q(6, t)’
represents ‘the rate of toroidal flux emergence above the photosphere’: i.e., the
amount of toroidal magnetic flux emerging above the photosphere per unit latitude
interval, per unit time.

In Section 2.2 we describe how the interference of a set of the Sun’s global MHD
oscillations (e.g., torsional MHD oscillations) can result in intermittent emergence
of toroidal magnetic flux in the form of flux tubes. We also show how the rate
of flux emergence Q(6, t), on sufficiently large scales of length and time, will
be related to the amplitudes and phases of the global oscillations (represented by
Legendre—Fourier terms in the toroidal field component Bg) and how the latter
amplitudes and phases can be studied using the LF terms in ‘Q’ computed from
the sunspot data.

In Section 2.3 we develop a method to model the ‘shapes’ of the sunspot cycles
by superposing any prescribed set of LF terms in Q(6, t), using the amplitudes and
phases during each cycle as computed from the sunspot data.

In Section 2.4 we use Parceval’s theorem to identify {{ = 1,3,...,13;n =
1, 3, 5} as the set of terms in Bg that represents the waves which, through the
process suggested in Section 2.2.1, could contribute most of the observed sunspot
activity.

In Section 2.5 we show that for modeling satisfactorily the observed ‘shape’ of
any of the nine cycles with amplitudes and phases of a minimum number of LF
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terms, the terms with [ = 3 (or 3,5) and n = 1, 3 (or 1, 3, 5) are necessary and
sufficient.

The above minimization of terms is possible due to coherence in the variations
of the amplitudes and phases of the terms within each of the following four groups
(Section 3.1):

{l=1,3,57 n=1}, {l=1,3,57, n=3},
{1=9,11,13,15, n =1}, {I=9, 11,13, 15; n =3},

and correlations of the amplitudes and phases of terms in each group with those of
the terms in the other groups.

Using the phase coherence, we show in Section 3.2, that these groups represent
four modes of global oscillations.

In Section 4.1 we point out the possibility of the existence of a cascade of
energy in the LF spectrum. The mutual correlations among the amplitudes and
phases of the above four oscillation modes suggest the existence of such a cascade
(Section 4.2).

In Section 4.3 we point out how the emergence of flux tubes by the process
described in Section 2.2.1 will yield surface fields and solar activity, as well as
removal of energy from the interfering waves causing shifts in their phases.

In Section 4.4.1 we suggest a phenomenological model for maintenance of the
LF spectrum by the cascade and the removal of energy assuming a supply of energy
through some fundamentally excited waves of lower [ and v. In Section 4.4.2 we
identify [ = 3, 5; n = 1) as the dominant terms among the fundamentally excited
waves.

If the LF spectrum is really maintained as suggested here, then there should be
correlations between the size of a sunspot cycle and the changes in the phases of the
LF terms during the previous one or two cycles (Section 4.5.1). In Sections 4.5.2
and 4.5.3 we show that such correlations indeed exist. In fact, these correlations
might even be useful for forecasting the size of a sunspot cycle on a physical basis
(Section 4.5.4).

In Section 5 we summarize the proposed phenomenological model and discuss
its implications and limitations. Reasons are given why the global MHD waves
described here by the LF terms may be real, and ‘torsional’. A conjecture about
the mechanism of excitation of the low [, n modes is also given for the sake of
completeness of the proposed model.
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2. Modeling the Variation of the Annual Measure of Sunspot Activity

2.1. THE ‘FLUX EMERGENCE RATE’ (6, t), INFERRED FROM DATA, AND
ITS LEGENDRE-FOURIER ANALYSIS

In Papers I and II the sunspot occurrence probability during any given time interval
was normalized to the total amount of activity in that time interval. Thus the unit
of Bjyr varied from cycle to cycle, depending upon the ‘size’ of the cycle. This was
fine for studying the latitude-time distribution of activity during any single time
interval irrespective of the total amount of activity during that interval. However,
for modeling the variations in the rate of production of sunspot activity) the total
probability in any given time interval should be proportional to the total measure
of activity in that time interval. Hence, we renormalize the sunspot occurrence
probability in the following manner.

Consider length scales large compared to the dimensions of the spot groups and
time scales large compared to the lifetimes of the spot groups but small compared
to the durations of the sunspot cycles (e.g., length scales > 10* km and time scales
> a few months). On such scales we define the sunspot occurrence probability, as
a function of latitude and time, as follows:

P06, t) = 71,6(6 — Ok, t — tx) in the neigborhood of (6, tx) ,

=0, elsewhere ,

where 6, t; are the values of 8 and ‘t’ for the spot group ‘k’, 7 is the life span
of the spot group ‘k’, and ¢ represents the Dirac delta function. As required, the
integral of P (6, t) over the unit sphere during any time interval is proportional to
the measure of sunspot activity during that interval.

