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PRESSURE STRUCTURE OF SOLAR CORONAL LOOPS, III
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Abstract. The theory of ideal magnetohydrodynamic turbulence in cylindrical geometry is used to study the
steady-state structure of a coronal loop. The pressure profile is derived from MHD equations by represent-
ing the velocity and magnetic fields as the superposition of Chandrasekhar—Kendall functions. Such a
representation brings out the three-dimensional structure of the pressure in the coronal loop. The radial,
azimuthal, and axial variations of the pressure for a constant density loop are discussed in detail. The
pressure has an oscillatory behavior for different azimuthal angles at some radial positions. This study
predicts more features in pressure than can be compared with the presently available observations.

1. Introduction

It is well known that the solar corona is highly structured. The basic structural com-
ponent of the solar corona is the coronal loop. These loops or arch-like structures of
the active regions of the Sun have been observed in the emission at the UV, FUV, and
X-ray wavelengths (Foukal, 1978; Levine and Withbroe, 1977; Vaiana and Rosner,
1978) The theory of radio pulsations in coronal loops has been discussed by
Aschwanden (1987).

Coronal loop plasma is believed to carry currents which result in a helical form of
the magnetic field (Levine and Altschuler, 1974; Poletto et al., 1975; Krieger, de Feiter,
and Vaiana, 1976; Priest, 1978, Hood and Priest, 1979). The MHD equilibria of coronal
loops have been investigated by Priest (1981) and Tsinganos (1982).

In spite of the continuous pumping of magnetic and velocity field fluctuations into
the coronal plasma, the loops exhibit a fairly stable and well configured geometry. The
steady-state pressure structure is the result of the various manifestations of the balance
of the inertial and magnetic forces. Krishan (1983a, b) discussed a steady-state model
of active region coronal loops using the statistical theory of incompressible magneto-
hydrodynamic turbulence described by Montgomery, Turner, and Vahala (1978). The
main features of the theory consists of using the MHD equations for an incompressible
fluid. The magnetic and velocity fields are expanded in terms of Chandrasekhar—Kendall
(hereafter referred to as C-K) functions for which, the completeness has been proved
by Yoshida and Giga (1990). The pressure profile is derived as a function of the velocity
and magnetic fields in the form of Poisson equation. The spatial profiles of lines in active
region loops were also studied. The statistical mechanics of velocity and magnetic fields
in solar active regions was discussed by Krishan (1985). Krishan, Berger, and Priest
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(1988) discussed the dynamics of velocity and magnetic fields in coronal loops. Recently
Krishan, Sreedharan, and Mahajan (1991) have also presented a Vlasov—-Maxwell
description of coronal loops which is a preparation for the study of kinetic processes
related to heating and acceleration of plasma particles.

The force-free magnetic fields (V x B = aB) and the Beltrami flows (V x ¥ = aV)
represent the minimum energy state of a magnetofluid. A single C—K function represents
these configurations of the magnetic and velocity fields. The magnetofluid in the coronal
loop is believed to be in an approximate state of the force-free fields with small
departures from the current-free fields of the photospheric fluid. Now, it is quite
reasonable to expect the coronal loop fields and flows to have departures from the
strictly force-free configuration. By representing the fields by the superposition of the
C-K functions we can manoeuvre these departures in a systematic and quantitative
manner.

We extend the earlier work on the steady-state structure of the pressure in coronal
loops, by representing the velocity and magnetic fields as the superposition of three
Chandrasekar-Kendall functions. This brings in the three-dimensional spatial variation
(r, 6, z) in the plasma pressure and the state is not force-free, although individually the
C-K functions represent a force-free state. The motivation behind the choice of three
(C-K) functions for velocity and magnetic fields is to extend this study to include the
time-dependence of pressure in coronal loops. The three-mode representation admits
the temporal behavioral of the fields in its most basic form. Besides a three-mode
representation also in principle exhibits chaotic behavior. The evolution of the resistive
magnetohydrodynamic equillibria is being studied in order to understand the emergence
of preferred structures, if any, by Shan, Montgomery, and Chen (1991). A truncated
three-mode configuration has been explored by Chen, Shan, and Montgomery (1990)
and their results qualitatively agree with the predictions of the minimum dissipation
theory (Montgomery, Phillips, and Theobald, 1989) as well as with the computations
obtained using the numerical code (Dahlburg et al., 1986, 1987, 1988 and Theobald
et al., 1989). We however plan to study the three-mode ideal system in order to qualify
the variations of the velocity and magnetic fields in the solar atmosphere, in terms of
nonlinear or stochastic fluctuations. In this paper we discuss only the three-dimensional
spatial pressure structure of coronal loops.

