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TEMPORAL BEHAVIOUR OF PRESSURE IN SOLAR CORONAL
LOOPS
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Abstract. The temporal evolution of pressure in solar coronal loops is studied using the ideal theory
of magnetohydrodynamic turbulence in cylindrical geometry. The velocity and the magnetic fields are
expanded in terms of the Chandrasekhar—Kendall (C—K) functions. The three-mode representation
of the velocity and the magnetic fields submits to the investigation of chaos. When the initial
values of the velocity and the magnetic field coefficients are very nearly equal, the system shows
periodicities. For randomly chosen initial values of these parameters, the evolution of the velocity
and the magnetic fields is nonlinear and chaotic. The consequent plasma pressure is determined in the
linear and nonlinear regimes. The evidence for the existence of chaos is established by evaluating the
invariant correlation dimension of the attractor D5, a fractal value of which indicates the existence
of deterministic chaos.

1. Introduction

It is well known that loops are the dominant structures in the higher levels of the
solar atmosphere. Even though our knowledge of loops has been greatly enhanced
in recent years as a result of observations in UV, EUV, and X-ray wavelengths
(Foukal, 1978; Levine and Withbroe, 1977; Vaiana and Rosner, 1978), we have
little empirical knowledge of the nature of the coronal magnetic field. Therefore a
discussion of the relationship between coronal loops and coronal magnetic fields
depends heavily on theoretical models.

Coronal loops exhibit a fairly stable and well-configured geometry in spite of
the magnetic and velocity field fluctuations in the plasma.Such a steady state is
the result of various manifestations of the balance of inertial and magnetic forces.
Using the statistical theory of incompressible magnetohydrodynamic turbulence,
discussed by Montgomery, Turner, and Vahala (1978), a steady-state model of
active region coronal loops was discussed by Krishan (1983a, b). Krishan (1985),
Krishan, Berger, and Priest (1988) discussed the dynamics of velocity and magnetic
fields in coronal loops. A Vlasov—Maxwell description of coronal loops deriving
particle velocity distribution functions in an inhomogeneous plasma has been given
by Krishan, Sreedharan, and Mahajan (1991).

Recently Sreedharan et al. (1992) have studied the steady state structure of the
pressure in coronal loops by representing the velocity and magnetic fields as the
superposition of three Chandrasekhar—Kendall (C-K) functions. They discussed

* Permanent address: Department of Physics, Mount Carmel College, Bangalore, 560 052, India.
** Cochin University of Science and Technology, Cochin, 682 022, India.

Solar Physics 157: 121-133, 1995.
© 1995 Kluwer Academic Publishers. Printed in Belgium.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995SoPh..157..121S

55GPH; 1157 JIZUST

&

122 K. SASIDHARAN ET AL.

in detail the three-dimensional spatial variation (r, 8, 2) of the plasma pressure in
coronal loops.

In this paper we extend the results obtained by Sreedharan et al. (1992) to include
the time dependence of velocity, magnetic field and pressure and study their evo-
lution. Since the evolution equations are coupled and nonlinear, the dependence
of their solutions on the initial conditions is expected to reveal chaotic behavior.
Towards this end, we investigate in this paper the existence of chaos in the evo-
lution of pressure in coronal loops by studying the power spectrum of the data
generated by the solution of the MHD equations and by evaluating the invariant
dimension, especially the second order correlation dimension of the attractor D,
of the system.

In the next section we derive the pressure profile for an incompressible fluid
using MHD equations. In Section 3 we give a discussion of the various aspects
of dynamics of the system by taking (i) the linear case, (ii) the pump approxi-
mation, and (iii) the full set of nonlinear coupled equations and the existence of
deterministic chaos by evaluating the second-order correlation dimension which
is an invariant parameter of the chaotic system. In this evaluation, we obtain the
following information: (a) Is there an attractor and if there exists one, is it regular
or strange? (b) Is there only a single attractor or are there more than one? (c) What
is the embedding dimension so that in describing nonlinear processes characterized
by the set of given equations, what should be the dimensions of the phase space
to describe the dynamics of the system. We follow the algorithm that has been
proposed by Grassberger and Proccacia (1983). Section 4 deals with the discussion
of results of the temporal variations and chaotic behavior of the pressure profile.