This probability function is related to the sunspot occurrence probability func-
tion p(6, t) of Paper I in the following way:

P9, 1) = (Zkmk)p(6, 1)

where the summation ¥; extends over all the spot groups observed during a given
time interval, or during a given sunspot cycle.

We take 7 as a reasonable measure of the amount of magnetic flux which
emerges above the photosphere (and leaves the Sun), in association with the appear-
ance and disappearance of the spot group ‘k’. From the generally bipolar nature of
the fields associated with activity, it is believed that the emerging flux is toroidal.

In analogy to Biye(6, t) in Papers I and II, we then define a quantity Q(6, t)
as

Q(ea t) = :i:'P(O, t) ) (D
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Fig. 1. The average Legendre-Fourier spectrum of the relative amplitudes ¢(I, n) of Q(6, t) during
1874-1976. This spectrum is the same as that of the relative amplitudes of Bins(6, t) given in Paper L.

where the signs + are chosen according to Hale’s laws of magnetic polarities.
Clearly, on time scales > a few months and length scales > 10* km, Q(0, t)
represents a measure of ‘the amount of the toroidal magnetic flux emerging above
the photosphere at (0, t), per unit latitude interval per unit time’. Equation (1) can
also be written as

Q(G, t) = (Eka)Binf(G, t) .

2.1.1. Amplitudes and Phases of Legendre—Fourier Terms during Each Sunspot
Cycle

Using the method given in Papers I and I we have determined the amplitudes
¢(l, n) and the phases ¢(l, n) of the axisymmetric SHF terms (i.e., LF terms) of
odd degrees, I = 1 to 29, and frequencies v = nv, (n = 1,3, 5, 7) in Q(0, t),
during each of the nine sunspot cycles between 1879 and 1976. During each cycle,
the spectrum of the relative amplitudes in ‘Q)’ is similar to (but not the same as) that
during the whole sequence of the 103 years. Owing to the above relation between
Q and Bjys, the latter spectrum is the same as the relative amplitude spectrum of
Bixe during the 103 years which was shown in Figure 1 of ‘Paper I’, and which is
reproduced here for convenience (Figure 1).

2.2. A MODEL OF TOROIDAL FLUX EMERGENCE AS PROVIDED BY INTERFERENCE
OF TORSIONAL MHD OSCILLATIONS

2.2.1. Formation of Toroidal Flux Tubes and Their Emergence
Consider a set of axi-symmetric MHD oscillations (e.g., torsional), each represent-
ed, during each cycle, by a set of LF terms, and described collectively by the sets
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{i} and {n} of the values of [ and n, respectively. The toroidal magnetic field By
at a point (r, 6), at an instant ‘¢’ during a cycle ‘i’, can be written as

Bs(i; T, 0,t) = E{I}E{n}b(i; l n)fl’n(T)X
X Py(p) sin[2mnvt + €(i; 1, n)], (2)

where b(%; I, n) and €(i; I, n) represent the amplitudes and the ‘initial’ phases of
the terms (I, n) in ‘Biy¢’, during the cycle ’; f; ,(r) is the radial eigenfunction
for the mode (I, n) and y = cos 6.

At and ‘¢’ where the interference creates a toroidal flux bundle whose magnetic
buoyancy overcomes its magnetic tension, the flux bundle will emerge above the
photosphere.

2.2.2. The Rate of Emergence of Toroidal Flux

Let Tmax be the maximum time required for any such toroidal flux bundle, after its
creation, to emerge above the photosphere at all longitudes. Since the large-scale
meridional flows in the Sun’s radiative core are negligible, the amount of toroidal
flux across any meridional section of the radiative core must remain constant.
Hence, on time scales > 7., and less than the diffusion time scales, the amount
of the toroidal flux Q(6, t)df, emerging above the photosphere per unit time across
a latitude interval df, will be given by

Q, 1) do = 8

R
/Bq,(r, 8, t)r d dr} Jat,
0

where 7 = R is the radius of the base of the convective envelope. Hence, for
modeling the sunspot cycles, the flux emergence rate Qpoq(¢; 0, t) during any
cycle ‘4’ can be written, using Equation (2), as

Qmod(i; 07 t) = 2{I}Z{n}b(za l) n)gl,n(R)x
X2mnv. P (p) cos2mnut + €(i; 1, n)] 3)

where

R
gin(R) = /fz,n(’r)fr dr .
0

2.2.3. Relations between the LF Terms in ‘Q’ and Those in ‘Bg’
Equation (3) can be rewritten as

Qmod(%; 0, t) = Xy Xnyq(s; 1, n)x
X P(p) sin2mnv.t + ¢(3; 1, n)],
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where
q(3; 1, n) = 2mnvib(3; 1, n)g . (R) (4a)
and
(i L, n) =e(i; I, n) +7/2. (4b)

It follows that according to this model, (i) the sets of terms {/} and {n} of
appreciable amplitudes in the LF spectrum of Bg will be same as those obtained
through the LF analysis of ‘Q’, but (ii) owing to the factor g;,(R) in (4a), the
ratios of amplitudes (‘b’s) of different LF terms in ‘Bg’ may not be same as those
of the amplitudes (‘¢’s) of the corresponding terms in ‘Q)’, and (iii) the temporal
variations and relative differences in the phases of LF terms in B¢ will be same as
those in the phases of the corresponding terms in Q(6, t).

