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Abstract, We present here rigorous analytical solutions for the
Boltzmann-Poisson equation concerning the distribution of stars above
the galactic plane. The number density of stars is considered to follow a
behaviour n(m,0) ~ H(m — my)m™>, where m is the mass of a star and x an
arbitrary exponent greater than 2 and also the velocity dispersion of the
stars is assumed to behave as (v2(m)» ~ m~? the exponent 8 being arbitrary
and positive. It is shown that an analytic expression can be found for the
gravitational field K, in terms of confluent hypergeometric functions, the
limiting trends being K, ~ z for z— 0, while K, —» constant for z — infinity.
We also study the behaviour of {|z(m)|?), i.e. the dispersion of the distance
from the galactic disc for the stars of mass m. It is seen that the quantity
{lzm)|*> ~m™%, for m— oo, while it departs significantly from this
harmonic oscillator behaviour for stars of lighter masses. It is suggested
that observation of {|z(m)|®) can be used as a probe to find x and hence
obtain information about the mass spectrum.
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1. Introduction

The vertical distribution of stars (i.e. in the z-direction) above the galactic plane
requires the solution of the Boltzman equation for the distribution function,
self-consistent with the Poisson equation for the gravitational potential. The solution
is expected to be quite sensitive to the velocity dispersion spectrum <v?(m)) and the
mass dispersion, n(m), —the stars being considered to have different masses. This
contention is justified because the ditribution of masses in phase space is decided by
the velocity dispersion (v?(m))> and the gravitational potential ¢(z), where the
calculation of ¢(z) is again decided by the mass spectrum and the distribution of the
masses in phase space. This self consistency condition, as stated above, serves as the
motivation for the present study, concerning the effect of mass spectrum and velocity
dispersion on the vertical distribution of stars above the galactic plane.

The solutions given below, are consistent under the assumption of Gaussian velocity

~ dispersion, with the quantity {v?(m)) assumed to be independent of z (Bahcall 1984a,

1984b). The important assumptions in our theory are:
(1) The mass spectrum follows the law: |
n(m, 0) ~ H(m — mo)(m/mo) > 5

with x > 2, where n(m, 0) is the number of stars per unit volume per unit mass interval
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in a cylindrical volume of infinitesimal thicknhess around the galactic plane and
H(m — m,) is the Heaviside unit step function.
(2) The velocity dispersion follows:

Jo(m)*> ~m™, )

which we derive from the idea of random walk of the stars in the velocity space,
under the influence of rapidly fluctuating forces (Wielen 1977). The m dependence of
{|v(m)|®>, as given in (2) arises by incorporating the assumption that the velocity
diffusion takes place roughly over a time scale which is a small fraction of the lifetime
of the stars, the lifetime being m-dependent.

The solutions given below are exact, in the sense they are non-perturbative. They are
seen to have sensitive dependence on x and 6. In the limit x — oo, i.e. stars are of the
same mass m,, we recover the well-known Spitzer formula (Spitzer 1944). The present
work elegantly takes into account the uniform variation of the masses. The existing
solutions, on the other hand, divide the masses as majority and minority components,
such that all the stars in the majority lot have the same mass, while those in the
minority lot also have the same mass. Their starting point is to take a Spitzer-type
solution with the majority masses alone and then to use the rest of the masses as
perturbations. In contrast, our scheme is non-perturbative and the method can be
extended to any collection of different species, provided any i-th lot has a mass
spectrum n;(m, 0) ~ (m/m;)™*, and the velocity spectrum {|v;(m)|*> ~ m; ®. Finally, we
calculate the dispersion <|z(m)|*) in the position of the stars. We find that it goes as
m~°, for (m/my)— oo, the exact variation being dependent on 6 and x.