2. The Pressure Profile

The pressure profile for an incompressible fluid can be expressed as a function of
velocity V' and magnetic field B using MHD equations

VP (VxB)xB _ —— 0V
_ .o 1
p p (V-V)v TR (1a)
VxVxB) -8 _¢ (1b)
ot
V-V=0 and P =nkT, (1c)

where P is the mechanical pressure, n is the number density of particles, k is
Boltzmann’s constant, and 7 is the temperature. The loop plasma is represented by
a cylindrical column of length L and radius R. p is the mass density and the force
due to gravity is neglected. The set of Equations (1a), (1b), and (1c) form a closed
set of equations in the variables (V, B, p, and T').

Equation (1a) can be manipulated to yield
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—(P 1 (VxB)xB ,— —.  —| oV
V(- —Vz) = ~(VxV)xV| - =. 2

The velocity field, V, and magnetic field, B, can be represented as a superposition of
the Chandrasekhar—Kendall functions following Montgomery, Turner, and Vahala
(1978). In this study we consider a triple-mode system for the velocity, V, and

magnetic field, B, written as

V=Y Xxm(t)4, 3)
i1=a,b,c,

B= > Né&(t)4;, “)
1=a,b,c,

an = nmanmCT) . (4a)

Chm is the normalizing constant and [ Z:m . Zn/,m:, d&3r = 8pnt, b, Where

e i e L
+é, {A%—';T;ﬁ] T (4b)
Yom = Jm(Ynmr) exp(imb + ik, 2) ,
Anm = (V2 + E2)Y? kn =2mwn/L
n=0, Fl, F2, ..., m=0, F1, F2, ... .

The functions @y, satisfy V X @nm = Apm@nm - Yam and can be determined
from the boundary conditions (Sreedharan et al., 1992). 7; and &; are in general
complex.

The dynamics can be described by taking the inner products of the curl of
Equations (1a) and 1(b) with A,  and integrating over the volume. The resulting
six complex, coupled, nonlinear ordinary differential equations are

d a A AC
ch = —f\a—()\c — Xo)I[mene — Evée/p] )
d'f]b /\c)‘a

_ _ *[, % _* 6
at N (Aa = AL [2ma — Ec€a/p] ©
d c AaA * % *
—d%— = \ b()\b - )\a)-[ [7)a77b - ébga/p] 3 (7)
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Lo NoAclmée — el ®)
A AL I — 2], ©)
dftf = Aa AT [n585 — 158a] (10)

where I = [ A, - (A, x A,)d*r and the (n, m) values of the modes (a, b, c)
satisfy the conditig_n Ng = Np + N and m, = my + m.. Equation (2) with the
representation of V' and B given in Equations (3) and (4) can be manipulated to
yield

=(P 1 )
V<—+§ )IEDD Az')\ﬂlmin'Aj> = 2 Ad( = A

p i=a,b,c j=a,b,c ?:Z,b,c
J1=9¢a
3 o 8n; . —
v <€p€a —77i77j> Ax ) - 3 ENE. (11)

i=a,b,c

The expansion coefficients 7; and ¢; can be solved numerically from the dynamical
equations (5)—(10) which when substituted in Equation (11) determine pressure as
a function of space and time.

3. Dynamical Aspects

The temporal evolution of the pressure is presented for a cylindrical plasma column
of length ‘L’ and radius ‘R’. The ratio of the toroidal to poloidal magnetic flux,
¥(t)/1(p) is taken as 1. We have chosen the triads a, b, c to represent the largest
possible spatial scales and also satisfy the condition a = b+ ¢, as a = (1, 1),
b= (1, 0), c = (0, 1). Corresponding values of ; and ); are found to be v, R =
3.23, R =3.85,v.R =3.85, \,R = 3.29, \p,R = 3.90, A\ R = 3.85 for a rigid
boundary as described in Sreedharan et al. (1992). The total energy, E, of the loop
plasma in a given configuration (a, b, c) is given by

E=2 > MNm?+¢2).

i=a,b,c

There is no obvious way of fixing the relative magnitudes of the three modes even
though we have some estimates of the total energy of a typical loop.

There are two physical situations under which Equations (5)—(10) can be solved
analytically. (i) The linear case, (ii) the pump approximation.
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Fig. 1. Temporal evolution of pressure P(t) at an axial point of the coronal loop when the initial
values of the velocity and magnetic field coefficients are very nearly equal.

