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Multireference Møller–Plesset �MRMP� perturbation theory �K. Hirao, Chem. Phys. Lett. 190, 374
�1992�� is modified to use improved virtual orbitals �IVOs� and is applied to study ground state
potential energy curves for isomerization and dissociation of the N2H2 and C2H4 molecules. In
contrast to traditional MRMP or multistate multiconfiguration quasidegenerate perturbation theory
where the reference functions are obtained from �often difficult to converge� state averaged
multiconfiguration self-consistent field methods, our reference functions are represented in terms of
computationally efficient IVOs. For convenience in comparisons with other methods, a first order
complete active space configuration interaction �CASCI� calculation with the IVOs is followed by
the use of the IVOs in MRMP to incorporate residual electron correlation effects. The potential
energy curves calculated from the IVO-MRMP method are compared with computations using
state-of-the-art coupled cluster singles and doubles �CCSD� methods and variants thereof to assess
the efficacy of the IVO-MRMP scheme. The present study clearly demonstrates that unlike the
CCSD and its variants, the IVO-MRMP approach provides smooth and reliable ground state
potential energy curves for isomerization of these systems. Although the rigorously size-extensive
completely renormalized CC theory with noniterative triples corrections �CR-CC�2,3�� likewise
provides relatively smooth curves, the CR-CC�2,3� calculations overestimate the cis-trans barrier
height for N2H2. The ground state spectroscopic constants predicted by the IVO-CASCI method
agree well with experiment and with other highly correlated ab initio methods. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2837662�

I. INTRODUCTION

Despite tremendous methodological advances, an active
current area of research involves the development of strate-
gies capable of reliably computing global potential energy
surfaces in a computationally cost effective fashion that
maintains size-consistency over a vast spectrum of molecular
geometries and that retains accuracy throughout the full po-
tential energy surface. The great success of single reference
�SR� formulations in describing systems that are predomi-
nantly of single determinantal character �so that correlation
is primarily dynamical� has motivated numerous attempts to
extend the limit of applicability of the SR approaches to
bond breaking regions by treating the quasidegeneracy
through the inclusion of the higher-body cluster operators
associated with the quasidegenerate virtual orbitals. Conse-
quently, low order perturbative approximations to SR ap-
proaches are incapable of providing a viable, accurate com-
putational scheme in these quasidegenerate regions. On the
other hand, the treatment of large systems with varying de-

gree of quasidegeneracy and with actual or avoided curve
crossings would greatly benefit from an accurate low order
perturbation method.

Multireference �MR� generalizations of the SR theory
describe the nondynamical electron correlation by using a
reference space containing reference functions that can ad-
equately describe the quasidegeneracy, while the dynamical
electron correlation is introduced using MR-perturbation
�MRPT� schemes. When applied to computing potential en-
ergy surfaces, however, some effective Hamiltonian based
MRPT methods are often plagued by ubiquitous intruder
problems,1 thereby seriously limiting their viability for glo-
bal surfaces. Among several recent attempts at devising a
chemically accurate MRPT approach2–8 for computing
smooth potential surfaces, the most promising MRPT meth-
ods include those based on the use of a zeroth order multi-
configuration self-consistent field �MCSCF� or complex ac-
tive space configuration interaction �CASCI� approximation,
namely, the Hv,2 MRMP,3 multiconfiguration quasidegener-
ate perturbation theory �MCQDPT�,4 CASPT2,5 multirefer-
ence Møller–Plesset �MRMP� using APSG,6 CIPSI,7 etc.,
methods. The perturbation theory developed by Mukherjee
and co-workers8 �SS-MRPT� also has promising applicabil-
ity for producing global potential energy surfaces.
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The well-known rapid variation of orbitals upon travers-
ing a curve crossing or avoided crossing in the computation
of entire potential energy surfaces implies that it is crucial to
construct the reference functions from orbitals that are opti-
mal for describing the nondynamical correlation. Thus, a
highly sophisticated MR many-body method is required, a
realization motivating the recent development of various MR
methods. The inclusion of dynamical correlation into mean
field MR descriptions �say, MCSCF/complete active space
self-consistent field �CASSCF�� of curve crossing regions
shifts the crossing regions to completely different internu-
clear distances. Moreover, near the curve crossing zone, the
determination of the orbitals and/or the geometry optimiza-
tion with MCSCF/CASSCF approaches can encounter root
flipping problems. While these difficulties can be mitigated
using state average CASSCF �SA-CASSCF� approaches,
these methods have drawbacks in �i� the difficulty in main-
taining uniform quality for the states under consideration at
all desired geometries; �ii� the problem of ensuring of or-
thogonality, which is important if, say, transition moments
are to be computed; and �iii� the choice of weight factors
used. �Item �iii� is a very laborious process since a plethora
of numerical analysis is needed to obtain optimal weight
factors.� The SA-CASSCF methods also exhibit considerable
sensitivity in the convergence of the iteration scheme. Our
applications instead generate the first order approximation
with the improved virtual orbital �IVO�-CASCI technique
that is free of these problems because the computations in-
volve no iterations beyond an initial SCF approximation.