2.2.4. The Torsional MHD Nature of the Oscillations
The only observed large-scale flows that can, in principle, create toroidal fields
are the ‘torsional waves’ of ‘11-yr’ periodicity (LaBonte and Howard, 1982), or
22-yr’ periodicity (Javaraiah and Gokhale, 1994) detected in the photospheric
rotation. Rotational perturbations on time scales of years seem to exist even in the
solar interior (Dziembowskii and Goode, 1992). In the presence of even a very
weak but sufficiently long-lived poloidal field with [ = 1 and 3 (e.g., Mestel and
Weiss, 1987; Spruit, 1990; Gokhale and Hiremath, 1992; Hiremath and Gokhale,
1995), such perturbations would constitute torsional MHD waves.

Thus, if the LF terms in ‘Bg’ represent global oscillations/waves, then these
must be ‘torsional’ MHD in nature.

2.3. METHOD TO MODEL THE ‘SHAPES’ AND ‘SIZES’ OF THE INDIVIDUAL SUNSPOT
CYCLES BY RECOMBINING ANY PRESCRIBED SET {/, n} OF LF TERMS IN

CQS

It follows from Equation (1) that the sunspot occurrence probability per latitude
interval of unit photospheric area per unit time, at colatitude ‘6’ at time ‘¢’, will
be given by

Pmod(91 t) = IQmod(Ga t)l . (5)

Hence in a model combining a prescribed set {l, n} of LF terms the sunspot
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occurrence probability, pmod, at the central epoch ‘5’ of the kth ‘month’ in the
Jth year of the :th cycle can be written as

135°
Puca({l}, {n}s i, 5, ) =T [ |Quoalis 0, tiz)| sin 0 db =
45°
90°
= 2T / 121y Zgnya(35 1, n) Pi(p) sin2mnvatsje + ¢(4; 7, k)]| sin 6 df . (6)
450

Here the term ‘month’ means any given 1/12 part of a year and ‘1" is its
length.

The limits of integration with respect to the colatitude are chosen so as to
exclude the low-level flux concentrations outside the sunspot zone which are not
strong enough to be seen as sunspot activity (see Paper II), and the symmetry of
the integrand is used for changing the limits of the integral.

The annual measure of the sunspot occurrence probability is

12
Smod({l}a {TL}, i, .7) = Z({l}a {n}7 ia ja k) . (7)
k=1

The variation of smod({l}, {n}; 7, j) with ‘5’ gives the ‘reconstructed shape’
of the sunspot cycle ‘¢’ for a given choice of {{} and {n}.
The ‘size’ of the cycle ‘¢’ in the reconstructed model will then be given by

Smod({l}v {n}’ 7') = Zsmod({l}’ {n}; 8 .7) . (8)

2.4. IDENTIFICATION OF THE SET OF SIGNIFICANT LF TERMS IN ‘Q)’ THAT
ACCOUNT FOR MOST OF THE OBSERVED SUNSPOT ACTIVITY

According to Parceval’s theorem, the size Spoq(7) of a sunspot cycle ‘4’ in the
recombination model must be proportional to the total LF powerin the set [{l}, {n}]
of terms taken in Equation (6). Thus

P(i; {l,n}) = Y [q(i; 1, n)]*.
{1}, {n}

Starting from a set of lowest [ and n, the correlation between P(i; {l/, n}) and
the observed size of the cycle 4, viz., Sops(), first increases with inclusion of terms
with higher and higher [ and n. A stage comes when the correlation starts dropping
down due to larger relative errors in the amplitudes of the higher terms. From the
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maximum correlation we have identified {{ = 1, 3, ..., 13; n = 1, 3, 5} as the
set of LF terms in ‘Q)’ which are significant in modeling by recombination of LF
terms. The high (~ 99.98%) correlation assures that the significant set is adequate
to account for most of the observed sunspot activity.

2.5. COMPARISON BETWEEN THE MODELED AND THE OBSERVED ‘SHAPES’

For each cycle ‘i’ we have modeled the ‘shape’ smod(?, 7) and the ‘size’ Smed(7)
with various choices of {{} in the range 1 to 13 and {n} in the range 1, 3, 5.