In the next section, we present the MHD equations for an incompressible fluid and
outline the pressure profile. Section 3 deals with a discussion of the results obtained in
this study.

2. Derivation of the Pressure Profile

The coronal loop plasma is represented by a cylindrical column of length ‘L’ and radius
‘R’. The mechanical pressure P is expressed as a function of velocity ¥ and magnetic
field B using the MHD equations

VP (VxB)xB _

-V-NW-—, (1a)
p p

SIS
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_  _ . OB
V><(V><B)—a—=0, (1b)
t

where p is the mass density and the force due to gravity has been neglected.

Using the identity (V- V)V = (V x V) x V + (1/2)VV?, Equation (1a) becomes

= = =|
—(VxV)xV:I——. (2)

ot

(Vx B)x B

VIP/p+ (1/2)V?] = [
p

Following Montgomery, Turner, and Vahala (1978), the velocity field ¥ and
magnetic field B in the loop plasma are represented by the superposition of Chandra-
sekhar-Kendall functions. The complete dynamics can be described by a set of infinite
coupled nonlinear ordinary differential equations which are of first order in time for the
expansion coefficients of velocity and magnetic fields and it is a formidable task to find
solutions to these equations. Hence, here we choose to represent the fields by the
superposition of the three lowest order C-K functions. Another justification for doing
so 1s that these functions represent the largest spatial scales and therefore may be the
most suitable states for comparison with observed phenomena.
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Fig. 1. Radial variation of the pressure P, for different axial distances, Z.
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In the triple-mode system,

V= A, (04, + An, (DA, + A 104, , (3)
B =164, + lbfb(t)Zb + 1,6 (DA, 4)
im ik 0 0 mk
a =6, | —+—— +épl ———— ¥ +
anm(r) er|: ’ lnm ar:I l/’nm 6|: ar r,{nm:] lp
2 _
e, [L';—kf] Yo )

where
Y = I (Vra?) €Xp (im0 + i k,,2),

=0, %1 F2,...,

m=0,F1,F2,...,

s and &’s are in general complex.
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Fig. 2. Axial variation of the pressure P, for different radial distances, r.
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Fig. 3. Radial variation of the pressure P, for different azimuthal angles, 6.
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Fig. 4. Azimuthal variation of the pressure P, for y,,r = 2.2 to 3.23.
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The functions a,,, satisfy V X a,,, = A,,,4,,.- Vm can be determined from the
boundary conditions for a perfectly conducting and rigid boundary since the observa-
tions do show very well-defined loop structures aligned with the magnetic field across
which there is little or no transport. Thus the radial component of the velocity and the
magnetic field vanish at the surface r = R, i.e.,

Rk, (VmR) + M, J, (1, R) = 0. (6)

However, for the (n = 0 = m) mode, V, = B, = 0, and the y,, is determined from the
constancy of the ratio of the toroidal and poloidal magnetic fluxes as

Y, Jo(yooR)R Yoo .
LM L (7)
"lbp Jo(700R) L Aoo
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Fig. 5. Contour plot of the pressure P, as a function of y,,r and Z' when 8is averaged. Each unit of the
axes corresponds to p,,;r = 0.1 and Z' = (.3, respectively.
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C,,, is the normalizing constant which relates 4,,, to a,,,, by
A = = A* A 3.
Anm - Cnmanm and JAn’m’ Anm d r= 5)1119 5mm’

The dynamics can be described by taking the inner products of the curl of Equations
(1a) and (1b) with A* and integrating over the volume. The resulting six complex,
coupled nonlinear ordinary differential equations are

o, Ak
%_ o2 (3, = A)mm, = EE.1 P, ®)
Ny Aed,
Mo _ 2cta n — ¥k, — €58, 7], ©)
ot Ap
o, A,
e = 20 1y = 2 I~ GEulp), (10)
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4 1 o R T
f - "li
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Fig. 6a. Density plot of the pressure P, as a function of y,,7 and Z".
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Fig. 6b. Same as in Figure 6(a) for 7,, > 1,,.

