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The equivalence of precession phenomena in metric theories of gravity*
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Abstract. The requirement of general covariance imparts to metric theories of
gravity, such as general relativity, important structural features. A precise
mathematical form results, ensuring that computation of observable physical effects
in the theory gives the same answe s independently of the chosen system of
coordinates. This coordinate independence property, in turn, can lead to an
equivalence of apparently different physical effects. An important example is provided
by the phenomenon of geodetic precession of a gyroscope as it falls freely in the
gravitational field of a massive body. A simple argument is presented that
demonstrates clearly, without the need for detailed calculation, how geodetic
precession of a gyroscope and the effect of frame-dragging are fundamentally
equivalent. The argument applies to a general class of metric theories of gravity.
There exist potentially important implications of this equivalence for interpreting
experiments proposed to test frame-dragging.

Key words : gravitation - relativity

1. Introduction and Summary

General relativity predicts two main effects on the spin of gyroscope : (1) the precession of
spin axis due to the motion of the gyroscope in the gravitational field of a massive body, and
(2) the precession arising from the “gravitomagnetic” field related to motions of the source
itself. W. de Sitter (1916) derived the first effect, referred to as “geodetic” precession, in an
analysis of the motion of the Moon around the Earth as the system revolves around the Sun.
Because of an argument presented by Schiff (1960a, 1960b), the second effect can be referred
to as the “frame-dragged” precession. Both effects are small in the vicinity of the Earth,
presenting a considerable challenge to experimentalists. Since the original proposal by Schiff
in 1960, an experiment to test both effects precisely has been under development with the
support of the National Aeronautics and Space Administration (NASA) (for a history and
overview of the experiment, see Everitt (1988)). In this experiment, now well known as
Gravity Probe-B (GP-B) (NASA Gravity Probe- A was an experiment to test the gravitational
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redshift effect, verifying the predicted effect to an accuracy of 2 parts in 10* (Vessot 1980)),
gyroscopes consisting of electrically supported, spherical rotors are to be flown in an Earth
orbiting satellite. For a gyroscope in a 650 km radius polar orbit, the geodetic precession is
6600 m arc-sec / yr, while the frame-dragged precession is only 42 m arc-sec/yr. The goal
of GP-B is to measure these effects to an accuracy of 1 m arc-sec/yr. A different version of
the experiment has been proposed that would use a drag-free satellite design, instead of an
electrical suspension system for the rotors (Lange 1995). Studies suggest that this design
might be able to deliver improved accuracies by a factor of 10* to 10 provided it is used in
conjuction with a dual-satellite scheme and microarcsecond-level steller astrometry. Highest
possible accuracy is desirable not only for verifying the precessions themselves, but for testing
other important theoretical predictions (e.g., a potentially small deviation from unity of the
post-Newtonian parameter Y due to cosmological relaxation in scalar-tensor field theories
(Damour and Nordtvedt 1993a, 1993b). Satcllite experiments employing alternative methods
for detecting the precessions at the accuracies of GP-B, but without using actual gyroscopes

have been proposed (for a review, see Will (1989)) ; for discussion of a proposed experiment
with LAGEOS satellites, see Ciufolini and Wheeler (1995).

In the meantime, it has become possible to determine the 19.2 m arc-sec geodetic preces-
sion of the lunar perigee predicted by de Sitter to an accuracy of 2% (Shapiro et al. 1988;
Bertotti, Ciufolini, and Bender 1987). Geodetic precession of pulsar spin-axes might be
confirmed eventually in favourable pulsar binary systems (Wolszczan 1991). As we will see
in more detail, the interpretation of geodetic precession observations can be expanded in an
interesting way. Because of general covariance, the observable precession can be calculated
in any convenient reference frame. In a frame in which the massive body is at rest, the
predicted precession appears to be purely geodetic in origin, apparently dependent upon the
motion of the gyroscope. However, in a frame in which the gyroscope is at rest, the precession
can be shown to be purely a consequence of frame-dragging due to the apparent motion of
the source. This result can be proven rigorously by deriving the coordinate transformation that
is required to give the metric in a frame comoving with the gyroscope (Ashby and Shahid-
Saless 1990; Shahid-Saless 1990).