For determining the ‘observed shape’ of a cycle ‘i’ we take the sum sops(%, 7)
of the life-spans (in days) of all the spot groups born during the jth year of the
cycle ‘2’ as the measure of the sunspot activity during that year.

For each of several choices of the sets {{} and {n}, we have computed the
coefficients of correlation between smoa({l}, {n}; %, 7) and sobs(?, j) during each
cycle ‘4’. We have also computed the correlation between Spoa({!}, {n}, ¢) and
Sobs(?) for 2 = 1 to 9. The results are given in the next two subsections.

2.5.1. Importance of the Terms withn =1, 3, 5

We have found that during each cycle ‘i’ the correlation between the modeled
‘shape’ smod({l}, {n}; i, j) and the observed ‘shape’ seps(i, j), for j = 1 to
11, is > 80% for any choice of {/} in the range | = 1 to 13 with n = 1. As
expected from the asymmetries of the sunspot cycles (Bracewell, 1988), inclusion
of corresponding terms with n = 3 increases the correlations substantially (e.g., by
> 4%) whereas improvements by further inclusion of n = 5 are only marginal (e.g.,
< 1%). Still further improvement by inclusion of higher terms (n > 7), will be
negligible since their amplitudes are quite small. Thus, termsof { =1, ..., 13 and
n = 1,3 (orn =1, 3, 5), are adequate for modeling the shapes of the cycles.

2.5.2. The Optimal Set {l, n} That Gives the Best Correlation
Among the nearly highest correlations given by the different choices of {I, n}
with [ in the range [ = 1, ..., 13, and n = 1, 3, the subset {{ = 3; n = 1, 3}
or {{ =3, 5;n =1, 3} gives the highest correlation (~ 0.97) between smoq and
Sobs during each of the nine cycles. The latter subset gives the highest average
correlation between the observed and the modeled shapes over the whole sequence
of the nine cycles (see Figure 2). However, the differences between the correlations
given by the two subsets seem too small to be significant (see Table I).

Hence, during every cycle the shape consisting of the eleven observed points (ten
relative values) can be equally well reproduced by specifying only four parameters,
viz., the amplitudes and phases of {{ = 3; n = 1, 3}.
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Fig.2. Variation of sobs(, j) (dashed line), and that of smoq (%, j) (continuous line), both normalized
to their values in 1958, during sunspot cycles ¢ = 12 to 20. For each cycle the model uses amplitudes
and phases of only {l = 3, 5;n = 1, 3}. Agreement from the model using {! = 3; n = 1, 3} only
will be almost equally good (see Section 2.5.2).
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Fig. 3. Temporal variation of the amplitudes ¢(l, n), forn = 1, as represented by values during 11-yr
intervals successively displaced by 1 yr. The symbols A, O, %, +, %, diamond, and dot, represent
1=1,3,5,7,9, 11, and 13, respectively. The continuous curve represents the values of the amount
of observed sunspot activity (Sobs) during the respective intervals.

3. The Stationary Oscillations

3.1. HIGH MUTUAL CORRELATIONS BETWEEN THE AMPLITUDES AND PHASES OF
TERMS WITH DIFFERENT [ BUT SAME n

The high correlations between the modeled and the observed shapes for any subset
of {{} = {1, 3, ..., 13} noted in Section 2.5 suggest the presence of high mutual
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TABLE ]

The coefficients of correlations between the observed ‘shapes’ of
the cycles (Waldmeier numbers) ¢ = 12, 13, ..., 20, and those
reconstructed using sets {{ = 3,n = 1,3} and {{ = 3, 5;

n =1, 3}
Cycle No. {l=3n=1,3} {l=3,5n=1,3}
12 (1879-1889) 0.973 0.980
13 (1890-1901) 0.984 0.983
14 (1902-1912)  0.968 0.976
15 (1913-1922) 0.959 0.959
16 (1923-1933) 0.968 0.981
17 (1934-1943)  0.966 0.973
18 (1944-1953) 0.983 0.979
19 (1954-1964) 0.993 0.991
20 (1965-1976)  0.939 0.954
Average 0.970 0.975

correlations among the amplitudes and phases of the LF terms in this range of [ for
each n.

Such high mutual correlations are indeed seen in Figures 3 and 4 showing, for
n = 1, the variations in the amplitudes ¢(I, n) and phases ¢(I, n) determined from
11-yr intervals successively displaced by 1 yr.

Mutual correlations are also seen in the similarly determined variations of the
phases ¢(I, n) of the terms of different [ for n = 3 shown in Figures 5(a) and ((b).

3.2. EXISTENCE OF RESONANT AND APPROXIMATELY STATIONARY GLOBAL
OSCILLATIONS IN Bg

In view of Equation (4b), the phase variations in Figures 4 and 5 can be considered
also as the variations in the initial phases ¢(l, n) of LF terms in Bg.