2. Theory
2.1 The Collisionless Boltzmann Equation
The distribution function f(z,v,t) is known to follow the collisionless Boltzmann
equation in one dimension (here the z-direction).
[0/0t + v0/0z + (F + F)o/ov] f =0, 3)

where F denotes a slowly varying acceleration and F; a fast varying acceleration on
the particle.
Let us consider F; to have a correlation:

(Fe(t)Fe(t)) = |Fel*exp(— |t —t'|/7o). (4)
Defining t =t/1,, Equation (3) can be written as
. [0/0t + 1o F¢(7)0/0v]f + 14(v0/0z + F,0/0v) f =0. (5

Considering 7,—0, |F¢ty| > constant, but for the term in the parentheses in
Equation (5) to be finite, we can identify the powers of 7, on both sides of Equation (5)
and equate each of the terms in (5) to zero (Van Kampen 1985). Thus

[6/0t + F,(£)0/6v] f =0, (5.1)
(v8/dz + F 8/dv] f = 0. (5.2)
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This enables us to write:

f(t,2,0) = f1(t,0) f2(z, ). (6)
From (6) and (5.1), we get, |
of /0t = —iF()pf1, (M
where :
p= —io/ov.
We now expand f, in terms of the eigenfunctions of p and write,
f1=2Ya(p,t)exp(ipv), ®)
so that (7) yields,
(0/0t)a(p,t) = — i Fe(t)p a(p, t). )

The quantity F(t) being a random variable, we have on an average (Van Kampen
1973), for (t/t4) > 1,

(0/0)<alp, 1)) = — p* [jw de<F(@O)F (t’)>]<a(P, £). (10)

Consideringr the correlation in Fy(t) to follow the form given in (4), we have the
solution of (10) to be,

<a(p, 1)) = a(p, 0)exp(— |F¢[*7otp?). (11)
The coefficient a(p,0) has to be found from the initial condition, '
N f1(0,0)=6(v —vo), (12)
giving ' ‘
a(p,0) = exp(—ipvo). (13)
. Hence ‘
f10,0)=[/ndv()]~*exp[ — (v — vo)?/[Sv(t) 1], (14)
where

dv(t) = [IF¢|*rot]"/2.

This shows,

' {v) =1, ,
and \
| (v =10)*> = 2(3v(t))*. (15)
Further the initial velocity v, is assumed to be a Gaussian:
f(vo) = [mao]™ 2exp(— v3/a3), (16)
so that averaging f(v,t) over all possible v,’s we get,
f10,8) = [r<? () > ]~ 2exp(— 02 /2<0*(1))), (17)
where
V() = aj + 2(3v(1))%, \ (18)

which is Wielen’s formula (Wielen 1977), obtained using the Central Limit Theorem.
Similar problems have also been tried by Spitzer & Schwarszchild (1951, 1953) and
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Lacey (1984), by considering the velocity relaxation to be dependent on the kinetic
energy of the particle.

Equation (17) and (18) describe the fast varying part of the distribution function.
The slowly varying part follows equation (5.2), which is written ag

(v0/62)f = (0¢/0z)(0/dv)f, (19)
¢(z) being the slowly varying part of the potential ie. the part arising due to the
distribution of stellar masses (F; = — 0¢/0z). Thus putting f = f; (v, 1) f,(z,v), as given
in (6) and substituting f(v,¢t) from (17) in (19), we have,

f2(2) = exp(— ¢/<p2())).

Hence

f(z0,0) ~ [r<v?(1) > 1™ 2 exp(— v?/2<v* (1) ))-exp(— ¢/<v*(1))) (20)

so that averaging over all velocities v we obtain,

f(z,t) ~ exp(— ¢/<v* (1)) 21)
which is also the starting point of Bahcall’s calculation (Bahcall 1984a, 1984b).

2.2 Mass Dependence of the Velocity Dispersion

The velocity dispersion {(v2(t)))> given in (18) depends upon the time ¢t spent by the
masses in the field of the random forces. This time ¢ depends upon the lifetime of the
stars, which thus yields a mass dependence in the velocity dispersion {(v%()). We
know, the mass consumption is related to the luminosity L(m) as,

c*(dm/dt) = — L(m)= — L(m/m)°**. (22)

The exponent 6 is known to be nearly 2.0 for main sequence stars. Following
Wielen (1977), we consider, the stars to have spent nearly half their lifetime on the
main sequence. This yields.

t(m) = (c2/2L,) r'gm dm/(m/m,,)**!

