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Abstract. The notion of discrete scale transformations is invoked to suggest strong links between
fundamental interactions and cosmology giving rise to a hierarchy of cosmic scales.

In recent papers (Sivaram, 1982a,b, 19864, b) it was pointed out that the cosmo-
logical parameters characterising the universe can be arrived at from microphys-
ical considerations involving the fundamental interactions of elementary particle
physics. For instance (Sivaram, 1982b, 1986a), the total baryon number (/N}) of the
universe was related to the dimensionless coupling constants, oy and a respectively
as:

-2

J2a~! A 1

Nb ~ o
where o ! = (A ¢/Gm2) = 1.694 x 10% and

al= he _ 137.036 2

ez

R, ¢, mp, G and e are respectively the Plank’s constant, the velocity of light, the
proton mass, the Newtonian gravitational constant and the electron charge. As
noted in earlier works a, =~ 1Ina~!/m ~ 14 (the pion-nucleon dimensionless
constant) and In a;' = 2/3a~'. Again o and a, are both logarithmically varying
functions of the energy E, which would be of significance in the early universe. For
instance o~ at the Z0 scale (= 100 GeV) is a5 ~ 128 described by an empirical
Gamow-Teller type of relation as:

1, _ _ 2a-1 _
g(a ! —azg) = (T —lnagl)

where ¢ is the Naperian logarithmic base.
Combined with the early universe nucleosynthesis the above results were extrap-

olated to give the present temperature of the microwave background as: (Sivaram,
1992, 1993)
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1/3
_ mpc? §Gm12> _ '
Ty = ( e ) (3 —2) =27K 3)

K p is the Boltzmann constant.

Also in another recent paper (Sivaram, 1990, 1992) the role of Weyl gravity
which is scale invariant was explored for sub-Planckian as well as macroscopic
domains and the existence of a hierarchy of scales was deduced. A fixed discrete
scale factor was used to connect the sub-Planckian and cosmological domains
giving a series of self-similar structures.

We will now elaborate a little on this approach giving some specific examples.
For continuous scale transformations we have:

Xu— T h=ex, 4

where ¢ is continuous. Considering discrete scale transformations we have gener-
ally. .

gy -z, =pfz, (n=3,2,1,0,-1,-2,-3,...) (5)

where [ can take some fixed value, say a~! = 137, or mp/me = 1838, etc.
For invariance under continuous scale transformations, given by Eq. (4), the wave
function, %, in the Dirac equation given by the Lagrangian density:

L= "E’Yya;ﬂ»b - mW'
transforms as:
P(z) = ¥ (¢') = e (ex) (6)

(since (1)) is a density of dimensions =3, 9 has dimensions {~3/2), under the
discrete scale transformations (Eq. (5)), £ transforms as:

L— L=y — (mpm)F -] M

i.e. has the same form but with m replaced by mf3™, i.e. a Dirac field with quanta
of mass m also implies existence of quanta with a mass spectrum.

Mp = MpoS" . (3
As an example we have a particle mass formula of the type:
1 = KU
M =nk [— EC]
2 e

Me )

(m, is the electron mass, n, k are integers and here 3 = Vhc/e = a~1/2, for
correspondence with Eq. (8)). Now in Sivaram (1982a) and earlier references
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therein, it was shown that Eq. (9) does give the masses of a large number of known
elementary particles, for e.g. n = 2, k = 3, gives the muon mass, n = 2, k = 4
gives the pion mass, etc. The transformations given by Eqs. (6) and (7) also apply to
a self interacting spinor field coupling to gravity for which the appropriate equation
is (Sivaram, 1979):

B [y  + (LEB )1 Brums)r*y]| =O. (10)

Here Ly is a basis length scale arising from the correlation of the spinor field in
a background gravitational field, so that here we have a discrete scale invariant
length spectrum given by: '

Ln = Lon ™. an

As an example of a possible significance of this for a hierarchy of cosmic length
scales, consider a gravitational ‘Bohr radius’ given by (for the significance, see
Sivaram (1990)):

K2 e R

— 24 ~ ‘
=Gm§,=aGm;’,c—3xw cm = 1 Mpc (12)