(i) THE LINEAR CASE

Here we study the time evolution of the small deviations of the velocity and
magnetic fields from their equilibrium values, i.e., we assume = 19 + 71, £ =
&o + &1 and that 9 = &y and 71 <K 79, &1 K & for all modes. Assuming that
both 7, (¢) and &1 (¢) have time dependence through e, we can obtain a dispersion
relation whose solution is

s = q:i lIl [)‘%(/\b - )‘c - /\a)z |77b0|2 + A%()‘c - )‘a - Ab)z |77c0|2_
_)‘2()% P )\c)z |77a0|2]1/2 .

Thus the system exhibits marginal stability since the perturbed quantities have
sinusoidal oscillations with a period which depends upon the equilibrium values
of the fields.

Figure 1 shows the time variation of pressure for the initial values of 7; and &;
as follows:

Ina] = 1.0, || = 2.0, In.| = 3.0,

lé-al = 1‘1 I Igbl - 2'1 9 |£c| - 3.1 .
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Fig. 2. The power spectrum [S(w) — (constant) limg—oo 77" | fOT e~ ** P(t) dt|*] corresponding
to the time variation of pressure shown in Figure 1.

The corresponding power spectrum is shown in Figure 2. This discrete spectrum
clearly indicates that the pressure profile has a finite number of frequencies when
the magnitude of the velocity and magnetic fields are approximately equal initially.
This marginal stability exists only for the time scales for which the linearisation is
valid. The Skylab, UV and microwave observations do indicate that the loops are
in a state of quasi periodic pulsations (Aschwanden, 1987).

(i) THE PUMP APPROXIMATION

In the pump approximation, one of the three modes is taken to be the strongest. For
example, here, since the conservation condition gives a = b+ ¢, we can take ‘a’ to
be the dominant mode and call it the pump which shares its energy with the other
two modes. The time evolution of the two modes does not produce any significant
change in the pump mode, and hence we can neglect all time variations in (7, &)
The system of six equations (5)—(10) therefore reduces to four (Equations (5) and
(8) are automatically satisfied under the pump approximation since both sides of
the equations are vanishingly small) with the additional assumption 7, = £, and
takes the following simplified form which can be solved analytically:

dm _ Acka
dt Ap

(/\a - /\c)I*[U: - 5:]77a ) (12)
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dT’C _ )\G.)\b % * *

dr X, (Ao = A) ™[5 ~ &M
dgb * *

dt - )‘ /\ I [nc fc]na )

dfc * *

5 = A€~ 1Ina

Complex conjugates of Equation (13) and (15) give

dn. A

= Xy — ) [y — *
dt Ac ( b ) [77b gb]na Y
gy «
5 = Aa XL & — many

and the difference of Equations (16) and (17) gives

ar dE Ao

dt dt = /\c Ina[)‘b—)\a"‘)‘C](nb_fb)'

A time derivation of Equation (12) can be written as

127
(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

&y
dz )‘2 |I|2 |77al (Aa =) (Ao = Aa + Ac) (s — &) -
We have used Equation (18) in writing (19). In a similar manner we can write the
equation for d?./dt2.
One can therefore write these equations as
d27p
— =P P.
ETs) 1M + L2,
d?7 / /
2 = et By,
where
£ = Ab ( ) In = g — Mf
S W b) b = 70 " 50
Ac (A = Aa)
c = - c — Ic 3 I — /¢ C
5 ()\a_)\b)(n ) 770+ /\c €0

P = )\(21(>\a — X — >\c)2 ‘I|2 ‘na|2 ,

Py= 220 — Ao — A P 1) I
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P =Py,
Py = A2 Ae(Aa = o — M) I na] L .
Integrating Equations (20) and (21) we get

nber\/p_lt%—Be\/p—lt—@
P1
/
e = QeVPrt 4 Revrit _ P2
P1

where A, B, (), R are to be determined by the initial conditions. This shows that
all the four field coefficients, n;, &b, 7¢, &, €xhibit growing and decaying modes.
This is understandable since there is an infinite capacity pump mode 7,, £, in the
system at the expense of which 7, &, 1, £ are growing. Thus in the case of the
pump approximation analytical solutions to the system can be found.