The purpose of this essay is to show how the equivalence of geodetic precession and
frame-dragging can be easily demonstrated in metric theories of gravity without detailed
coordinate transformation calculations, and to shed new light on the theoretical interpretation
of related experiments. More specifically, the former goal will be accomplished by inspection
of a “fundamental” equation for gyroscopic precession that is common to metric theories. As
a result of the preparation of this essay, it became apparent how the equivalence could be
broadened to include frame-dragging from rotating sources. This potentially important issue
will be considered in the conclusions. For now, our analysis proceeds as follows.

Relative to a local Lorentz frame oriented with respect to the distant stars (henceforth
designated by the acronym OLLF) that is comoving with a gyroscope having a velocity vV with
respect to a massive body, the spin three-vector Sis determined to post-Newtonian order in
metric theories of gravity by the equation (where the notation and conventions of Misner,
Thorne, and Wheeler (1973) are generally followed throughout this paper) :
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ds W o
- < QxS (1.1
-

where the angular velocity of precession € is given by

12 - 1} -
2—ng+(y+2—)vaU. (1.2)

N} »—

We use the terminology OLLF, for oriented local Lorentz frame, versus the terminology
“quasi-inertial” frame (adopted by Ashby and Shahid-Saless (1990)), to emphasize that this
frame is meant to be kept aligned on the distant stars. The first contribution to equation (1.2)
is the well-known Thomas precession for a gyroscope that has an acceleration @ due to non-
gravitational forces. Frame-dragging arises from the second term in equation (1.2), which is
seen to depend upon the off-diagonal terms in the metric, where ﬁzgojé'j- Geodetic
precession results from the third term, where U is the Newtonian potential of the body, defined
positively. The parameter Y (equal to one in general relativity) measures the contribution from
the purely spatial components of the metric. A point of clarification is in order here regarding
terminology used in the literature. As an example, it has been remarked that geodetic preces-
sion “is essentially just the Thomas precession caused by gravitation” (Weinberg 1972) (simi-
larly, see Wilkins (1970), p. 282). This analogy must be invoked to arrive at a correct result
in derivations of geodetic precession that treat gravity as a spin-2 fold on a flat background
(Schwinger 1974a, 1974b), or that specialize to the case of a uniform field (Parker 1969).
Technically, however, as a result of geodesic motion and parallel transport, there is no Thomas
precession for a gyroscope that is freely-falling (i.e., experiencing no non-gravitational
accelerations).

In the rest-frame of a non-rotating massive body, the off-diagonal components of the
metric vanish, in which case a freely falling gyroscope is seen to undergo geodetic precession
only. However, equation (1.2) can be used equally as well by an observer who accelerates in
such a way that his velocity matches that of the gyroscope at a particular instant. With respect
to this accelerated reference frame, the freely-falling gyroscope is temporarily at rest, while
the massive body now has a velocity - V. According to equation (1.2), the gyroscope
can undergo only a frame-dragging precession relative to this observer. After correcting this
result for Thomas precession, it can be shown that the precession relative to the OLLF
comoving with the gyroscope is equivalent in metric theories of gravity to geodetic preces-
sion. Conversely, geodetic precession can be interpreted as an effect that is partly due to “spin-
orbit” coupling (Schwinger 1974a, 1974b), in which there appears an induced gravitomagnetic
field in the rest-frame of the gyroscope (for further discussion, see Thorne (1988)).

In the next section, the full details of the above argument are presented. In particular, it
is shown that within the parametrized post-Newtonian (PPN) formalism (Will 1993), the
potentials in the off-diagonal components of the metric yield a frame-dragged precession that
is equivalent to geodetic precession when the analysis is performed in the accelerated refer-
ence frame and then transformed to the comoving OLLF. Concluding remarks appear in
Section III.
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2. Geodetic precession as a frame-dragging effect

- -
With respect to an observer who at a particular instant is accelerating with a= -V U, but

whose velocity temporarily matches that of a freely-falling gyroscope, the gyroscope precesses
due to frame-dragging only, with precessional angular velocity

-

- -
Q' =-(1/2) Vxg, @.1

-
where g is to be evaluated in the accelerated frame. This frame is assumed to be nonrotating.
To post-Newtonian order,

go, = AV, + A A 2.2)

where the potentials V; and W, are defined as

- &('.x—’_l)ﬂ_daxr
Viar=Jiz_zp et (2.3a)

dix’. , (2.3b)