Further, we see in Figures 4 and 5 that the terms [ = 1,3, ..., 15, n =1, 3
form four separate groups (! = 1,3,5,7;n = 1), (( = 9,11, 13, 15; n ='1),
(l=1,3,57,n=3)and (I =9, 11, 13, 15; n = 3), such that terms within
each group have mutual ‘phase coherence’, with successive phase differences of
~ +180°, and a certain common degree of ‘phase constancy’.

Hence, the expression on the right-hand side of Equation (2) can be written,
collecting the terms in each group, as
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Bg(t; 1, 0, t) = By, 1(r, p) sin2avst + A1, 1) + By, 1(r, p) sinQ2rv.t+
+22,1) + Bu,3(r, p) sin(2n3v,t + Ay, 3)+
+ By, 3(r, ) sin(2m3vit + Ap 3) + -+,

where

By 1(r, p) = {b1,1f1,1(r)Pr(p) — b3, 1f3,1(r) Ps(u)+
+bs,1f5,1(r)Ps(p) — b7, 1.f7,1(r) Pr(p)}

B, 1(r, 1) = {bo, 1fo,1(r)Po(p) — b11,1.f11,1(r)Pr1(p)+
+b13,1f13,1(r) P13(p) — bis,1f15,1(r)Pis(p)}

and similar expressions for By 3(r, ) and By 3(r, ) from the other two groups.
Here b;, and )\, are the mean values of the amplitudes b(7; [, n) and phases
e(i; I, m), respectively, defined in Equations (4a) and (4b), all of which must be
approximately constant in time, since ¢(7; [, n) and ¢(3; [, n) are so. Clearly, each
of the four terms on the right-hand side represents a stationary global oscillation in
‘Bg’.

4. Phenomenological Model for Maintenance of the LF Spectrum and
Production of Activity

4.1. POSSIBILITY OF EXISTENCE OF CASCADE OF ENERGY IN THE LF SPECTRUM

In the Sun, the density falls off rapidly near the photosphere. The intensity of the
background field may not vary much (e.g., Gokhale and Hiremath, 1993). Hence, if
torsional MHD waves are excited inside the Sun, their phase speed would increase
rapidly as they approach the photosphere. Hence the waves will be trapped inside
the sun by total internal reflections at the photosphere. In general the angles of
incidence will be non-zero, and hence the reflected waves will have different
values of [ than the incident waves. This transfer of energy will continue during
successive reflections provided there is a continued supply of energy at the original
‘I’. In the whole process, appreciable energy will be stored only in the normal
modes of global oscillations (for which higher ! corresponds to higher v). Since
the dissipation occurs at high [ and v, the overall transfer of energy will constitute
a cascade from modes of lower [, v to those of higher [, v.

4.2. EVIDENCE FOR EXISTENCE OF CASCADE OF ENERGY IN THE LF SPECTRUM

There are high correlations among the phases (and also among the amplitudes) of
LF terms of low and high values of [ (Section 3.1) and among the terms of low and
high values of n (Gokhale and Javaraiah, 1990).
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Fig. 4. Temporal variation of the phases ¢(l, n), or ¢(l, n) of the terms { = 1, 3, ..., 15, all with
n = 1, during the 11-yr intervals successively displaced by 1 yr.

If we examine Figure 4 carefully, we find increments and decrements of the
initial phases of terms in n = 1 occurring during intervals of lengths ~ 7 yr and
~ 4-5 yr. These variations imply decelerations and accelerations, respectively, in
the phase speeds of the waves of the frequency v, on time scales corresponding to
3v, and Sv,. Accelerations and decelerations in the phase speeds of the terms in
v = 3v, in Figure 5 are also seen to occur during exactly the same intervals of time.
Thus the correlations which exist for each [ in the phase variations of the lower and
the higher n (e.g., ~ 85-90% between n = 1 and 3; Gokhale and Javaraiah, 1990),
seem to be due to the simultaneous phase accelerations and phase decelerations of
the waves of the lower and the higher n. Thus the phase variations in Figures 4 and
5 indicate transfer of energy from LF terms of 3v, and 5v,.

Similarly the mutual correlations between the amplitudes and phases of LF
terms of different [, and same n, imply transfer of energy from waves of lower ‘I’
to those of higher [, with the same v.

4.3. PRODUCTION OF SURFACE FIELDS AND ACTIVITY, CREATION OF PHASE SHIFTS
DUE TO EMERGENCE OF FLUX TUBES

4.3.1. Production of Surface Fields and Activity
Whenever the flux bundles formed by interference of MHD waves emerge above
the photosphere by the process envisaged in Section 2.2.1, they will be seen as
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Fig. 5a.

