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Dissipative Collapse of a Spherical Cluster of Gas Clouds 
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Abstract. We investigate the time scale for the dissipative collapse of a spherical 
cluster of gas clouds by supplementing the scalar virial equation with an evolution 
equation for the energy. We find that collapse times are more than doubled even for low 
filling factors f - lo-' - lov3, for which support by supernovae, usually considered 
for galactic structure formation models is ineffective. 
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1. Introduction 

Two component models for galaxies envisage longer than free fall time scales for the formation 
of the structures in the Galaxy (see [5] for a discussion). We examine the dissipative evolution 
of a spherical cluster of gas clouds with an isotropic velocity distribution using the scalar virial 
equation supplemented with an evolution equation for the energy, to obtain the time for collapse 
impeded by virialized mass motions. For a detailed discussion see [4]. The gravitational binding 
energy released during collapse feeds the random where the influence of dark matter can be 
ignored [9], our model shows that two component galaxies could have taken longer than a free 
fall time to collapse, even for low filling factors - l 0 -~ -10~~ ,  for which support fromsupernovae, 
which is usually considered, is less effective. 

2. The Model 

We consider a spherically symmetric cluster of mass M and radius R, consisting of N individual, 
equal mass clouds of radius R, and mass M, distributed uniformaly. The clouds have a one di- 
mensional r.m.s. velocity v,,. The gas clouds are in pressure balance with an intercloud medium. 
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The mass in the intercloud medium is taken to be too small to affect the dynamics and the con- 
tribution from it to the virial as well as the dissipation will be ignored throughout [ 6 ] .  The scalar 
virial equation for the system is [ I ]  ;$ = 2T +a where I = 4n Sp(r)r4dr is like the moment of 
inertia of the system about the centre and p(r )  is the density at a distance r from the origin. T is 
the kinetic energy associated with mass motions, and R is the self gravitational potential energy 
of the cluster. We may use the expression for I and R corresponding to a homogeneous distri- 
bution of matter. See [4] for a discussion. The velocity of the clouds may be separated into two 
parts, a random part and a mean motion for homologous collapse with respective kinetic energies 
; M Y ~ ,  and & M ( % ) ~ .  Introducing all these the virial equation becomes 

M$,,,, The total energy of the system evolves due to cloud collisions at a rate $ldissipative = -v-. R 

The parameter V N ' I ~  f2I3 is proportional to the number of collisions in a free fall time, for virial 
theorem random motions in the system. With E = TR + TM + 0 and = $fldissipative we get the 
evolution equation for the energy in the form 

We consider three different cases for the filling factor f .  One is to keep f constant as the 
collapse proceeds. We also consider two cases of varying v as follows. For clouds at a constant 
temperature Tc, in pressure equillibrium with an intercloude medium at the virial temperature 
(= w) of the cluster, f = (1 + w-' a . Here Mi, is the mass in the interclump 
medium, k is the Boltzmann constant, and mp is the proton mass. For Tc a constant v which is 
proportional to f2I3, decreases as R ~ / ~  as the collapse proceeds. For clouds which keep a constant 
radius, v proportional to R-', increases as the collapse proceeds. 

For I$,,,, E corresponding to virial equilibrium, the collision time tc is - l / v  in units of 

the free fall time t f f  - G), where Ro is the initial radius. For dissipation by collisions, the 
dissipation time is also seen to be - l lv .  For the system to be collisional the mean free path of the 
clouds should be less than twice the radius of the cloud. This yields the condition N ' / ~  f ' I 3  :, 116, 

3. Results and Discussion 

The evolution of the cluster has been considered under the conditions discussed below. We define 
K = &,(t = 0) = 3 the initial random kinetic energylthe modulus of the initial potential energy. 
For a system starting from virial equilibrium K = 0.2 initially. For a constant filling factor f 
and hence constant v-' = t,, we consider the cases (al) with K = 0.2, (a2) with K = 0.15, and 
(a3) with K = 0.1. Case (b) has v = voR2I3, and case (c )  has v = V , , R - ~ .  For comparison with 
earlier works, which examine the evolution of virial theorem random motions under collisional 



Dissipative Collapse of Gas Cloudr 

Figure 1. t lo  as a function oft, for cases (al), (a2), (a3), (c) and (d). Both times are in units oft,,. 

dissipation, we consider as case (d) the evolution of the cluster starting with K = 0.2 but with no 
gravitational feeding of the random kinetic energy. Equations (1) and (2) were solved for various 
values of the only free parameter v = l/tc where t, is the collision time for virial theorem random 
motions in units of tn. (v;' was taken as the free parameter for cases (b) and (c)). The equations 

were normalized using Ro as the unit of length and as the unit of time where RO is the initial 
radius of the cluster, and integrated with a constant time step. Desired,accuracy was achieved by 
using a time step which was appropriately small. It was checked that with zero dissipation the 
change in the total energy was much less than one percent over 10 units of normalized time. 

In Fig. 1 we show t l o  the time for collapse to one-tenth size in units of r f f ,  as a function 
of v" which we have designated as t, the collision time, for the cases (al), (a2), (a3), (c), and 
(d). The various cases are marked in the figure. For case (c) the curve shown in the figure is for 
K = 0.2, and in this case the values given on the x axis are for td = v;' . Case @) is not shown in 
the figure. For case (b) we consider td increasing as the collapse proceeds, the condition for the 
system to be collisional would cease to be met within R greater than one-tenth the starting radius. 
In all the cases including case (b) (see [4]), there was an initial nonlinear rise. This was followed 
by a linear portion, for collision times greater than the free fall time. 

For a clumpy protogalaxy, typically N - lo4, whether we consider the top-down or the 
bottom-up scenario for galaxy formation [2]. From our result we see that collapse times are more 
than doubled for collision times in the rage 2-5. This implies f - - which interesting, 



450 K, Indulekha et a1 

compares well with that obtained by [7] through a totally different approach. The collapse times 
we obtain, compare well with the dissipation time obtained for virial theorem random motions, 
in simulations by [8] (see also [4]), and in the analysis by [3]. 
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