Although CASSCF/MCSCF methods are computation-
ally simple and CASSCF energies are size extensive, some
objections to these methods cite the fact that the dimension
of the CAS grows very rapidly with an increase in the num-
ber of active orbitals. However, rather than striving for very
large reference spaces, the initial CASSCF/MCSCF approxi-
mations are perturbatively corrected for correlation in MRPT
approaches. Moreover, the ultimate growth in the size of the
CAS in CASSCF/MCSCF schemes becomes limited by an
increase in convergence difficulties which sometimes makes
implementation of a MRPT computation impossible.9 The
convergence problems stem partially from the fact that the
CASSCF procedure, in effect, attempts to optimize high ly-
ing states other than the ones of interest, and these higher
states are poorly defined by the CAS employed. Moreover,
the CASSCF treatments of properties other than energy dif-
ferences, especially transition moments and oscillator
strengths, are not very accurate.10

In 1993, Nakano4 proposed a multistate version of
quasidegenerate perturbation theory that begins with a
MCSCF approximation �hence, the term MCQDPT� and that
includes the MRMP variant of Hirao3 as a subset. The
MCQDPT reference functions are obtained using state aver-
aged MCSCF methods which are susceptible to convergence
difficulties �termed as intruder state effects� that render the
MCQDPT approach computationally expensive, especially
for a large CAS. To remove this objection, Nakano et al.11

proposed using the quasicomplete active space �QCAS� SCF
method, one of many multiconfiguration �MC� SCF ap-
proaches and a natural extension of the CASSCF method. In

this scheme, the quasicomplete active space, which is a prod-
uct of CAS spaces, serves as the variational space for the first
order approximation. Note that the dimension of the QCAS
can be much smaller than the CAS that is constructed from
the same active orbitals and electrons.

Recently, we have proposed a computationally inexpen-
sive version of MRMP/MCQDPT in which the first order
reference functions are generated from the IVO-CASCI
method12–16 and then are used in subsequent MR perturba-
tion calculations. The IVO-CASCI scheme is computation-
ally simpler than CI-singles �CIS� and CASSCF methods.
The latter arises because the IVO-CASCI calculations do not
involve iterations beyond those in the initial SCF calculation,
nor do they possess features that create convergence difficul-
ties with increasing size of the CAS in CASCI calculations.
Since the IVO-CASCI approach contains both singly and
doubly excited configurations in the CAS �in addition to
higher order excitations�, it provides descriptions of both sin-
gly and doubly excited states with comparable accuracy to
CASSCF treatments. The latter contrasts with the CIS
method which cannot treat doubly excited states. Thus, the
main computational advantages of our new developed IVO-
MCQDPT approach over the traditional MCQDPT method
are �i� the absence of iterations beyond those in the initial
SCF calculation, and �ii� the lack of convergence difficulties
from intruder states that plague CASSCF calculations with
increasing size of the CAS.

The IVO-CASCI scheme differs from traditional CI and
MP2 approaches in the evaluation of orbitals and orbital en-
ergies. The traditional CI and MP2 methods determine both
the occupied and unoccupied orbitals and their orbital ener-
gies using a single Fock operator in which the unoccupied
orbitals describe the motion of an electron in the field of N
other electrons. Consequently, the virtual orbitals are, at best,
more appropriate for describing negative ion states than the
low lying excited states of interest. The IVO-CASCI method
obtains the unoccupied orbitals and their energies from a
VN−1 potential Fock operator in order to optimize the CASCI
predictions for low lying electronic states and thereby to
minimize the higher order perturbative corrections. The gen-
eration of improved virtual orbitals resembles the approach
proposed long ago by Silverstone and Yin17 and Huzinaga
and Arnau18 which is a special case of the extended Hartree–
Fock method of Morokuma and Iwata.19

In the present Communication, we apply the IVO-
CASCI version of MRMP to study the cis-trans reaction path
of diimide �N2H2�. The generation of a smooth and accurate
potential energy curve of N2H2 along the cis-trans reaction
path is a nontrivial problem as the character of the ground
state reference function changes rapidly for a very small geo-
metrical distortion. The ground states of cis- and trans-N2H2

are predominantly single reference in character, whereas they
becomes highly multireference near the transition state ge-
ometry �for the dihedral angle �d=90°�. In addition, we also
study cuts in the potential energy surface of C2H4 as a func-
tion of H2C–CH2 torsion angle. Like N2H2, the ground state
of C2H4 also exhibits strong multireference character when
the two CH2 planes become perpendicular to each other. The
ground state geometries of the cis, trans, and iso isomers are
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determined using the IVO-CASCI optimization method and
are compared both with experiment and with other treat-
ments. The subsequent IVO-MRPT calculations provide the
conformational energies and barrier heights, as well as
curves for the cis-trans isomerization. The present work
clearly demonstrates the IVO-CASCI version of MRMP
method as a suitable alternative for providing accurate elec-
tronic structure calculations of complex molecular systems.