= (mgc? /L 0)(my/m)P. (23)
Thus

(v*(m)> = 03 + C,(myc? /Lo *)mg, /m)’ (24)

giving a mass dependence of the velocity dispersion, with C, = 2|F;|*1,. Substituting
my, = 1.9892 x 10%? gms, L =3.8268 x 103 ergsec™! and values from Wielen (1977)
C,=6x 10" "(kms~!)?/year and o2 = 10*2(cm/sec)?, we find that the first term can
be neglected for (m/m_) < 500, if @ = 2. Thus for all practical purposes, we can use,

v (m)d =(am®)™! (25)
where

1/ = (Cymg c?)/(Ly ).

The mass dependence of the velocity dispersion as given in (24) and (25) is an indirect
one, being decided by the time t(m) spent by the star in the random force field, where
©(m) is decided by the mass-consumption rate. The mass-luminosity formula L(m) ~ m®,
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makes 7(m) ~ m~° and hence Equation (24) results. For higher 7(m), hence for lower
masses, (24) approximates (25) but deviations from (25) would result if (m/m) > 500
i.e. for very massive stars. However, these stars being very few in number, contribute
little to the total mass density and hence the discrepancy between (24) and (25) would
not show up in the calculations that follow. Also (18) has good observational support
for old stars (Wielen 1977; Wielen & Fuchs 1989), from which we indirectly conclude
that light stars which live longer will follow (24) more closely. It should also be kept
in mind that the exponent 0 is mass dependent, but on an average has a value ~ 2
for low mass stars. However, for the problem at hand, the variation of 8(m) with m
does not have severe effects as is explained in section 2.3.

2.3 Solution of the Poisson Equation with Mass Spectrum and Velocity Dispersion

- We use the above input to solve the Poisson equation. Here we introduce the mass
- spectrum as given in (1) as another important input. We consider the system to consist

of v different “lots” such that the mass spectrum for any i-th lot is:

ny(m,0) = H(m — m)n;mi* ™! (x; — m ™™ (26)
and each has a velocity dispersion |
CvE (m)) = (am)™* 27)

where
i=012...(v—-1).

The choice of the exponent x; depends upon the present-day mass function of the
stars and other matter. Further, we consider that at any subsequent epoch, the total
birthrate of stars contributes weakly to the total mass density. One would then
expect the mid-plane number density to follow a scaling law as is given by (26). If
the time elapsed after the birth of the stars be much smaller than the main-sequence
lifetime of the stars, then x; can be found from the initial mass function and the
mass-luminosity relation for the main sequence.
Thus the mass density at the galactic plane for any i-th lot is given by:

pi(0) = nym;(x; — 1)/(x; — 2). . (28)

This shows that the above choice of the mass-spectrum is valid for x; > 2, lest there
be divergence in the mass density in the galactic plane. This divergence problem can
be eliminated by putting an upper cut-off for the mass. This is a trivial exercise as
far as the method of our solution is concerned and is important only if x; < 2.

The Poisson equation is then given by:

(d2¢/dz?) = 4nG (vil) nym, [ (x; — DA(x; — 2)] J‘w m~*mdmexp(— pam?), (29)
i=0 my

where we have used,

ny(m, z) = n,(m, 0) exp(— ¢/<v?(m)>). (30)

It is to be noted, however, that the exponent 6 varies with mass (Lang 1974). However,
being a Laplace type integral, the method of steepest descent shows that the integral
in (29) will have much larger contributions for low m values and hence the error

© Indian Academy of Sciences * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991JApA...12..269C

T o127 CZ69Th

913 AgA:

rt

274 S. Chatterjee

involved in neglecting the variation in 6(m) will be insignificant (Jeffereys 1962; Olver
1974). The other alternative would be to treat 6; as a free parameter. However, this
exercise would still make 6; have a large weightage close to that for low value of m.
Hence, in the following, we proceed with our calculations by putting 6, as a constant,
to be chosen as that for the low mass stars.