Rge

we use this for Lg,, in Eq. (11). As in the earlier example use 8 = « for the discrete
scale parameter. (@ = e? / k¢). Forn = 1, we have

ak? €k
L Gm?, Gmgc pe 13
For n = 2, we have:
212
a-h
L, = Gm;, ~ 50 pc. (14)
Forn=3
332
Ly=% A 10Bema 1 light — year. (15)
Gmg :

Since there is no restriction on n being positive (see Eq. (5)) for discrete scale
invariance:
R? R’c

L_y= = =137 Mpc. 16
! aGmg Gezm?, pe (16)

It is very interesting that Eqs. (12)-(16) do give the length scales of observed
ordered large scale structures in the universe! For instance Eq. (12), i.e. R = Ly,
gives the average distance between galaxies, i.e. between Andromeda and the
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Milky Way or the size scale corresponding to a cluster of galaxies. Eq. (13), i.e.
L; corresponds to the size scale of a galactic disk, i.e. for the Milky Way, it is
8 kpc; Eq. (14) i.e. L, corresponds to the size of a globular cluster or a typical star
forming region. In Eq. (15), L3 corresponds to a typical stellar separation distance
while L_; in Eq. (16) corresponds to the length scale of the largest structures
so far observed (the Great wall of Galaxies). Thus while Eqs. (8) and (9) gave a
hierarchy of particle masses, Eqs. (11)—(15) give a hierarchy of length scales in
the cosmic structure. In both cases, invariance under discrete scale transformations
being the basis and in both cases is the scale factor. Apart from «, Egs. (12)~(15),
also involve m,, while Eq. (9) involves m,, the electron mass. Egs. (1)~(3) as well
as earlier works suggest that m,/m. can be expressed in terms of oy and a,. (or
alternately in terms of the total baryon number N;. In Sivaram (1982a), we had the
relation:

mp R /mifc

me (Gp/Rc)l/? 17

where Gr is the universal Fermi weak interaction constant (>~ 1.5 x 10~ erg cm?)
and m; is the pion mass. We also had the following interesting relation:

2\
GanGMg‘,( : ) (18)

where Mp, is the planck mass ~ (% ¢/G)'/? [Note that: (a; ! = (My/m,)?)] and
gs is the strong interaction charge. Eq. (18) embodies an interrelationship between
the coupling constants of all the four fundamental interactions since as remarked
earlier %ln ag‘1 /™ = a, = 14 gives the strong pion—nucleon constant and since
mp/Mme = a,/a, (Sivaram, 1982a), we would obtain an expression for m,/m. as:

2 a—la—l
o2 (%) =2]n[ 924 } (19)
. .

1

(since Ny = a;’za‘ , we have a direct connection between m,/m,. and cosmo-

logical parameters explored in Sivaram (1986a). Eq. (19) gives for m,/m, the
numerical value of 1836.1527014, to be compared with the experimental value
1836.152701 (Cohen and Taylor, 1990) thus giving remarkable agreement to ten
significant figures! Also we have the remarkable relation:

1
5In o r =exp2a™!/3)(205) ' = 14 = q, (20)

(the pion-nucleon dimensionless constant). Also from lepton-baryon unification,
we had the remarkable identity: .

Me +my + my = mp(2 + 20+ o?) (21
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giving for the 7-lepton the mass m, = 1.784119 GeV, and m,/m, = 0.526 and
mp/m, = 8.88. Again, one must consider the variations with the energy scale, i.e.
the relation between a0 and @, (az0 = 127.98). Thus we can write: (as G has
dimension (mass)~2):

M
ooz _ e/ (mpaz)My
T = My (inog )2

giving another remarkable relation between electro weak parameters and the grav-
itational and cosmological parameter. Here Mz /My is the ratio of the W and
Z-boson masses related to the Weinberg angle by sin? 9y = (1 — M3,/M32).
Mz /Mw = 1.1415. Eq. (22) gives Gg = 1.166371 x 1075 GeV~ 2/(hc§g agree-
ing with the value obtained from the muon lee time to 6 significant figures (Cohen
and Taylor, 1990).