100

Fig. 5a-b. Temporal variation of the phases ¢(l, n), or (I, n), of the third harmonic (n = 3) terms
as represented by values during 11-yr intervals successively displaced by 1 yr. In (a), symbols +, *,
diamond, and A represent [ = 1, 3, 5, and 7, respectively. In (b) they represent | = 9, 11, 13, and

15, respectively.

‘surface fields’. The dissipation of the emerged flux bundles in the atmosphere will

produce ‘activity’ of various types on various scales.

4.3.2. Production of ‘Photospheric Fields’ and ‘Activity’ That Are Regularly

Distributed in Latitudes and Time

The ‘toroidal flux bundles’ given by interference of the waves with non-random
phase variations will be regularly distributed in latitude and time. Thus the modes
with v = v,, 3v,, and 5v,, would yield the observed ‘photospheric fields’ and
‘activity’ that are distributed regularly in latitudes and in time, viz., (i) sunspot
activity distributed in ‘butterfly diagrams’, (ii) ‘weak’ fields appearing to migrate
towards the poles, and (iii) the ‘reversing’ polar fields. (This is already shown, up
to the terms in v, alone, for [ = 1 to 13 by Stenflo (1988), and for [ = 1 to 29 by

us in Paper I1.)
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4.3.3. Production of Randomly Distributed Small-Scale Photospheric Fields and
Activity

Since the waves with n > 5 have random phases (Section 4.3.5), the flux tubes

formed by their interference may be producing the small-scale fields and activity

distributed randomly on the surface, and in time (may be, e.g., ‘bright points’ in

X-ray and EUV emissions).

4.3.4. Removal of Energy from Interfering Waves and Creation of

Phase-Shifts
The emergence of flux tubes as in Section 2.2.1 implies sudden removal of energy,
viz., the magnetic energy of the flux tubes, from the interfering waves. Since this
occurs on time scales (Tpax: Section 2.2.2) much shorter than the wave periods, this
would lead to ‘changes’ in the phases of the respective terms in the LF spectrum.

4.3.5. The Observed Phase Changes
We have determined the cycle-to-cycle ‘shifts’ in the phases, ¢;,, from changes
in ¢y, using Equation 4(b). These are < 30° for n = 1, = 30°-90° for n = 3,
and 90°-120° for n = 5. For n > 5 the phase changes are > 120° and, hence,
essentially random.

For each LF term, the observed cycle-to-cycle phase change will be the net
result of the energy received from terms of lower [, n, energy contributed to the
emerging flux tubes, and energy passed on to the terms of higher [, n.
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4.4. MAINTENANCE OF THE LF SPECTRUM AND THE DOMINANT TERMS IN THE
BASICALLY-EXCITED OSCILLATION

4.4.1. Maintenance of the LF Spectrum

The foregoing discussion suggests that the LF spectrum of the global oscillations
is a net result of (i) input of energy at some low [, v, (ii) cascade of energy from
lower [, v to higher and higher [, v, and (iii) intermittent removal of energy from
the waves in the form of toroidal flux tubes formed by interference.

4.4.2. The Dominant LF Terms in the Basically Excited Oscillation and the
Approximate Balance between Inputs and Outputs of Energy

In Figure 2 we also see that the amplitudes ¢(I, n) forn = 1 and | = 1-13
determined from 11-yr long time intervals succcessively displaced by 1 yr show
high correlations with the measure of sunspot activity, .S, during those intervals.
Actually, these correlations are expected from the definition of ¢(I, n). However,
among these, the best correlation is given by amplitudes of [ = 3 and 5 and not
by the largest two amplitudes in ‘Q’, viz., of [ = 5 and 7 (see Figure 1). Thus the
energy in {{ = 3, 5;n = 1} seems to control the variation of the amount of sunspot
activity even on time scales > 11yr. This, along with the result of Section 2.5.2,
shows that {{ = 3, 5; n = 1} may be the dominant terms in the basically excited
waves.

The same correlation also suggests that on time scales > 11 yr there may be
a fairly good balance between the rate of energy input into (I = 3, 5; n = 1)
and that of energy disposal through sunspot activity. [Evidence for the Associated
‘“Torsion’: It may be noted that the terms {I = 3, 5; n = 1} belong to the mode
{{=1,3,5,7;n =1} in Bg which corresponds to {{ = 2, 4, 6; n = 1} in the
rotational angular velocity (i.e., the ‘torsional oscillation’ of ‘22-yr periodicity’).
In the analysis of surface rotation the presence of such an oscillation is indicated
by that of 22-yr periodicity in the coefficient of sin’ # (Javaraiah and Gokhale.
1994).]

4.5. TESTS OF THE PHENOMENOLOGICAL MODEL AND THEIR VERIFICATION

4.5.1. Correlations Expected between the ‘Cycle Size’ and the

‘Phase-Changes’
Since the changes in the phases of LF terms with n = 1 and 3 are not large (see
Section 4.3.5), these phase changes can serve as measures of the net effect of the
gains and losses of energy by these terms. Hence, according to the foregoing model
of energy cascade and production of activity (Sections 4.2 and 4.3), the following
correlations should exist.

