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Why quantum mechanics is complex*®

James T. Wheeler
Department of Physics, Utah State University, Logan, UT 84322

Abstract. The zero-signature Killing metric of a new, real-valued, 8-dimensional-
gauging of the conformal group accounts for the complex character of quantum
mechanics. The new gauge theory gives manifolds which generalize curved, relativistic
phase space. The difference in signature between the usual momentum space metric
and the Killing metric of the new geometry gives rise to an imaginary proportionality
constant connecting the momentum like variables of the two spaces. Path integral
quantization becomes an average over dilation factors, with the integral of the Weyl
vector taking the role of the action. Minimal U(1) electromagnetic coupling is predicted.

One of the more puzzling aspects of quantum mechanics is its seemingly necessary reliance
on complex quantities. The theory's interference effects, probability amplitudes and
coupling to unitary gauge interactions all make important use of complex numbers. In
this essay we show how a real-valued 8-dimensional geometry can account for these
behaviors in a natural way.

This geometry, called biconformal space, arises as a new gauging of the conformal group
[1-3]. The gauging is accomplished in three steps. First, counting fixed points identifies eight of
the conformal transformations as translations, with the remaining homogeneous Weyl
transformations (Lorentz transformations and dilations) forming the isotropy subgroup, C,.
Second, we construct an elementary geometry as the quotient, C/C,, of the conformal group, C,
by C,. This produces a principal fiber bundle over an 8-dimensional manifold (various topologies
are allowed). Finally, we generalize to a curved Cartan connection by adding horizontal curvature
2-forms to the group structure equations. The curvature breaks both the translational and inverse
translational symmetries while retaining all 15 gauge fields. This contrasts sharply with previous
4-dim gaugings of the conformal group [4 - 9], for which the inverse translational gauge fields are
always auxiliary [5, 9].
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592 J. T. Wheeler

To implement these steps we choose the O (4,2) representation of the conformal group,

with connection 1-forms (D‘g (A, B, ...=0,1,...,5). Letting boldface or Greek

symbols denote forms and (a, b, ...) = (1,...,4), the O (4,2) metric is given by 1, = diag
(1,1,1,-1) and mMys = N59 = 1 with all other components vanishing. The covariant
constancy of 14 g reduces the independent components of (:)A into four Weyl invariant
parts: the spin connection, (o , the solder form, a) , the co-solder form, a) , and the
Weyl vector, wgwhere the spm connection satlsfxes

a _ ad_ ¢
W, =-1, N O -
The remaining components of a)’; are given in terms of these. We restrict (4,B,...) = (0;1,...,4)
in all subsequent equations. The Maurer-Cartan structure equations of the conformal group are

simply
dop = 0f Aol .

Since no finite translation can reach the point at infinity and no inverse translation can reach
the origin, the space C/C gives a copy of (noncompact) Minkowski space for each of the
two sets of translations. Since the generators of the two types of translation commute modulo
the homogeneous Weyl group, the base manifold is conformally the Cartesian product of
these two Minkowski spaces.

The generalization to a curved base space is immediate. Adding curvature 2-forms to the
structure equations and breaking them into parts based on homogeneous Weyl transformation
properties, we have:

a _ 0 a ad c a
doj = 0y At + o) Awg-n, N a)gAcoO+ QF
— 0 b a a
dmg—wOAwg +a)0Aa)b+.QO
da® = a® A +w? A + Q°
a a 0 a b a
0 — 0 0
dwo —coao Aa)a + QO (2.12)

The four curvatures 2 § b .Q .Q and 2 0are called the Rlemann curvature torsron co-
torsion and dilational curvature respectively. If we set w = wo .QO .QO_ 0 we
recover a 4-dim spacetime with Riemannian curvature .Qband torsion QO. If we set
only a) .QO- 0, we have a 4-dim Weyl geometry.

Horizontality yields curvatures of the form
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Why quantum mechanics is complex 593

A_l c d Acd 0 0
QB‘TQ/;M%A +.QBda)OAa)+ .Q CA(od.

Based on the correspondence principle relating biconformal space and phase space ([11],
c Ac

[2]) 'QBcd is called the spacetime term, £2 p; the cross term and .QB the momentum term

ofp €2 .The fiber symmetry group does not mix the spacetime, cross or momentum terms.