W, &) =.[ PRIV =) (x ~x7),
|®-7")

Without affecting the results, possible contributions to equation (2.2) from motion with
respect to a preferred reference frame have been neglected for the sake of clarity. The param-

eters A and A’ are given in the PPN formalism by the expressions.
A=—~12) (47 + 3 + &, — o, + §, + 28), (2.42)
N=—(112) (1 + 0,— § + 28), (2.4b)

where the preferred-frame parameters o, and o, are to be set to zero. For the case in which
the body as a whole has only an apparent translational velocity — V (i.e., no rotation or internal
motions), expansion of Vj and W] in powers of 1/r yields to lowest order

Vj= - Uvj, 2.50

A - A
= —-Unj( v .n), (2.5b)

J

where U = M/r and the unit vector n points from the gyroscope towards the body. Equations
(2.1), (2.2) and (2.5) give

- - =
Q' =—(112)(A+A)V xVU. (2.6)

The precessional velocity of the gyroscope relative to the comoving OLLF can be found by
bringing up a nonrotating local freely-falling frame (LFFF) which is instantaneously at rest
relative to the body. Relative to this LFFF, the basis vectors of the accelerated frame are
Thomas precessing with angular velocity
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®=-(1/2) Vxa=(1/2)V x V. X))

Therefore, the precessional velocity of the gyroscope relative to the LFFF is given by

-

- -
Q=0 -a. (2.8)

A simple boost from the LFFF to the comoving OLLF does not alter this result to post
Newtonian order. Equations (2.7) and (2.8) are thus seen to yield for a freely-falling
gyroscope the result.

2o

Q=-(12)(A+A'+1) vxVU. 2.9)

For A and A" given by equation (2.4), this result is seen to be equivalent to the purely geodetic
precession predicted by equation (1.2).

3. Conclusions

The above argument demonstrates clearly the intimate relationship that exists in metric theo-
ries of gravity between geodetic precession and frame-dragging. It has been shown here how
purely geodetic precession can readily be interpreted as a consequence of frame-dragging.
Thus, the verification of the de Sitter precession of the Moon at the 2% level is also seen to
test the terms responsible for frame-dragging, implying that IA + A’l =4 + 0.02 according
to equation (2.9). This theoretical interpretation is appropriate for generally covariant, metric
theories of gravity. Although not considered here, it is expected that a violation of Lorentz
invariance would disturb the equivalence of these precession effects. This is suggested by the
manner in which different reference frames having a relative velocity enter into the above
analysis. Further work on this issue could reveal interesting consequences, and show how
potential improvements could be obtained with precession experiments for testing Lorentz
invariance. It has been emphasized elsewhere how terms connected with frame-dragging that
arise in metric theories are vitally necessary for cancellation of counterterms in certain cal-
culations in order for correct observational predictions to result (Nordtvedt 1988a, 1988b).

It remains for future experiments, such as GP-B, to test directly frame-dragging produced by
the gravitomagnetic field of a rotating source. however, the above considerations suggest how
geodetic precession tests could apply to this case, as well. Consider a gyroscope to be orbiting
just above the surface of a spherical, non-rotating massive body. This allows the radius of the
orbit to be set equal to the radius of the body. We have seen how geodetic precession only
would occur. However, a frame rotating at the orbital period of the gyroscope can be used
instead. In this frame, the body would now be rotating in the opposite sense, whereas the
gyroscope would appear to be perfectly at rest. A gravitomagnetic field would exist in this
frame, giving rise to frame-dragging. It must still be possible to calcualte the same precession
using the metric in this rotating frame. This approach would permit the equivalence of geo-
detic precession and frame-dragging from a rotating source to be established. To the best of
our knowledge, an equivalence to frame-dragging from a rotating source has not been noted
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before (e.g., only apparent translation was treated by Ashby and Shahid-Saless (1990). Useful
steps in this direction have been taken, however, by virtue of derivations of the metric in a
rotating frame (e.g., see Nelson (1987)), and extensions that included massive sources to
post-Newtonian order (Nelson 1985, 1990). This additional equivalence became apparent to
the author only during the preparation of this essay. A detailed analysis will be presented
elsewhere. Once this aspect is firmly established, we will be able to conclude definitively that
frame-dragging has been verified in metric theories of gravity up to the present accuracy of
2% of geodetic precession tests.
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