Multiplying both sides of (29) by 2(d¢/dz) and integrating, we have

@8/ =876 3. piOm =[x~ D]

X jw [1 —exp(— ¢pa;m®)]-m! ~*dm (31)
with the boundary conditions (d¢/dz) =0 and ¢ =0 at z=0.
Defining:
z} = [4nG p,(0)(x;m)] ™" (32.1)
n=(aomo)™, ‘ (32.2)
& = (mf*a,)/(mg° o) (32.3)
Bi=1z5/(z}el) (32.4)
X =12/2¢ (32.5)

we can easily integrate (31) (Gradsteyn & Ryzhik 1980) as
() '
(dn/dy)* =2 iZo Bil(x; = 2)/(x; + 6, — 2)1[1 — [(x; + 6, — 2)/6,]
x exp(—&mU(1,s;,€1)] (33)

8; = (2 — x;)/6;.

U(a,b,z) is a cqﬁﬂuent hypergeometric series (Abramowicz & Stegun 1965).

where

3. Special cases

(1) Low yx limits.

In this limit, the series expansion of (33) in terms of g7 —0 gives,

(v-1)
(dﬂ/dX)z =2 i=20 Biein
ie.
(d¢/dz)?> = 8nGp(0)¢ (34)
where
(v=1)

pO)= 3 pi0)

i=0

is the total density at the galactic plane.
Hence,

¢ ~ 27Gp(0)2* (35)

giving a quadratic dependence on height, in this limit.
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(2) High y limit.

Expansion of (33) for ¢;n— oo yields

@z =25, A= Do+ 0=
or

(v=1)
(d¢/dz)’ = 8G i;‘) pi(0)<vf (my) > (x; — 2)/(x; + 6, — 1). (36)

This shows an interplay between the mass density p,(0) and the velocity dispersion
(v}(m;)) of the different species. The right hand side of Equation (36) is however,
independent of #. Hence, in this limit, we get, ¢ oc z, signifying a uniform gravitational
field directed towards the mid-plane.

(3) All masses equal.

This corresponds to the case & = 6, o, p; = P90, 50 that B; =8, o and xo— 0.
In this limit (see Abramowicz & Stegun 1965) we have

U(1,s;,801) = 0o/(x0 + 65 — 2) (37
so that Equation (33) reduces to
dn/dz)* =2(1—e™") (38

‘ whose solution is the well known result obtained by Spitzer (1942),
ie. ‘

n=2lnch (y/\/2)
and hence
| p(2) = p(0)e ™" = p(0) sech?(y/,/2).
(4) Dispersion in the position of the particles.

This quantity <z?(m)) is calculated from

{zi(m))> = 1(2)/1(0) : (39)
where
12)= J'o z2exp(— ¢/<vi(m)))dz

and

10)= f : exp(— /<vH(m)>)dz,

i denoting the lot referred to.

In the limit (m/m,;) = oo, the term exp(— ¢/{v?(m))) becomes very small at all points
other than the points very close to the origin. Here ¢ ~ z2, as given in (35) so that
the integrals in (39) yield,

film) = (m/my)P (23 (m)y/<22 ) (40)

which tends to 1 as (m/m;)— oo, but goes to higher values as (m/m;)— 1, z, being a
scale height.
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(5) Mass M(z) contained between z=0 and z = z.

By definition,

M(z)= JZ p(z)dz
0

= (4nG) 'K, (41)

where K, = (d¢/dz) is the magnitude of the gravitational field. Obviously, K, ~ (0n/0y)
which is calculated from (33). It is easily seen from (34), (36) that M(z) ~ z for z much
smaller than the scale height z, and M(z) tending to a constant for z far beyond the
scale height.