. A . .
For a flat biconformal space, with 25 = 0, the connection may be put into the form

([11.21)

0y = o (1) dx'-y dx = Wodx® (8a)
wf = dx’ (8b)
0
) =dy, — (0 + W, W, —3Wn_)ax’ (8¢)
d

0 = (8,85 ~ n“‘nbd) W_dx (8d)

) S
where (x” ,Y,) are eight independent coordinates on the space and « o, ,= S_Z denotes the

X

partial of o, with respect to x (but not y,).

Our current discussion centers on the metric structure of biconformal spaces. Although
biconformal space is based upon the conformal group of Minkowski space, it does not inherit
the Minkowski metric, 17,,. Nonetheless, every biconformal space has a natural metric based
on the Killing metric. The Killing metric is built from the conformal group structure constants as

c D
KAB =CupChe

where the labels
(A.B... ) e {$.ED. Q.
refer to the Lorentz, translation, inverse translation and dilatation generators, respectively.

A short calculation gives

' K5 O 0 0

gleonf) (gg)(g) 0 Kiovby O
AB Q@)

0 (0)(b) 0 0

0 0 0 1
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594 J. T. Wheeler

where
bd '
K(p) @)=262 85~ 1'm)
is the Killing metric for the Lorentz group, and
b
K@) (4 %
K@) ()= 5,

We now construct a metric on the bundle by expanding @4 in a coordinate basis

A

0
0’ =(w,,07,0

0y _ A, deM
@) = 04ydx

then defining metric components
gMN = KAB(OAMCDBN .

Unlike the degenerate Killing metric for the Poincaré group, Kﬁ,cé’"f ) is nondegenerate both
on the bundle, and when projected to the base space. Restricting the indices to the range

M'.N' e {(I), W M = (x#,y,) the biconformal metric on the base space is

' '

N = A B
gMN' = Kppo2 a0y

0
a

a 0 1@
CooM:(Oan + @ MwoN’

Understanding the importance of K,.p: first requires understanding the phase space
correspondence principle.

In [1], [2] it is shown that dilationally flat (98 = 0) biconformal spaces are generalizatioﬁs
of phase space, with the line integral of the Weyl vector, 0)8 , equal to the action. The class
of superhamiltonian hypersurfaces, 7 (H,p,x?) = 0 in the o, = O flat biconformal space are
in 1 - 1 correspondence with Hamiltonian systems. The biconformal structure equations
imply the existence of curves satisfying Hamilton's equations. Generalizing these dynamical
equations by letting o, # 0 predicts the Lorentz force law for a charged particle in a
background electromagnetic field, with o, = —-th A,. This last result rescues Weyl's
geometric theory of electromagnetism [10-12]. Weyl equated the Weyl vector to the
electromagnetic vector potential, but this results in predictions of unphysical size change.

By contrast, equating o, to the vector potential predicts the Lorentz force law and no size
change.
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Why quantum mechanics is complex 595

But the structure equations of biconformal space go beyond the usual structure of phase
space, giving a differential system for the eight solder forms, the spin connection and the
Weyl vector. The Killing metric described above also represents new structure, importantly
different from the usual metric on phase space.

Consider this metric difference in detail.” The usual phase space metric follows from the
metric on spacetime and the fact that the 4-momentum is proportional to the tangent vector
to a curve. This implies that the same Minkowski metric acts on both the configuration and
momentum parts of phase space :

gAPBhSP= (n‘uv, ’r’#v) .

The two parts of gff gSP " are not an 8-dim metric — they are the same metric applied to
either the spacetime or the momentum sector separately.

By constrast, the Killing metric K, 5-on biconformal space has eigenvalues + 1 and zero
signature. Suppose we diagonalize K, 5, and demand that the first four eigenvalues, which

act on the spacetime coordinates x# , match the Minkowski metric of spacetime part of
gAPé"SP' Then (since each 4-space is Lorentzian) the only way to match the remaining
four eigenvalues is by contracting the Yu coordinates using minus the Minkowski metric.
Therefore,

gheont = (- M)

This is the only way to achieve zero signature while keeping the usual Lorentz invariant
inner product on both spacetime and momentum space.

Notice that gBiconf. also refers to two 4-dimensional subspaces, but for a different reason.
Because we have introduced a dimensionful metric, the scaling weight of the spacetime and
momentum parts are opposite. The two parts cannot be added together and must be regarded
as applying only on appropriate submanifolds.

