7BASI - D275 I571BD

rt

Bull. Astr. Soc. India (1997) 25, 571-577

How Impossible is topology change ?*
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Abstract. It is often stated that topology change is impossible in classical general
relativity. In particular, it appears to be widely believed that the pleasure of topol-
ogy change comes at a fixed price : topology-changing space times must be sin-
gular. This perception is wrong. I discuss here both the kinematics and the dynam-
ics of topology change, in order to clarify what precisely the obstacles are, and
(with luck) to dispel a few of the more widespread misconceptions about this
process. Some of the work presented here extends the work of Geroch and Tipler
to a wider class of spacetimes, and some of it offers novelties - such as an explicit
example of non-singular 2-dimensional topology change—that have been claimed in
the literature to be impossible.

1. Introduction

Can the topology of space change ? A number of people have pased this question [1-26],
usually in the context of quantum gravity. In a quantum theory of gravitation, Wheeler [1,2],
Hawking [3], and others have argued that we will necessarily have to consider fluctuations
not only in geometry but also in topology. Topology change is also interesting for another
reason. Wheeler [2], Misner and Wheeler [4], Sorkin [12] and others have suggested that we
might be able to regard the particles of ordinary matter as kinks or knots in space. Support
for this view comes from results that show that nontrivial topological configurations of space
can possess particle-like properties such as mass and charge [4] and half-integral spin [10].
Such theories must accommodate the creation and annihilation of particles by allowing the
spatial topology to change. Finally, purely as a question about the classical Einstein theory,
we may ask : since geometry evolves in general relativity, might it not be possible that
topology does as well?

Topology change is interesting for these reasons. But there are several misconceptions
about this process. I discuss here both the kinematics and the dynamics of topology change,
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in an attempt to dispel some of the more widespread of these misconceptions. I also offer
some novelties - such as an explicit example of non-singular 2-dimensional topology change,
previously thought impossible [20]. A more detailed version of my result is available in a
longer paper [26], referred to in this essay as “AB”.

2. Topology change : The kinematics

Given two spacelike hypersurfaces S, and S,, possibly of different topologies, under what
conditions does there exist an interpolating space-time 4 between them? To answer this, we
need the connected sum technique for constructing new manifolds out of old (fig.1). Using
this construction it is possible to show [AB 26] that if no restrictions are placed on the
interpolating space-time, then any topology-changing process is allowed (fig.2). The
construction shown in fig.2 is very arbitrary, and we need to restrict # in some reasonable
manner. The sort of restriction that we want is one that does not allow points of a to have
causal access to holes or to “regions at infinity”. This is achieved if we ask that the interpolating
space-time be causally compact [AB 26} :i.e., for any p E u, the closures of the future and
past of p are compact (fig. 3).

Many open Universes are causally compact ( AB [26] ). In a closed Universe, S, and S,
are both closed hypersurfaces (i.e., compact without boundary) and it is reasonable to require
that 4 be compact as well. In this case, u will be causally compact with respect to any Lorentz
metric that it admits. To study such situations we can draw on results from cobordism theory
[27]. If a compact manifold 4 interpolates between closed hypersurfaces S, and S,, then u is
called a cobordism, and S, and S, are called cobordant. It is known that when n =2,3,4,7 or
8, any two closed (and oriented) hypersurfaces are cobordant. In fact, when n =4 (once,
naively, considered the case of greatest physical interest), any two closed hypersurfaces,
oriented or not, are cobordant.

Given the existence of an n-dimensional cobordism, a4, the next question is : can an
appropriate Lorentz metric be put on it ? The conditions for this have been obtained by
Reinhart [28] and by Sorkin [13], and they involve restrictions on the Euler
characteristic, X :

neven : X(um) =0.
, nodd : X(S)=(S).

The condition when n is odd forbids a number of topological transactions [13], but it does
not rule out topology change in general : e.g., S®and ( S* x S§? ) #T° are cobordant and both
have X = 2 (where S” is an n dimensional sphere, and T" an n -dimensional torus). The first
of these is simply connected and the second is not, and so the transition between the two
represents topology change.

In the even-dimensional case it is the interpolating space-time that is restricted, not the
initial and final surfaces. This suggests a further question : if a given cobordism does not have
X = 0, can it be modified in some way so X now vanishes ? When n > 2, this can always
be done, whatever the topologies of S and S, (AB [26] ). In two dimensions the only
possibilities with boundaries [13] are the cylinder, with two S! boundaries, and the Mobius
strip, with one S' boundary (fig 4). The space-time of fig. 4b (overlooked in previous work
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My ‘ 4 M,

Fig. 1. The connected sum, denoted by #, of two n-dimensional manifolds 4, and s, .An open n-disk - represented
by a shaded region above - is removed from each of the manifolds and the edges of the two disks are identified.