% AL~ 6] (11)

% T [, - nEF], (12)

0
—jf AT I - e ], (13)

where I = | A% (4, x 4,) d°r and the (n, m) values of the modes (a, b, c) satisfy the
conditions n, = n, + n, and m, = m, + m,.
It can be shown that
(VxB)xB= Y  LAGE(, - A) A4, x 4;, (14)
=

i=a, c
Jj=20b, a
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(VxMxV= Z iiﬂ.jmnj(il— - /lj) A; X Aj , (15)
i=a, b, ¢
so that j=b, ¢ a

- 39 W
V(Plp+ (1/2)V?) = _ z }‘ij‘j(’q‘i - Aj)(  — nm; | A; X A; - E . (16)
(R P
In this paper we confine our study to the steady-state solution to the pressure. For the

steady-state /ot [#, £] = 0, and hence, we find from Equations (8) to (13)

e = Calp'? My =&,/p"7 and .= &/p'.
Equation (16) reduces to
V(P/p+ (1/2)V?) =0,

i.e., P/p + 1/2V? = constant.
If the value of P at the origin (r = 0, z = 0) is P,, then

Plp = Pojp + (1/2)V5 - (1/2)V?, (17)

where V¥, is the velocity at the origin (r = 0, z = 0).

3. Discussion

The spatial variation of pressure is presented for a cylindrical column of plasma for
which the ratio of the radius R to length L has been taken to be R/L = {5 and the
ratio of the toroidal to poloidal flux y,/y;, = 0.1.

We have chosen two triads a, b, ¢ such that they represent the largest possible spatial
scales, as well as satisfy the condition @ = b + c. These are:

a, =(1,1), b, =(1,0), and ¢, =(0,1);
a,=(0,0), b,=(1,1), and c,=(-1, —1).

The corresponding values of y’s and A’s are found to be (from Equations (6) and (7))

YR = 3.23, v, R = 3.85, R = 3.85,
A R =3.29, AR = 3.90, AR =3.85,

and

v.2R = 1.44, YR = 3.23, YR = 3.23,
AR = 1.44, ApaR = 3.29, AoR =3.29.

The total energy E of the loop plasma in a given configuration (a, b, ¢) is given by
E=2%,_, , . A n. Though we have some estimate of the total energy of a typical loop
there is no obvious way of fixing the relative magnitudes of the three modes. However,
there are two physical considerations we can use to fix the relative strengths of the three

modes, as is usually done whenever three mode interactions are involved.
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Fig. 7a. Radial variation of the pressure P, for 8 = n/4 and different axial distances.
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Fig. 7b. Radial variation of the pressure P, for 8 = 3n/4 and different axial distances.
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3.1. CAasel

The first is the pump approximation under which one of the three modes is taken to be
the strongest. For example, here since the conservation conditions give a = b + ¢, we
can take ‘a’ to be the dominant mode and call it the pump which shares its energy with
the other two modes. This will become evident in the time-dependent description.
Therefore, let

Ana>Aony and  AZnmi> A2ni. (18)

3.1.1. Pressure (P;) Structure in the Configuration (a,, by, ¢,)
For the triad (a,, b,, ¢,)

No1/Mar < Aar/Ap; = 0.8435 and  n,,/1,; < Ay /A = 0.8658.
We choose
|r’a1|=1079 |nbl|=8x106=|’7c1|’

so that the pump approximation is valid. The expression on the right-hand side of
Equation (17) has been averaged over a full cycle of 6 and pressure (P, — P,) is plotted
as a function of y_,r for different values of z’ (z' = (z/L) x 10)in Figure 1. It can be seen
that the pressure (or temperature) at any height increases along the radius towards the
surface. The radial variation of pressure is the maximum at the foot points of the loop
and it is minimum at the apex. This is in confirmation with the result of Levine and
Withbroe (1977) who showed that the coronal loops undergoing dynamic changes are

60:00 —T" T T T T T T ] !

33-00

(2]

-00

-21-00

( PZ— PO)XIOO

-4 8-00

-75:00
0-00 2-00 4-00 6-00 8-00 10-00

Fig. 8. Axial variation of the pressure P, for 8 = n/4 and different radial distances.
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characterized by a temperature structure in which there is a cool core relative to the
substantially hot surrounding sheath.

In Figure 2, (P, — P,) is plotted against z’ for various values of (7,;r). The axial
variation of the pressure is maximum at the axis and minimum at the surface. The
maximum value of the pressure is attained near the apex for all values of (y,,r). This
is in agreement with the results of Rosner, Tucker, and Vaiana (1978).

Figure 3 presents the radial variation of the pressure for § = 0, /4, n/2, and © when
the pressure is averaged over z. The pressure increases uniformly for all values of
Va7 < 2.0. However, for y,,r > 2 the dependence of the pressure on the azimuthal angle
is significant.

Figure 4 shows the azimuthal variation of the pressure for different values of
v.17 > 2.0. The pressure exhibits an oscillatory behavior predominantly near the surface.