Test I: the size of a sunspot cycle should be proportional to the amount of energy
lost by all those waves whose interference creates the sunspot activity during that
cycle. Hence Sops(¢) should be correlated to the phase changes of the corresponding
LF terms from cycle ‘2 — 1’ to cycle ‘2.
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Test 2: also, the change in the cycle size from one cycle to the next cycle should
be correlated to the phase shifts of the terms representing those waves of n = 1
into which the energy is input during some earlier cycles.

4.5.2. Verification of the ‘“Test 1’

For verifying Test 1 we have determined the coefficients of correlations of Sops(7)

with the sums of the changes Ae; , (7 — 1, 7) in the phases of the terms (I, n), taken

in different combinations, during the cycle ‘2 — 1’ to those during the cycle ‘2’.
We find the correlations between

Sobs(?) and Z Aes (i — 1,1) equal to 90% ,
n=1,3,5

Sobs(i) and > Aes(i —1,4) t094% ,
1=1,3,5,7

where the combination given in the summation is the one that gives the maximum
correlation (of the value given).

Thus, we find: (a) the size of a sunspot cycle is highly correlated to the energy
lost by a set of waves during the current cycle, and (b) the maximum correlation
is with the energy lost by the wave corresponding to the term [ = 5 through
n = 1, 3, 5, and also to the energy lost by the waves corresponding to the terms
[=1,3,5, 7throughn = 5.

4.5.3. Verification of the ‘Test 2’

For verifying 7est 2 and identifying the terms of the fundamental frequency in which
the energy is input, we have determined the correlations between the changes in
the cycle size:

ASobs(i - 1) Z) = Sobs(i) - Sobs(i - 1)

and the sums of phase shifts, in combination of terms with n = 1, occurring
between the previous one or two cycles.
In the notation used earlier, the maximum correlations are:

ASObS(i - 1, 2) and A65,1(Z' — 1, Z) : 87%
and
ASups(i —1,4) and Aepy (i —2,i—1): 90% .

Thus the change in the cycle size from ‘¢—1’ to ‘2’ is well correlated with the
amounts of energy input into the waves of frequency v, during the cycles ‘¢z — 2’,
‘2 — 1’, and the maximum correlations are with energy inputs into: (a) the wave
[l =5, n = 1] during either cycle ‘¢ — 1’ or cycle ‘4’ (b) the wave [l = 11, n = 1]
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Fig. 6. The observed cycle sizes Sqs(%), represented by ‘+’ and those ‘predicted’ (‘+”) on the basis
of the 90% correlation of Sps(2) to Aerr,1(i — 2, ¢ — 1) (see Section 4.5.4).

during the cycles ‘2 — 2’ and ‘4 — 1°. [Note: the above correlations imply that the
time lapse between the input of energy and its loss through interference is longer
for [ = 11 than for ! = 5. This means that the phase difference between ! = 5 and
I = 11 seen in Figure 3 should be considered as lag of 240° for [ = 11 rather than
a lead of 120°. This is to point out that the result ‘(b)’ need not be interpreted as
energy-input in [ = 11 occurring earlier than in [ = 5.]

4.5.4. Scope for Forecasting the ‘Cycle Size’

In Figure 6 we compare the observed cycle sizes Sops(i) with those ‘predicted’
using the second correlation in Section 4.5.3. It is clear that such a forecast can be
satisfactory.

5. Conclusions and Discussion

As an interpretation of the results of analysis in Sections 2, 3, and 4.1-4.2 we
have suggested in Sections 4.3 and 4.4 the following phenomenological model for
production of sunspot activity and maintenance of the ‘approximately steady’ LF
spectrum of the global MHD waves.

(1) The primary input of fresh energy, into an existing spectrum of torsional
MHD waves occurs mainly at ! = 3, 5; v = v, (by an unidentified process),
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(i1) This energy cascades to the waves of higher spatial and temporal frequen-
cies, maintaining the oscillations By 3, By 3, described in Section 3.2, and the waves
of higher [, n (presumably due to reflections of the waves at the boundaries such
as the photosphere and the base of the convective envelope).

(iii) The cascading energy keeps on leaking out intermittently in the form
of critically buoyant toroidal flux bundles (created by superposition of waves)
whose emergence produces surface fields and activity on various scales (e.g.,
sunspot activity from interference of waves represented by {{ = 1,3, ..., 13;
n =1, 3, 5}, and ‘non-sunspot activity’ at higher and higher [ and n).