Section II provides a brief outline of the method for
generating the improved virtual orbitals along with relevant
equations describing the IVO scheme. The calculated results
are presented and compared with other methods in the sub-
sequent section.

II. GENERATION OF IMPROVED VIRTUAL ORBITALS
„IVOs…

Before describing the generation of IVOs, it is pertinent
to present the underlying philosophy behind their use. While
the following arguments are applicable to arbitrary MC ref-
erence spaces, they are illustrated here for a CAS because the
numerical computations proceed with a CAS reference space
to facilitate comparisons with other methods.

Consider a calculation that uses a CAS specified by a set
of doubly occupied core orbitals �c� and a set of partially
occupied valence orbitals �v�. The valence orbitals are fur-
ther subdivided into those occupied �vo� in the reference
state zeroth order wave function and those �vu� unoccupied
in the reference state wave function. Otherwise, the orbitals
are unspecified for now apart from symmetry types.

Let the dimension of the CAS be D+1, and partition the
D+1 CAS functions into the reference state R and all others
OI, I=1, ¯D. Further, assume that the OI are chosen to di-
agonalize the Hamiltonian H in the D � D space of the other
�OI�, and designate their eigenvalues as EI. With the aid of
these definitions, Brillouin–Wigner perturbation theory for
energy of the state R is given exactly in the CAS by

ER = �R�H�R	 + 

I=1

D �R�H�OI	�OI�H�R	
E − EI

.

When R is an approximate ground state wave function, the
variational principle implies that E−EI�0, and, conse-
quently, the contributions from each OI are nonpositive.
Since ER is a upper bound to the ground state energy in the
CAS, the best choice of orbitals is obtained from the set of
orbitals �vu� that minimizes the EI for the specified CAS.
Clearly, there are three possible approaches, namely, �a�
choose �vu� to minimize the denominators ER−EI, �b� choose
�vu� to maximize the numerators, or �c� simultaneously opti-
mize both.

The interleaving theorem20 proves that the EI are upper
bounds to the eigenvalues of the D � D OI space, so criterion
�a� implies that the �vu� be chosen to give best approximate
energies of all the excited CAS states. The use of Hartree–
Fock �HF� orbitals for the �vu� clearly represents a poor
choice in this regard since the HF orbitals �vu� are eigenfunc-
tions of VN+1 potentials and are, at best, useful for describing
the negative ion. HF orbitals also do not give best description
of the excited states in the CAS. Using natural orbitals or

CASSCF orbitals for the R state represents an improvement
over the HF orbitals, but these choices of the �vu� involve
orbitals that are best suited for correlating the R state rather
than describing the low lying excited states. The IVOs are
specially defined to provide the best representation for the
low lying excited states in the CAS that have the lowest
energies �and thus lowest approximate EI� and hence are
likely to provide largest contribution to ER. While improve-
ments are definitely possible, especially for specific cases
where certain OI contribute most, the use of IVOs is clearly
an improvement over the customary choices as far as the
energy denominators are concerned.

One portion of the CASSCF procedure effectively in-
volves a CASCI computation using orbitals optimized for a
single state or for some weighted average of several states. A
CI computation of dimension D is well known to provide
rigorous upper bounds to the energies of the D lowest elec-
tronic states,20 but, of course, accurate bounds are expected
only for the lowest few of these states, which, fortunately,
are generally the states of interest. However, the use of or-
bitals optimized for one �or for the average of a few� states
generally yields a poor representation of the other states, and
this feature is partially responsible for the poor convergence
of the CASSCF procedure as the dimension of the CAS
grows. Our alternative approach involves directly choosing
orbitals that simultaneously provide a good representation
for several of the lowest lying electronic states. This proce-
dure is used in Hv computations, where the CAS orbitals are
defined as comprising the highest occupied orbitals �perhaps,
only for certain symmetries� in the SCF approximation to the
ground �or a low lying� state and a set of the lowest lying
IVO orbitals constructed from the remaining unoccupied
space in the basis set. This approach is designed to maximize
the accuracy of the first order Hv approximation, which is
equivalent to a CASCI, for the low lying electronic states in
order to minimize the required perturbative corrections.21

Earlier Hv computations use a computationally complex se-
quence of SCF computations to obtain the IVOs, but more
recently they employ a simple direct method for generating
the IVOs for several common situations.13 The significant
improvement in computational efficiency for determining the
IVOs is one important feature contributing to the package-
ability of the IVO-CASCI method and its use for geometry
optimization.22 Indeed the IVO-CASCI programs have been
made available for incorporation into GAMESS.