M,

, » of arbitrary
topology. First set up two separate spacetimes, M, = S, X [0, =) and u, = §, X [0, 0], as shown, with the arrows
indicating the direction of time. Delete the discs , and », (shown shaded), and the almost-complete shells
surrounding them (shown as thick arcs). Identify the edges of the two discs, using the standard connected-sum
construction, to get a spacetime M = M #u, that interpolates between §, and S,.

Fig. 2. How an interpolating spacetime may be set up between a pair of hypersurfaces S, and §
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Fig. 3. A causally compact space-time a. Points p between S, and S, cannot receive signals from, or send signals
to, either regions at infinity or “holes” in the spacetime.

to1
(b)

1

(a) é """ E

Fig. 4. Examples of 2-dimensional Lorentzian cobordisms. The manifolds in (a) and (b) are cylinders, and the
one in (c) a Mobius strip. (The spacetime of fig. (c) is due to Sorkin [13].) The arrows V? represent the future
direction of time. The pictures in (b) and (c) are examples of topology change. They represent, respectively, the
transitions ' U §' — 0 which may be thought of as universe pair-annihilation, and $'—0 which may be thought
of as universe self-annihilation. Reversing V¢ gives the reverse transitions: universe pair-creation and universe
self-generation.
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[13] ) and fig. 4c are explicit examples of Lorentzian topology change.

To summarize these results, if n is odd or if n =2, there are examples of topology change.
If n is even and is greater than 2, all topology changes are possible. (This result was found
previously with slightly different methods [28].)

The topology-changing space - times of fig. 4b and fig. 4c both have closed timelike
curves. Geroch has shown that this pathology exists in any topology-changing closed Universe,
as well as in some open ones [5,6]. Geroch’s result can be extended to the wider class of
causally compact spacetimes (AB [26] ). No assumptions, beyond causal compactness, are
made in the proof. The price of topology change at the kinematical level is, therefore, not
singularities, but time travel. This means that topology change is classically an inherently
unpredictable phenomenon : data on the initial surface can never suffice to fully determine
what the final surface will be.

3. Topology change : The dynamics

The future boundary of a region of predictability is called a Cauchy horizon. The mere
existence of a Cauchy horizon is problematic, but the situation here is even worse : under mild
conditions on the matter energy-momentum tensor, but no further conditions (such as geodesic
completeness), Einstein’s equation implies that the Cauchy horizon cannot exist. This was
shown for closed Universes and for some open ones by Tipler [7,8]. The result may also be
proved under slightly less restrictive conditions than the ones Tipler used, and for the wider
class of causally compact spacetimes (AB [26] ). In other words, in a very wide class of
spacetimes topology change is simply forbidden as a dynamical process.

4. Topology change : The misconceptions

® Topology change is intrinsically incompatible with a Lorentzian metric. The examples of
section II show that this perception is not true.

® Two-dimensional topology changes is necessarily singular. This perception [20] appears
to be based on studies [14, 16] of the S' U S! — S! transition (the so called “trousers

topology™).

In this case there is a singularity, but the examples of section II show that there are also non-
singular topology-changing spacetimes in two dimensions (albeit with closed timelike curves).

®  C(Closed-universe topology change leads to closed timelike curves only if some suitable
energy condition holds. Neither Geroch’s original theorem, nor the extension of it to causally
compact spacetimes [AB 26], assume anything about the energy-momentum tensor, or indeed
about a field equation - the results are purely kinematical.

® Topology change may be realized without closed timelike curves in closed universe if the
metric is allowed to be singular. The truth of this depends on the definition of a singularity.
If the standard incomplete-geodesic definition is used, then this statement is not true. As long
as the causal compactness condition is met, causality violations have to occur when the
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topology changes, even if incomplete geodesics are admitted.

® Topology change may be dynamically realized in closed universes if the metric is allowed
to be singular. The comments under the previous misconception apply here as well.

5. Conclusions

I began by asking if the topology of space could change : Kinematically, the answer is “Yes,
but...” (i.e., examples exist, but they involve a breakdown of predictability). Dynamically, the
answer is flatly “No”. Despite this, the kinematical existence of topology-changing spacetimes
may still be significant when decisions have to be made about what paths are to be included
in the path-integral approach to quantum gravity.

It is important not to view either the kinematical or the dynamical results too dogmatically.
Different conclusions may easily be drawn, if different assumptions are made. For example,
a weakening of the assumptions so as to allow degenerate metrics is known to lead to topology
change [13, 19, 21, 29].
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