Let us now return to the cosmic length scales given by Eqgs. (11)-(15). It
may be argued that in these expressions instead of the quantum unit of angular
momentum h, the angular momenta of the large scale structures (e.g. galaxies)
must occur. Thus in the expression for the gravitational Bohr radius, # must
be replaced by Ji (a typical galactic angular momentum) and m,, by a typical
galactic mass, M¢. As suggested in Sivaram (1990), Jg =~ 10'® i ~ 107 ergs.
(Compare with the so called galactic Planck’s constant of (Cocke and Tifft, 1989)
to explain several velocity and red shift features!). Then for Mg ~ 108"m,,, we find
R¢p in Egs. (10) and (11) to be unchanged, i.e. the typical intergalactic distance
remains ~ 1 Mpc. Since this fundamental length scale, i.e. Lo is unchanged,
the other scales L, Lo, etc. obtained from discrete scale invariance, remain the
same. In an earlier paper Sivaram (1990), an energy dependent string tension
was invoked to connect the fundamental interaction strengths, the string tension
scalingas T'~ M2 ~ G~ 1 ~ 1/R2 Thus at the Planck scale, T = T, = 02/G
at other mass scales, M, T = Ty(M/Mpu)? or T = c2/Gesr, where Gegr =
G(Mpu/M)?, G being the Newtonian gravitational constant, corres- ponding to
M = M. At M = My, the intermediate boson mass the effective G is the
Fermi constant GF = G(MPI/MW) K2 /c2 at hadron mass scale, ~ 1 GeV ~ my,,
G = G(Mpu/Mp)? = G5 = 10%® G, the strong gravity constant and so on, the
interactions becoming effectively stronger as the mass scales decrease. The idea
that for masses below the Planck mass (= & ¢/G)"/2 ~ 2 x 1075 g), which acts as
a borderline between macro and micro worlds, the effective universal gravitational
constant increases (going as ~ M2, i.e. for M = My, it is as strong as 3-decay
and at M = M), it is as strong as strong interactions, i.e. G = Gy, etc.) is testable
in future space micro-gravity experiments. This change in G is only exclusively for
the gravitational interaction between these two masses only. i.e. when analysing
the attractive force between two such particles (say in the form of metal or dust
grain), we expect the mutual falling time (proportional to d*/2/,/Gp, where d is
the separation and p the reduced mass) to decrease respective to the Newtonian
prediction, in the case when both these particles have masses smaller than the

(22)
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Planck mass. For two particles of radii 7 and equal masses m, the Newtonian
falling time is

1 2
ity = §(d3/Gm)’/2 - §(2T3/Gm)1/2,

Compressed metallic grains of planck mass have a radius of 0.07 mm. If separated
by 0.5 mm their Newtonian falling time is ~ 30 min in a microgravity environ-
ment, i.e. exclusively due to their mutual gravitational attraction. For grains with
a hundred times lower mass, the effective G should increase to 10* the Newtonian
value (from the scaling relations used above). So for the same separation, their
mutual falling time is now ~ 3 min, ten times smaller. Such an experiment in a
microgravity space environment, well shielded and controlled with a high preci-
sion from electromagnetic perturbations or earth gravity gradients may be within
present or near future feasibility limits. If the mutual gravitational interaction of
such sub-planck masses is found to be very different in such experiments from the
conventional Newtonian behaviour, there would be a need to have drastic revision
of our ideas of uniting gravity with other interactions and of the nature of gravity
itself.

In Sivaram (1990), the scaling law G ~ M=% ~ R2, for all energy scales,
M < Mpjanck Was understood in terms of an energy dependent string tension. The
constancy of A for such scales (in MCR ~ R) would imply that as the string
is stretched (R is increased) we have a M ~ 1/R relation, and since this M is
now distributed over a larger R, the tension T scales as M? (or equivalently as
T — c2/Gesr, Where Gegg ~ 1/M 2). At the Fermi (-decay scale, the effective
strong gravitational constant is (Gefr)weak — G pic?/ B? giving an electro-weak
string tension of Ty = ¢2/(Geft)weak = B> /GF or in energy units, i.e. ergcm™!
of ’