Since the basic philosophy of generating the IVOs is the
same for both restricted and unrestricted HF orbitals, we
only present the restricted HF case, which is used herein.

When the ground state of the system is a closed shell,
we begin, for example, with the HF molecular orbitals
�MOs� for the ground state wave function, �0

=A��1�̄1�2�̄2¯�n�̄n�, where A is the antisymmetrizer and
where the indices i , j ,k ,¯ refer to the occupied HF MOs
��i� and u ,v ,w ,¯ to unoccupied HF MOs. All HF MOs are
determined by diagonalizing the one-electron Hartree–Fock
operator 1F,
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1Flm = ��l�H + 

k=1

occ

�2Jk − Kk���m	 = �lm�l, �1�

where l and m designate any �occupied or unoccupied� HF
MO and �l is the HF orbital energy. The operator H is the
one-electron portion of the Hamiltonian, and Jk and Kk are
Coulomb and exchange operators, respectively, for the occu-
pied orbital �k. An excited state HF computation would pro-
vide a new set ��� of MOs that produces the lowest possible
energies for the low lying singly excited ��→	 state,

��� → 	� = A��1�̄1�2�̄2 ¯ ����̄	 
 �	�̄�� ¯ �n�̄n� ,

�2�

corresponding to excitation of an electron from the orbital ��

to �	, where the � and � signs correspond to triplet and
singlet states, respectively. The new MOs ���� and ��	� may
be expressed as a linear combination of the ground state
MOs ��i ,�u�. If, however, the orbitals are restricted such
that the ���� are linear combinations of only the occupied
ground state MOs ���� and the ��	� are expanded only in
terms of the unoccupied ��u�,

�� = 

i=1

occ

a�i�i, �	 = 

u=1

unocc

c	u�u, �3�

then the new orbital set ��� ,�	� not only leaves the ground
state wave function unchanged but also ensures orthogonal-
ity and the applicability of Brillouin’s theorem for matrix
elements between the HF ground state and the ��→	 excited
states. In addition, this choice also benefits from using a
common set of MOs for the ground and excited states, a
choice that simplifies the computation of oscillator strengths,
etc. However, we avoid the computationally laborious reop-
timization of the occupied orbitals by setting ���������,
i.e., by choosing a�j =��j, thereby enormously simplifying
the procedure for generating the IVOs. Hence, the coupled
equations determining the coefficients a�j and c	
 reduce to
a single eigenvalue equation of the form F�C=C�, where the
operator F� is given by

Fvw� = 1Fvw + Avw
� , �4�

where 1F is the ground state Fock operator and where the
additional term Avw

� accounts for the excitation of an electron
out of orbital ��,

Avw
� = ��v�− J� + K� 
 K���w	 . �5�

The minus sign in Eq. �5� applies for 3��→	 a triplet state,
while the plus sign is for the singlet 1��→	 state.18,23 The
corresponding transition energy is

1,3�E�� → 	� = E0 + �	 − 1F��, �6�

where E0 is the HF ground state energy and �	 is the eigen-
value of F�C=C� for the 	th orbital.

Special care is required when the highest occupied HF
MOs are doubly degenerate. In order that the ��	� retain
molecular symmetry, the construction of F� must be modi-
fied from Huzinaga’s scheme. If �� and �� are the highest

occupied degenerate HF MOs, then the matrix element Avw
�

in Eq. �6� is replaced for these degenerate systems by Avw
�,�,

where

Avw
�,� = 1

2 ��v�− J� + K� 
 K���w	

+ 1
2 ��v�− J� + K� 
 K���w	 . �7�

While the IVOs may be applied to the MRPT method in
conjunction with arbitrary reference spaces, the present com-
putations employ a CAS to facilitate comparisons with other
calculations of the geometries, conformational energy differ-
ences, barrier heights, dissociation energies, etc. Geometries
are optimized with the IVO-CASCI optimization scheme,
and the ground state IVO-CASCI wave function is used in
evaluating the second order MRPT corrections. Third order
Hv calculations also perform well, but the Hv treatment is
more costly because it is designed for studying several states
simultaneously, whereas the MRPT method is designed to
focus on a single state at a time.

III. RESULTS AND DISCUSSION

A. N2H2

Trans-N2H2 �diazene, diimide� was produced by the de-
composition of hydrazine24 and hydrazoic acid25 and was
identified by mass spectrometry. Diazene/diimide is exten-
sively used for stereospecific reductions of olefins26 and as
ligand for transition metal complexes.27 N2H2 has also drawn
considerable attention from theoretical chemists as accurate
knowledge of its global potential energy surface is key to
understanding the elementary reactions involved in the hy-
drogenation of nitrogen without the use of a catalyst.