.The essential point we wish to make is that the sign difference between gg ’;SP' and
gﬁ’g‘”’f' implies the existence of a complex structure relating the geometric variables Yy to
the physical variables p,, . In the simplest case, when identifying biponformal coordinates
(x#, y, ) with phase space coordinates (x#, p, ), we just set y, = Bpv. Since the constant 8

must account for the sign difference in equating the norms

npup, = n*)YY, = -Bn#pp,

it is pure imaginary. Also, 3 must account for the different units of y, (length ~1) and p,
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596 J. T. Wheeler

(momentum), with % the obvious choice. Therefore (up to a real dimensionless constant) we
can set

yvz -_Ei'pv

This relationship between the geometric variables of conformal gauge theory and the physical
momentum variables is the source of complex quantities in quantum mechanics.

For a more general derivation of the complex structure, suppose we have identified the

spacetime coordinates, but the y, and p, are related by an arbitrary nondegenerate"
transformation, ' '

Yu = MZPV

Then for the norms to agree, we require

ﬂaﬁPaPﬁ (—77”"))’# Yy

(i) M2p oM pp

1l

or, since p, is arbitrary and n#V symmetric,
oB = (oM mP »
77 - _n MY
Lowering an index, and turning to matrix notation, we have simply

MM =-1
which means that the real matrix M is normal, hence diagonable by an orthogonal
transformation. Let O be the diagonalizing transformation so that M = OtDO, with D diagonal.
Then we have

M'M = 0'D'00'DO = 0°'D*0 = -1
or
D* =1

demonstrating the existence of a complex structure. The factor of i used above is the
simplest representation for D.

There are two further points to be discussed in identifying.the proper correspondence
between the physical variables of phase space and geometric variables of biconformal space.
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Why quantum mechanics is complex 597

First, 1, does not respect the scale invariance of biconformal space as K 4/ does, but
scales with weight +2. This means that there is no way to introduce it directly into a general
biconformal space. However, the use of diagonalizing coordinates

1 ab Y
1
v, = r—;(wg - nabwg)

is possible nonetheless because this transformation is symplectic, preserving

0
dod = of A «,
The closed, nondegenerate dwg corresponds to the symplectic form in phase space. So,
while the definite conformal weight properties of the coordinates (xu ,y, ) are lost, the
dynamical equivalence to phase space is maintained. Therefore, while the diagonalization

masks the effect of scale changes, it is still dynamically correct in the symplectic, flat case or
locally in the general case.

The second issue is the existence of spacetime as an integrable 4-dim submanifold of flat
biconformal space. While the flat structure equations are involute, we must ask if the
involution still exists in the u%,v# basis. Substituting into the structure equation for @f we
find

1 ‘
du® = =d (@ +ned)

— ubm? aby . 30
ww? + nibv,w)

where we have used the antisymmetry of the spin connection, n%®§=-n*w ¢ . Therefore,
u? is in involution if a)g = W, u? so that the spacetime manifold exists provided only that
the u? = Q foliation is regular. The condition wg = W, u? means that 4-dim character of the

action integral emerges together with spacetime. Interestingly, this involution reduces the
rewritten u? = 0 structure equations to those of a constant curvature momentum 4-space with
radius on the order of the Compton wavelength. With the required factor of i in converting
to momentum variables; the radius in fact becomes a wavelength.

Finally, we give a brief description of one way to see how the path integral formulation of
quantum mechanics corresponds to a statement about measurement in biconformal space
using real variables (x%, y;). In [13] and [14] we show how other properties of quantum
systems are automatically present in biconformal and other scale-invariant spaces. For the
present, note that the form of the Weyl vector for a large class of solutions [1 - 3] including
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the flat case above is

000, (x)dxt — y,dx® = - (=L A,()dx® + y)dxt .

Identifying the integral of a)g as the action and expressing y, in terms of the momentum we
find

- L _ 4
fwg— —hf(pa i—= Agdx

We therefore correctly find both the proper minimal U(1) coupling to the electromagnetic
field, and the proper complex coefficient for the exponent. The average over exp (- ’7{6')
becomes an average over exp(f wg ). But exp ( jccog) is precisely the dilation factor along
the path C, so the path integral amounts geometrically to an averaging of size-change factors
for different paths.

The reason that these two path averages can give the same results is the difference in
signature between phase space and biconformal space. Recall how, in the early days of
relativity, the coordinate 7 = ict was used to give speacetime a Euclidean signature. Eventually
it was found easier and more general to use an indefinite metric. Here we see the same effect
in phase space, where our standard assumption of the same inner product on the configuration
and momentum sectors of the space has meant that we are effectively using a purely imaginary
coordinate, p, = —ihy,. By changing the signature, we can eliminate the "i", and work in
real, geometric variables.
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