4. Conclusions

The present paper gives a detailed calculation of the distribution of mass above the
galactic plane for any arbitrary mass distribution as given in (1) and velocity
distribution as given in (25). The solutions are exact and valid for the presence of any
arbitrary number of species, i =0, 1, 2,...(v — 1), some of which may be referred to as
halo. Another hypothesis that has appeared is that the Gaussian velocity distribution
is valid and the collisionless Boltzmann equation, in presence of fast varying random

‘external forces gives the velocity dispersion as given by Wielen (1977). In Figs 1-6

we have investigated the manifestation of these results for a single species system i.e.

"y =1, for the values x, = 2.3, 2.4 and 20, while 0, = 2 (i.e. main sequence case) and 1.

The values x,=2.3, 2.4 are chosen in accordance with Salpeter’s initial mass
function (Salpeter 1955) and the case x, = 20 corresponds to a case with a very weak
mass dispersion spectrum. The case 6, = 1 corresponds to the one in which the stars

5 T | I
=10
L | EEREES x = 20.0 —
2------X = 2.4
3----- x =23
3 —
1
2 -
1 -
0 ] ]
0 1 2 3 4 5 6 7 8

Figure 1. nuvs yplotforv=1,0=1.
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Figure 2. nuvs yplotforv=1,0=2.
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3,32 223
osf A/ * 18,
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v 1 M)
0.5} 40.6
L -
1\ 2\3
O.ZF ﬂO.Z
0.0 L L 1 —t |
o] 1 2 3 4 5 6 7 8‘3'o

n

Figure3. Distribution of mass mg with height. Variation of e "and M (Z) with yforv=1,0=1.
Solid curve corresponds to e~ " and dashed curve to M(z).

are in thermal equilibrium, though this formula is derived not from Wielen’s derivation,
but due to the thermal collision of the stars. The difference between the two
mechanisms is quite distinct. Thermalization leads to an equipartition of energy,
giving {v*(m))> ccm™?, but for such a condition to be valid, sufficiently long time, i.e.
longer than the collisional relaxation time must elapse, after the system has been
“prepared”. For stellar systems, these collisional relaxation times are very large, being
10!2-10* years, which is longer than the age of the galaxies. An exhaustive study of
these phenomena can be found in the review article by Chandrasekhar (1943). Wielen’s
mechanism on the other hand, considers random walk in velocity space. This leads
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Figured. Distribution of mass m, with height. Variation of e ™" and M(Z) with yforv= 1,6 =2.
Solid curve corresponds to e~ " and dashed curve to M(2).

PRSI O |

B T I W I I N |

-
w

{(m/m,)

Figure 5. Variation of f(m) with m for v=1, 8 =1.

to stochastic acceleration of stars, if the relaxation time of the random forces be
shorter than the age of the system. However, both the mechanisms lead to a
power—Ilaw {v?(m))» ocm~2. For the case of thermal equilibrium, A = 1, while A is
different for stochastic acceleration, being decided by the mass-consumption rate, as
is given by Equation (25). For the sake of completeness, we have included A = 1 case
(i.e. thermal equilibrium) in the numerical work.

The numerical computational results show that the mass distribution is crucially
dependent upon the mass spectrum as also on the velocity dispersion. This is seen
from the variation of n with y. We also present the variation of e™" with y, e~ " being
proportional to the number density of stars of mass m,.

The results given here justify the contention that the distribution of stars above
the galactic plane require to be fitted to more generalized formulae given here. At
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T T T T T T
9220 —
1-emee- xz23
2-vevem x=2.6 _
L |
5 6 7 8

: (mim,)

Figure 6. Variation of f(m) with m for v=1, §=2.

present, several kinds of formulae are being tried in empirical sense, (Van der Kruit

1988; Hill, Hilditch & Barnes 1979; Kuijken & Gilmore 1989). However, a rigorous

formula as given here, is expected to give a better fit. In the observational context,
study of the quantity f;(m) may serve as sensitive tool to ﬁnd the mass spectrum.
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