Several studies have been devoted to determining the
geometries, vibrational frequencies and the relative stabilities
of the N2H2 isomers. While all published theoretical work
unanimously agrees on the existence of three local minima,
trans-, cis- and iso-N2H2 �depicted in Fig. 1�, agreement for
the transition states applies only for the transition state for
conversion between the cis-trans isomers. The global poten-
tial surface/curve of N2H2 has been studied by Jensen et al.28

using CASSCF calculations with a double-� basis set and by
Hwang and Mebel29 using second order Møller–Plesset
�MP2� perturbation theory with a 6-31G** basis set. Most
recently, Biczysko et al.30 have optimized the geometries of
all isomers with a MCSCF treatment using a full valence,

FIG. 1. Geometrical isomers of N2H2.
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complete active space �with 12 active electrons and 10 active
orbitals� as the reference function and the aug-cc-pVXZ �X
=D,T,Q� basis sets of Dunning.31 Biczysko et al.30 have
also performed a vibrational analysis to elucidate the nature
of transition states. Since the main thrust of the present at-
tempt is to delineate the efficacy of the IVO-MRMP method,
we restrict considerations of basis set dependence to the de-
termination of the geometrical parameters for the trans-, cis-
and iso-N2H2 and the challenging problem of evaluating the
potential energy curve for the cis-trans conversion of N2H2.

Table I compares the optimized geometrical parameters
for trans-N2H2 from IVO-CASCI calculations using cc-
pVQZ and aug-cc-pVXZ �X=D,T,Q� basis sets with those
from other correlated calculations.30,32 The IVO-CASCI ge-
ometry optimization is performed with eight active electrons
distributed over eight active orbitals �8e ,8v�. The geometri-
cal parameters from a �12e ,12v� IVO-CASCI geometry op-
timization are also reported for selected basis sets to illus-
trate the dependence of bond lengths and the bond angle on
the active space. The IVO-CASCI method is one portion of
the latest generation of effective valence shell Hamiltonian
computer codes that have been interfaced to the GAMESS

program.33 The CASSCF data are obtained using the DALTON

package.34

Table I clearly reflect the well-known fact that the opti-
mized geometrical parameters depend on the method and on
the basis set used. The MCSCF, CASSCF, and IVO-CASCI
optimized parameters also depend critically on the choice of
the active space and/or number of active electrons used in the
calculations. As can be seen from Table I, the optimized
parameters obtained from the MCSCF calculations are rea-
sonably close to the CASSCF optimized data, as anticipated
since the MCSCF procedure is a subset of the CASSCF. Also
apparent is an overall improvement in the MCSCF and

CASSCF calculated optimized geometries when proceeding
from aug-cc-pVDZ to aug-cc-pVTZ basis sets. Further im-
provement of the basis set to aug-cc-pVQZ yields even better
agreement with experiment. The average discrepancies in the
MCSCF calculations for the bond lengths are 0.034a0,
0.022a0, and 0.021a0 for the aug-cc-pVDZ, aug-cc-pVTZ,
and aug-cc-pVQZ basis sets, respectively, while the corre-
sponding CASSCF deviations are 0.029a0, 0.017a0, and
0.015a0. The discrepancy in the MCSCF �CASSCF� pre-
dicted bond angle varies from 0.7° �0.3°� for aug-cc-pVDZ
to 0.3° �1°� for the aug-cc-pVQZ basis. As can be seen from
Table I, the �8e ,8v� IVO-CASCI treatment fares better than
the CASSCF calculation for the same active space. The av-
erage �absolute� deviations from experiment of the IVO-
CASCI estimated bond lengths are 0.015a0, 0.026a0, and
0.021a0 for the aug-cc-pVDZ, aug-cc-pVTZ, and cc-pVQZ
basis sets, respectively. The discrepancies in the bond lengths
are reduced by 0.007a0 as we increase the CAS from �8e ,8v�
to �12e ,10v�.

Table II displays the ground state geometries of cis- and
iso-N2H2, as determined from IVO-CASCI and other corre-
lated calculations. Since the CCSD�T� estimated bond
lengths and bond angle for the trans-isomer are quite accu-
rate �off by 0.002a0� and our predicted geometry for these
two isomers agrees favorably with the far more expensive
CCSD�T� geometries, we believe that the IVO-CASCI ge-
ometry for cis- and iso-N2H2 should be in accord with the
experiment.

Figure 2 displays the ground state energies of N2H2

computed as a function of HN–NH dihedral angle using the
HF-MRMP �MRMP with HF orbitals�, IVO-MRMP,
CCSD,35 and CR-CC�2,3� �Ref. 36� methods. The IVO-
MRMP, CCSD, and CR-CC�2,3� energies are all determined
using the aug-cc-pVTZ basis set and maintaining the experi-

TABLE I. Geometrical parameters of the trans-N2H2 isomer. Bond lengths and bond angles are given in a.u and
degrees, respectively.