(iii) CHAOS IN THE SYSTEM

Equations (5)—(10) are a set of six ordinary, first-order differential equations which
are highly nonlinear. It may further be realized that the velocity (n;) and magnetic
field (¢;) components are motion — characteristic of MHD equations. These equa-
tions in principle can be seen as equivalent to one ordinary sixth order differential
equation which will manifest all the nonlinearities and therefore may lead to chaot-
ic dynamics. To investigate this aspect we first determine the power spectrum of
the system. A broad-band power spectrum is a sure indication of the existence of
chaos in the dynamics. An insight into the chaotic system can be obtained by deter-
mining the invariant parameters such as correlation dimensions, D;, Kolmogorov
entropies, K;, Lyapunov exponents, etc., which are all infinite in number. How-
ever, it has been shown that of the infinite number of the correlation dimensions
and Kolmogorov information entropies, the second-order quantities are the most
significant ones, and hence we shall determine D; in the present analysis. We shall
postpone the determination of K; and Lyapunov exponents for a later occasion.
We follow in this the algorithm which was first proposed by Grassberger and Proc-
cacia (1983) and later developed by Atmanspacher and Schinegraber (1986) and
Abraham et al. (1986).

Let {Xo(¢)} be the original time series with the data being taken at constant
intervals. These data set can be rearranged so as to get (d — 1) additional data sets
as

Xo(t1), ..., Xo(tn),

Xo(tl + At), ceey Xo(tN + At),
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Xo(t + dAt), ..., Xo(ty + dAt).

We can consider the transpose of the above matrix as consisting of /V vectors having
d components in a d-dimensional space. The general vector can be written

X; = (Xo(tl), ey X()(ti + dAt)) ,

wherei = 1, ..., N and X is a point in the constructed d-dimensional space. We
now evaluate the correlation function

. 1 R
Cd(r):]\}gnoo_ﬁi Z Q(T—IXZ'—X]'D,
1,7=1,N

where 0 is the Heaviside function defined as §(z) = O for x < 0 and unity for
x > 0. This implies that if the absolute value of the vector difference | X; — X
1s less than 7, we count it as unity, and it is zero if it is greater than r. We then
construct the small boxes of side r in phase space and count the vector tips that

lie in this box. This is called box counting. It is shown that as r becomes smaller
Cyq(r) ~ r¥ so that

log Cy(r) ~ viogr .

Asr — 0 and d — o0, v takes a definite value which is called the second-order
correlation dimension and we get

Dy = lim 28%r)
i 1o8(r)

The correlation integral C'(r) has to be calculated for several values of r with

tespect to each particular dimension, d, of the constructed phase space. For each

dimension, d, one obtains a log Cy(r) vs log(r) curve and the slope, v, of the linear
part of the curve can be obtained using a least-square fit. If the slope, v, converges
towards a finite value for higher values of d, this value is denoted by D,. When D,
is an integer, the system is regular and when it is a fractal the system is chaotic.
We have numerically solved Equations (5)—(10) for arbitrary initial values of
the field coefficients. The time evolution of pressure at an axial point of the loop
for initial values (|n,| = 4.0, |ns| = 7.0, |n.| = 10.0, |¢, = 8.0|, |&| = 11.0,
|€.| = 14.0) is shown in Figure 3. The time variation is highly complex. The
corresponding power spectrum is shown in Figure 4. The spectrum is fluctuating and
broad band, indicating the presence of chaos. A data set of 500 points corresponding
to this chaotic evolution of pressure is used to evaluate the information dimension-
D5,-by the method described above. In Figure 5, we illustrate the converging slope,
and the value of D, is found to be 1.732. With the same initial conditions, D, was
evaluated at a surface point and the slope does not seem to converge to a limiting
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Fig. 3. Time variation of pressure at an axial point of the loop when the initial values of the field
coefficients 74, 7, 7 are much different from those of &,, &, &., respectively.

3600.00 T n x T T T T T
2880.00 .

2160.00¢ .

~—~
3
)

1440.00

————
L

720.00H .

0.00 2.60 3.90 5.20 l - 6.50
FREQUENCY (w)

Fig. 4. Power spectrum S(w) corresponding to the time variation of pressure shown in Figure 3.
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value. This is shown in Figure 6. The fractal value of D, evidences the existence
of deterministic chaos. In a chaotic regime the system can either dissipate to an
attractor stage or can follow a stochastic (random) flow. As the dimension, d, of
the constructed phase space increases, the slope, v, may converge to a limiting
value. In this case, the flow will be confined to a geometrical object called an
attractor. The converging value of the slope is the dimension, D;, of the attractor.
The dimension of the attractor measures the minimum number of independent
parameters needed to describe the system dynamics. In other words if D, exists,
there is a properly defined dynamical system. The steady increase of slope, v, with
d (Figure 6) evidently shows that it cannot converge and consequently the number
of degrees of freedom of the system is increasing. Then the complexity of the
system increases and it tends to a more disordered state, indicating that system
behavior is stochastic.