Figure 5 depicts the contour plot of pressure as functions of y,,7 and z’ when the
pressure is averaged over 0.

Figure 6(a) is the density plot of the pressure. The darkest region corresponds to the
minimum pressure. As we proceed towards the apex, the shades become lighter and the
region of maximum pressure is reached. Figure 6(b) is the density plot of the pressure
when #,, > 7n.,. It is seen that the region of the maximum pressure has moved up.
However, when 7., > #,,, the region of the maximum pressure has shifted down. Thus
the region of maximum pressure need not necessarily be at the apex.

10500 ] T T | T [ T
21.00— —
o
2 -3-00
x
Re)
a™N -27-00

(

-51-00

-75-00
0-00 . 0-62 1-24 1-86 2-48 3-10

Fig. 9. Azimuthal variation of the pressure P, for Z = L/2 and different radial distances.
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3.1.2. Pressure (P,) Structure in the Configuration (a,, b,, c,)

For the triad a, = (0, 0), b, = (1, 1), ¢, = (-1, — 1), using the inequality (18) and the
values |#n,,| =2 x 107, |5,,| = 8 X 10° = |y_,|, we arrive at the following results:

Figure 7(a) presents the radial variation of the pressure for 6§ = /4 and for different
axial positions. In this case the maximum pressure as well as the maximum variation
in pressure is found at z = L/4.

Figure 7(b) shows the radial variation of pressure for = 3n/4 and forz = 0, L/4, L/2,
and L. Here, the maximum pressure as well as the maximum variation in pressure is
at the foot points, in contrast to the case for 6 = w/4.

The axial variation of pressure for 6 = /4 and y,,r = 0, 0.72, and 1.44 is given in
Figure (8). The pressure shows an oscillatory behavior at the axis of the loop more
predominantly than towards the surface.

Figure 9 depicts the azimuthal variation of the pressure at the apex of the loop for
different radial distance from the axis. In this case also the oscillatory nature of pressure
is evident. The maximum value is attained at the boundary.

3.2. Casg 1l

3.2.1. Pressure (P,) Structure in the Configuration (a,, b, ¢;)

The second physical consideration that can guide us is that the mode strengths vary in
proportion to their spatial scales. The mode with the largest spatial scale may be the

250-00 T T T T T T T T 1
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e
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0-00
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Fig. 10. Same as in Figure 1 for #_, > #,;.
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Fig. 12. Same as in Figure 4 for 5., > n,,.
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strongest. Here since a; = (1, 1) and b, = (1, 0) have the same spatial scale in the
z'-direction and this spatial scale is smaller than that of the mode ¢, = (0, 1), we can
assume ‘a,” and ‘b,’ to be of equal strength and less than the strength of ‘c;’, 1.e.,

2 .2 _ 92 .2 2 .2 2.2 .
Aorllar = Aeilors  Aaifor < AN

we chose |n,;]| =107, |5, | = 8.4 x 10%, and |#,,| = 1.6 X 107 so that the above condi-
tions are satisfied. The radial pressure variation is presented in Figure 10 for different
axial positions. The maximum variation of the pressure is at the foot points as in
Figure 1. However, for other values of Z’, the pressure tends to decrease initially and
then increases monotonically after a certain radial distance, contrary to the pressure
profile given in Figure 1, where one sees a monotonically increasing pressure for all
values of Z'.

The axial and azimuthal variations of the pressure are given in Figures 11 and 12,
respectively. The trend is very similar to that presented in Figures 2 and 3.

3.2.2. Pressure (P,) Structure in the Configuration (a,, b,, ¢5)

In this case the mode a, = (0, 0) corresponds to the largest spatial scale and therefore
if this is stronger than the other two we arrive at the conditions 42,12, > A2,7;, and
A2 n%, > A2,m2, which are identical to the pump case for the triad (a,, b5, ¢,) and the
pressure profiles have already been discussed.

3.3 CONCLUSION

In conclusion, the representation of velocity and magnetic fields by a three-mode
Chandrasekhar—Kendall functions brings out the three-dimensional features of the
pressure profile. We believe that the choice of the triads representing the variations of
velocity and magnetic fields on the largest spatial scales permitted by the system,
provides a fairly realistic description of the loop plasma. Though the pressure structure
is a strong function of the relative amplitudes of the modes, the trends, like an increase
of pressure towards the surface and the existence of maximum somewhere along the
length of the loop, emerge as the general features. The temporal evolution of the pressure
is being considered and will be reported shortly.
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