Methods CAS Basis RNN RNH �HNN

MCSCFa �12e ,10v� aug-cc-pVDZ 2.3897 1.9821 105.6
aug-cc-pVTZ 2.3767 1.9702 105.9
aug-cc-PVQZ 2.3741 1.9688 106.0

CASSCF �8e ,8v� aug-cc-pVDZ 2.3896 1.9731 105.8
aug-cc-PVTZ 2.3764 1.9606 106.1
aug-cc-PVQZ 2.3741 1.9591 106.2

cc-pVQZ 2.3754 1.9590 106.1
�12e ,10v� aug-cc-pVDZ 2.3897 1.9821 105.6

aug-cc-pVTZ 2.3764 1.9704 105.9

IVO-CASCI �8e ,8v� aug-cc-pVDZ 2.3523 1.9209 107.1
aug-cc-pVTZ 2.3419 1.9080 107.3

cc-pVQZ 2.3586 1.9184 106.4
�12e ,10v� aug-cc-pVDZ 2.3554 1.9327 106.9

aug-cc-pVTZ 2.3400 1.9217 107.3

CCSD�T�b cc-pVQZ 2.3561 1.9428 106.2

Expt.c 2.3565 1.9464 106.3

aReference 30.
bReference 32.
cReference 41.
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mental bond lengths and bond angle of trans-N2H2 �see
Table I� for various HN–NH dihedral angle ranging from 0°
�cis� to 180° �trans�. For clarity of comparison between
methods, the IVO-CASCI, MRMP, IVO-MRMP, and CCSD
ground state energies are shifted so that they all equal the
CR-CC�2,3� energy at the trans geometry.

The N2H2 ground state wave function for the cis- and
trans-equilibrium geometries �and nearby geometries� is pre-
dominantly single reference in character and can be repre-
sented by the configuration state functions �CSFs�
��1−4�a2�1−2�b2�3b24b2 and ��1−3�a2�1−3�b2�4a25a2 �in
the C2 point group�, respectively. However, as the dihedral
angle increases, the contribution of the doubly excited
��1−4�a2�1−2�b2�3b25a2 CSF increases and reaches a maxi-
mum at the transition state geometry �see Fig. 3�. Note that
the ��1−4�a2�1−2�b2�3b25a2 CSF is a doubly excited CSF
with respect to both ��1−4�a2�1−2�b2�3b24b2 and
��1−3�a2�1−3�b2�4a25a2 configurations. Since the CCSD
and CR-CC�2,3� approaches are single reference formula-
tions, the generation of potential energy curves for the cis to
trans conversion is expected to fail near the transition state
geometry with these methods. The MRMP and IVO-MRMP
methods, on the other hand, are not only capable of repre-
senting nondynamical electron correlation but also are very
effective in treating states of mixed parentage. This explains

why only the IVO-MRMP calculation yields a smooth curve
for the cis to trans conversion, while the curves from the
IVO-CASCI, HF-MRMP, CCSD, and CR-CC�2,3� methods
exhibit a cusp near the transition state.

The ground state dissociative potential energy curves of
trans- and iso- are presented as a function N–N bond dis-
tance in Figs. 4 and 5, respectively. The trans isomer disso-
ciates into two NH species, whereas iso-N2H2 dissociates
into H2N and N at large N–N distances. Since the trans
isomer dissociates into two NH species, a CAS comprised of
12 electrons �omitting the 1s electrons of the nitrogen atom�
and 10 orbitals �2s, 2p for nitrogen and 1s for hydrogen� is
used to generate the ground state potential energy curves of
trans- and iso-N2H2. The potential energy curves depicted in
Figs. 4 and 5 clearly demonstrate the strength of the IVO-
MRMP seheme. It is worth mentioning that CCSD �also
CR-CC�2,3�� calculations diverge at large N–N distances for
these two systems.

The accuracy of the IVO-MRMP energies may further
be assessed by comparing their respective energies with
those of the CR-CC�2,3� method for the cis- and trans-
isomers because the CR-CC�2,3� approach offers highly re-
liable estimates of ground state energies for systems domi-
nated by a single reference wavefunction. Table III and the
associated potential energy curves in Figs. 2, 4, and 5 present

TABLE II. Geometrical parameters of the cis- and iso-N2H2 isomers. Bond lengths and bond angles are given
in a.u and degrees, respectively.