4. Conclusion

In the equilibrium state 1, = &4, M5 = &b, 1 = & We disturb the system slightly
from the equilibrium state and study the time evolution for a small departure from
equilibrium. In this case the system is shown to exhibit sinusoidal oscillation with
a period which depends upon the initial values of the field coefficients. In other
words, when the system is perturbed from a state where the magnetic energy,
B?/4r, and the kinetic energy, (%)m’uz, are nearly equal, it exhibits marginal
stability. The microwave and X-ray observations of coronal loops show quasi-
periodic oscillations with time scales ranging from a fraction of a second to tens
of minutes (Aschwanden, 1987, gvestka, 1994, and references therein). These
oscillations are usually interpreted in terms of magnetohydrodynamic waves in a
loop plasma (Roberts, Edwin, and Benz, 1984). The observed power spectrum of
pulsations actually exhibits a more complex behaviour (e.g., Figure 1(d) of Svestka,
1994) which appears quasi-periodic only if we ignore finer variations. Thus quasi-
periodic behaviour is expected only near equilibrium as is shown in our studies
and the linear wave analysis studies. Under large departures from equilibrium, a
loop will show a complex temporal structure which can only be described in terms
of objects with fractal dimensions in the phase space of the velocity and magnetic
field. Coronal loops being continuously subjected to external forcing through their
foot points and through their interaction with neighbouring regions are most likely
to be in a chaotic state of pressure fluctuations. Therefore, when there are large
deviations from equilibrium, i.e., for initial values of 74, 73, 7. much different from
those of §,, &p, ., T€Spectively, the system is nonlinear and so is the corresponding
time evolution of the pressure. In this case each individual mode becomes distinct,
stronger and mode-mode interaction can take place. In the pump approximation
case, since the variation of the strongest mode is negligible when compared with
other modes, the interaction is between less number of modes of oscillations, and
the system showed oscillatory behavior, whereas the chaotic behaviour is caused
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Fig.5. The slopes (v) of the linear part of the log Cy4(r) vs log(r) curves, obtained using least-squares
fits, are plotted against the dimension d of the constructed phase space. The two asymptotic values of
the slopes are 1.39 and 1.73. This corresponds to the chaotic evolution of pressure at an axial point
of the loop.

by the superposition of more than two modes of oscillation and is due to strong
nonlinear coupling between them, as is indicated in the nonlinear case above. This
fact is evident in the evaluation of D,. Figure 5 shows the determination of D,
at an axial point. It is interesting to note that we get two asymptotic values one at
1.39 and the other at 1.73. This could be interpreted as the existence of two strange
attractors with embedding spaces of dimension 7 and 18 and the trajectory can land
up on either of these attractors. The fact that these are strange attractors (because
of fractal dimension) the trajectories could jump from one to the other. This clearly
shows the complexity of the situation. The curve of slope v vs dimension d at
r = R does not show any saturation, and the curve is more or less centered on the
45° line, showing the presence of randomness or white noise as shown in Figure 6.
Thus as we proceed from the axis towards the surface, the dynamics show the
development of strange attractors ending up in complete randomness.

In Figures 5 and 6, even though the initial values of £, and 7, are the same,
those of pressure, P, at (r = 0, ¢ = 0) and at (r = R, t = 0) are not same. This
difference in Figures 5 and 6 is due to the different initial values of pressure at
axial and surface points. The transition from a strange attractor state to randomness
requires a much finer analysis, which will be investigated on a future occasion.
In conclusion, the time scale over which the system is stable or otherwise can

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995SoPh..157..121S

2
&

(o]

S6Pn: TI57. CIZATh

TEMPORAL BEHAVIOUR OF PRESSURE IN SOLAR CORONAL LOOPS 133

5.00 ' 1 T T T T T T

4.10

3.20

SLOPE VvV

2.30

1.40

0-50 L 1 I - 1 1 r 1 1
1.00 6.80 12.60 18.40 24.20 30.00

d

Fig. 6. Corresponding to the chaotic time evolution of pressure at a surface point of the loop, the
slopes (v) of the linear part of the log C4(r) vs log(r) curves are plotted against the dimension d.
The slopes do not converge to any limiting values.

be inferred only by evaluating the Lyapunov constants, which are sensitive to the
initial conditions. Inverting the problem, by specifying the Lyapunov constants,
one can possibly evaluate the class of initial states which can give the observed
lifetime of the loops.
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