It is clear from Section 2.5 that the sunspot cycle can be modeled as arising
from superposition of the LF terms in the ‘rate of emergence of toroidal magnetic
field’, not only qualitatively in terms of the latitude-time distribution (as shown
in Papers I and II), but also quantitativcly in terms of the shapes and sizes of the
successive sunspot cycles.

Here the rate of emergence of magnetic field is not directly measured but is
inferred from the sunspot data itself. Hence the result may appear to be a trivial
consequence of the forward and the backward LF transforms. However it was seen
in Paper II that the ‘inferred rate’ does yield the same amplitudes and phases for
the LF terms, at least up to = 13, as those derived from the directly ‘observed’
poloidal flux distribution at the photosphere (Stenflo and Vogel, 1986; Stenflo,
1988). It must be noted here that on the time scales and length scales of the present
model the observed photospheric poloidal field at (8, t) will be proportional to
Q(0, t), the ‘rate of emergence of the toroidal flux per unit latitude interval per
unit time’.

Secondly, as seen in Paper II, the behavior of the field in the middle
(30°-60°) and high (> 60°) latitudes can be reproduced by superposition of the
LF terms, though these terms were computed from the data belonging to the low
(£ 30°) latitudes.

Finally, the results in Sections 2 and 4 show that at least four groups of the LF
terms in Section 3 represent real global magnetic oscillations (or waves) on the
Sun.

This brings us back to the questions: (a) What 1s the physical nature of these
waves and oscillations? And (b) What kind of steady field in the Sun’s interior can
sustain such oscillations ?

The answers to these questions can hardly be expected purely from a data
analysis. However, for the sake of completeness of the model, on the grounds given
in Sections 2.2.4 and 4.4.2 it is expected that the LF terms in ‘Bg’ represent the
toroidal field component of the ‘torsional MHD perturbations’. As for the question
(b), we note that in a recent model of the ‘steady’ part of the Sun’s internal poloidal
field, ‘the best fit’ for its iso-rotation with the helio-seismologically determined
internal rotation of the Sun is given by terms only up to | = 3 (Gokhale and
Hiremath, 1993; Hiremath and Gokhale, 1995). This model of the ‘steady’ field is
constrained to an asymptotically uniform finite field at large distances and hence
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can provide the necessary ‘steady framework’ for the oscillations. The strength
of this ‘steady’ field (required for the 22-yr’ periodicity of the torsional MHD
oscillations) is' ~ 102 G, which would not be detectable in the presence of the
periodically reversing surface fields produced by emergence of toroidal flux tubes
(Sections 4.3.1 to 4.3.3). Hence the presence of the necessary ‘steady’ background
field of primordial origin, is not ruled out.

It is also shown in the papers just referenced that the ‘residuals’ of the fit indicate
the presence of deviation from isorotation (i.e., time-dependent perturbations) with
[ = 5 as the dominant term and with a time scale in the range 1-100 yr. These
properties of the ‘deviation from isorotation’ are in agreement with the present
analysis and interpretation.

The phenomenological model in Section 4.3 describes a possible way in which
toroidal magnetic flux tubes could be produced. The time scales of their rise to
the surface are assumed to be smaller than the smallest (~ 1 yr) resolution used
in modeling the ‘shapes’ of the cycles. This is in accordance with the computa-
tions by Choudhury and D’Silva (1990) for radial travel of flux tubes and with
the observational estimate of Howard and LaBonte (1981). However, a detailed
mathematical modeling of torsional MHD waves (e.g., in a ‘steady’ field such as in
the model mentioned above), and their interference, will be necessary for (i) ascer-
taining the reality of the phenomenology developed in this series of papers and
for (ii) exploring the possibility of sound predictions of the ‘shapes’ and ‘sizes’ of
future sunspot cycles. It will be important to model the emergence of the toroidal
flux bundles, especially the separation of their identities from the ambient field and
their distribution in longitudes.

The phenomenological model of the energy cascade indicates that the over-
all sunspot cycle phenomenon resembles a relaxation oscillation’ (mentioned by
Bracewell, 1988). Here the ‘negative damping’ corresponds to the energy input into
the waves of v = v, and the ‘positive damping’ to the loss of energy in the form
of flux tubes leaving the main body of the Sun and dissipating in the atmosphere.
Therefore, the most important task will be to model the process that perpetually
excites the waves at v = v,.

At present the only mechanism of perpetual excitation at frequencies near v,
which we can think of is a resonance coupling of the Sun’s unstable MHD modes
to the torques caused by inertial forces due to the Sun’s motion about the centre of
mass of the solar system. These torques will depend upon the orbital motions of
the planets, whose configurations are known to have some dominant periodicities
common to sunspot activity (eg. review by Seymure, Willmott, and Turner, 1992)
and to the solar differential rotation (Javaraiah and Gokhale, 1994). However, the
energetics of such a mechanism need to be worked out.
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