Methods CAS Basis RNN RNH �HNN

cis-N2H2

MCSCFa �12e ,10v� aug-cc-pVDZ 2.3804 2.0006 111.5
aug-cc-pVTZ 2.3732 1.9807 111.6

CASSCF �8e ,8v� aug-cc-pVDZ 2.3935 1.9784 110.8
aug-cc-pVTZ 2.3805 1.9662 111.0

�12e ,10v� aug-cc-pVDZ 2.3865 1.9921 111.4
aug-cc-pVTZ 2.3733 1.9810 111.7

IVO-CASCI �8e ,8v� aug-cc-pVDZ 2.3545 1.9349 112.0
aug-cc-pVTZ 2.3410 1.9234 112.3

�12e ,10v� aug-cc-pVDZ 2.3562 1.9472 111.9
aug-cc-pVTZ 2.3424 1.9347 112.1

CCSD�T�b cc-pVQZ 2.3538 1.9523 111.9

iso-N2H2

MCSCFa �12e ,10v� aug-cc-pVDZ 2.3140 1.9973 124.1
aug-cc-pVTZ 2.2291 1.9886 124.2

CASSCF �8e ,8v� aug-cc-pVDZ 2.3234 1.9340 123.1
aug-cc-pVTZ 2.3007 1.9276 123.3

�12e ,10v� aug-cc-pVDZ 2.3140 1.9973 124.1
aug-cc-pVTZ 2.2990 1.9886 124.2

IVO-CASCI �8e ,8v� aug-cc-pVDZ 2.2955 1.9250 122.8
aug-cc-pVTZ 2.2811 1.9164 122.9

�12e ,10v� aug-cc-pVDZ 2.3160 1.9708 123.4
aug-cc-pVTZ 2.2922 1.9582 123.5

CCSD�T�b cc-pVQZ 2.3002 1.9544 123.5

aReference 30.
bReference 32.
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FIG. 2. The IVO-CASCI ���, IVO-MRMP ���, MRMP ��� CCSD ���, and
CR-CC�2,3� ��� ground state energies of N2H2 as a function of the HN–NH
dihedral angle.

FIG. 3. Contribution of doubly excited CSFs to the N2H2 ground state wave
function as a function of HN–NH dihedral angle.

FIG. 4. The IVO-MRMP ground state energy of trans-N2H2 as a function of
N–N bond length.

FIG. 5. The IVO-MRMP ground state energy of iso-N2H2 as a function of
N–N bond length.
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the trans-cis, trans to transition state barrier heights, as well
as bond fragmentation energy of trans-N2H2 �N2H2→NH
+NH� and iso-N2H2 �N2H2→H2N+N�. Table III implies
that the IVO-MRMP bond fragmentation energy departs only
by 6 kcal /mol �off by 5%� from the multireference configu-
ration interaction �MRCI� method and the experimental bond
dissociation energy. The present calculation further exhibits
the IVO-MRMP �CCSD� ground state energies as 4.49 �4.74�
and 11.43 �11.31� kcal /mol, respectively, above the CR-
CC�2,3� estimates for �d=0° �180°�. The agreement between
the CC�2,3� and IVO-MRMP ground state energy �for �d

=0° and 180°� is, however, better for aug-cc-pVDZ basis.
Our calculations show that IVO-MRMP �CCSD� ground
state energies depart by 0.45 �0.03�, 7.78 �7.72� kcal /mol,
respectively, from the CR-CC�2,3� values for �d=0° �180°�.
At this juncture, we emphasize that the computational time
involved in the combined IVO-CASCI and IVO-MRMP cal-
culations is an order of magnitude less than that required for
CCSD and CR-CC�2,3� calculations.

B. C2H4

This subsection provides a study of the torsional poten-
tial energy curve of C2H4 �the rotation about C–C bond
which leads the breaking of a � bond� to demonstrate that
the IVO-MRMP can be employed to incorporate the impor-
tant nondynamical electron effect efficiently. While this sinu-
soidal barrier is formally correct through first order in the
wavefunction,37 the presence of orbital degeneracy near the
barrier top renders this computation a challenging test case
for any MR theory.38,39 An extensive list of earlier theoretical
and experimental work for C2H4 is given in Ref. 40.

Twisted ethylene �at the D2d geometry� is a generic ex-
ample of a diradical transition state. Scrutiny of the MO
model reveals that the p orbitals on carbon atoms lie perpen-
dicular to the molecular plane and form bonding � and an-
tibonding �* orbitals at the equilibrium molecular geometry.
As we twist the ethylene molecule around and about the C–C
bond, the overlap between the two p orbitals decreases and
finally vanishes near 90°. Therefore, at a torsional angle of
90°, the � and �* orbitals become degenerate and the
�-bond is completely ruptured. A �→�* excitation in C2H4

provides a driving force for twisting around the C–C double
bond and explains why cis-trans isomerization occurs in
C2H4 �alkenes� upon �→�* excitation. Therefore, a correct

description of ethylene near 90° demands the incorporation
in the reference space of at least the the two configurations
�2 and �*2. Numerical implementation indicates that the
standard spin-restricted SR methods are unable to handle this
degeneracy properly, and, therefore these SR treatments ob-
tain an unphysical cusp in the torsional potential at 90°, i.e.,
at the top of the barrier. The potential energy curves gener-
ated from HF, SR CC, or CISD methods contain a
pronounced cusp at 90° because the �2 configuration is
completely uncorrelated with the other important �* con-
figuration, whereas both configurations are important at the
top of the barrier.38 Thus a proper description of the torsional
barrier of the ethylene mandates the use of a MR description.