Ty = ——— | (23)

(Gr has dimensions of ergcm?). At the Planck scale, Gesr = G the usual New-
tonian constant, the corresponding ‘gravitational’ Fermi constant being (Gg), =
GR? /C? = 6 x 10~ ergcm?, giving the relative strengths of gravitational and
weak interactions as

~ (Gp)g/Gr ~ 4 x 107, (24)
The corresponding string tension is
Z R :
Ty= == ——. 25
pl G (GF)g (25)

The above approach suggests a novel way of looking at the these results. The
different strengths of the various interactions as measured by the ‘equivalent G’
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arises from the distribution of the same universal quantum coupling constant & ¢
distributed over regions of space time of different surface areas.
Thus the product (h cx area) gives the effective ‘Fermi constant’ Gg(esry. Thus

if the area is the square of the beta decay length, (Gg/hc)!/2, then i cx area = Gp,
the Fermi beta decay constant. If the area is the square of the Planck length, then
R cx area = (Gp),, giving the Newtonian constant as expressed in Eq. (24). so the
interaction gets effectively stronger as (GF)efr, increases as the area over which
the universal charge % c is distributed gets larger. Thus for strong interactions, the
area is the (proton Compton length)? giving (GE)swong = 10°GF, giving the typical
strong interaction g2/ k¢ ~ 1. (1073 for weak, 10738 for gravitation and so on

(Eq. (25)).
Thus in general
Rcx area = (Gg)efr (26)

Now using Eq. (23) for the string tension in Eq. (26) we have
kR
e T,
area

or since curvature ~ 1/area (of a surface) we have

k¢ x curvature = T (27)
or
T
——— = constant hc.
curvature

Thus, the highest curvature (¢3/ B G = 10% cm~2, Sivaram, 1986b) is associated
with the maximum string tension of Tp = ¢?/G from Eq. (28). Thus the universality
of i c combined with just the geometry of space time through the curvature,
gives rises to different string tensions and consequently to interactions of different
strength! (Sivaram, 1990). We also note that in Klein—Kaluza theories, a magnetic
moment due to the extra dimension is introduced as:

k
p==V Getr = 1/ (GF)est (28)

Thus (Gp);{f2 has the dimensions of magnetic moment! Thus for the distribution
of the universal h ¢ over a proton Compton wavelength, the induced magnetic
moment is

R
ps = (he x area)l/Z = cV Gy= (GF)l/zstrong =
= 9 x 1072 esu = proton magnetic moment! (29)

The smallest magnetic moment in this picture would be when hcx area is the
smallest, i.e. when the area is smallest say of (Planck length)® Then the magnetic
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moment is g = £ /c VG = 8 x 1074 ~ 1072y g (up is the Bohr magneton).
Eqgs. (27), (28) and (29) now enable us to understand what happens to the relation
R c x area = (GF)es for macroscopic objects > Mpjanck. Here we would replace
(R c) in Eqgs. (29) and (30) by Jv, where J is the angular momentum and v < ¢, a
typical velocity (e.g. intrinsic rotational speed) of the object. This then would give
the object of area ~ (4w R?), an effective magnetic moment as given by Eq. (30)
of:

p = (JvdnR?)'/? (30)

and since p = BR? where B is the magnetic field we have a typical magnetic field
associated with the body as:

B = (4uJV)\/2|R2, | @31)

For the a typical galaxy where as seen above J ~ 101%® f, v ~ 10~3¢, R =~ 8 kpc,
we have B &~ 1076 Gauss and so on for other celestial objects. Eq. (31) embodies
the old Blackett type relation. Thus the progressive increase of Gegr or (Gg)esr
scaling as R? or as ~ 1/M? for all R > Ly or M > M, is now interpreted as
resulting in a magnetic moment for macroscopic objects, scaling as J'/2R. For
sub-Planckian scales as noted in Sivaram (1990), G is constant, so the magnetic
moment remains at its minimal value ~ K /c\/Gegr ~ 6 X 1042, We have thus
a unified frame work for describing scales from sub-Planckian to super galactic
clusters.
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