Table IV compares the optimized geometrical param-
eters for C2H4, computed using the IVO-CASCI method, an
�8e ,8v� CAS, and the aug-cc-pVXZ �X=D,T� basis sets,
with state-of-the-art CCSD treatments and with experiment.
The IVO-CASCI optimized geometrical parameters for C2H4

exhibit a similar trend as that observed for the trans-N2H2

calculations, i.e., the accuracy of the geometrical parameters
improves in proceeding from the aug-cc-pVDZ to aug-cc-
pVTZ basis sets.

Figure 6 presents the ground state energies of C2H4,
computed as a function of the H2C–CH2 dihedral angle us-
ing the IVO-MRMP, CCSD, and CR-CC�2,3� methods. The
torsional potential is evaluated with all degrees of freedom
frozen except for the torsional angle. The IVO-MRMP,
CCSD, and CR-CC�2,3� calculations for H2C–CH2 employ
the aug-cc-pVDZ basis set and are performed for variable
dihedral angles from 0° to 180° with fixed values of RC–C

=1.339 Å, RC–H=1.086 Å, and �HCC=117.6° �i.e., experi-
mental ground state bond lengths and bond angles�. For com-
parative purposes, the IVO-MRMP and CCSD ground state
energies depicted in Fig. 6 are shifted such that they all equal
the CR-CC�2,3� energy for the planar dihedral angle �d=0°.
Figure 6 demonstrates that only the IVO-MRMP calculation
yields a smooth curve, whereas the CCSD and CR-CC�2,3�
exhibit a cusp for �d=90° because near the twisted region,
the ground state wavefunction is multireference in character
and cannot be described accurately with a single reference
theory like CCSD and/or its variants.

IV. CONCLUDING REMARKS

We have investigated the torsional potential energy
curve of N2H2 using the improved virtual orbital complete

TABLE III. trans-cis, trans-iso, and trans-TS barrier height and zero point energy �ZPE� corrected bond
fragmentation energy �in kcal/mol� of N2H2 isomers.

IVO-MRMPa CCSD�T�b MRCIc MRCI+Qc Experimentd

trans- 0.00 0.00 0.00 0.00
cis- 5.87 5.21 5.03 5.05
iso- 24.37 24.12 24.02 24.04
TS 48.45 56.39 54.96
NH+NH 115.32 119.00 118.88 121.6
NH2+N 156.51 162.13 161.28

aZPE corrections �except for trans-TS� are estimated from experimental vibrational frequencies.
bReference 32.
cReference 30.
dReference 29.
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active space configuration interaction �IVO-CASCI� version
of multireference Møller–Plesset �MRMP� perturbation
theory with aug-cc-pVXZ �X=D,T,Q� basis sets. Previous
papers16,22 have shown that geometries and bond fragmenta-
tion energies calculated with the IVO-CASCI/IVO-MRMP
method agree well with experiment and with other correlated
calculations. The present calculations further demonstrate
that unlike the CCSD and/or CR-CC�2,3� approaches, the
IVO-MRMP method is capable of producing smooth poten-
tial energy curve for cis-trans conversions since a similar
trend is observed for the isomerization of the C2H4 molecule.
We further emphasize that IVO-CASCI and IVO-MRMP
methods are highly cost effective compared to the CCSD

treatment and its variants. Moreover, the IVO-CASCI
method does not require tedious and costly iterations beyond
those in the initial SCF calculation, nor does it possess fea-
tures that create convergence difficulties with increasing size
of the CAS in CASCI calculations. This feature adds an ad-
ditional advantage to IVO-MRMP calculations over those of
the traditional MRMP which often encounters convergence
difficulties within the MCSCF procedure. Since the IVO-
MRMP approach does not use state averaged reference func-
tions, the computation of transition dipole matrix elements
between the states is trivial.

The numerical gradient formulation of the IVO-CASCI
geometry optimization scheme is used to determine the
structural parameters. A vibrational analysis is not presented
because of the computational cost with numerical gradients,
especially for polyatomic systems. The code for implement-
ing the analytic gradient formulation of IVO-CASCI geom-
etry optimization is currently under development and will be
better suited for evaluating the frequencies.
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