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Abstract. The phase structure and infrared (IR) behaviour of higher-derivative quantum
gravity (QG) near (but below) four dimensions, with a few different matter
theories, shows remarkable properties. Models of this sort can be analyzed
by renormalization group (RG) methods in 4 — € dimensions for the following
matter sectors : f ¢*, O(N)¢?, scalar electrodynamics, and SU(2) with scalars.
New fixed points for the scalar coupling are predicted and one of them turns
out to be infrared (IR) stable. For the theory at nonzero temperature, the
QG-perturbed IR stable fixed point leads then to a second order phase
transition. Other noticeable effects of QG influence are changes in the shape
of the RG improved effective potential, like in the SU(2) theory, which can be viewed
as the confining phase of the standard model.

1. Introduction

At present, no completely consistent QG theory is available. Fine as Einstein gravity may be in
the classical realm, it is, regretfully, nonrenormalizable (t'Hooft & Veltman 1974; Deser &
Nieuwenhuizen 1974; Goroff & Sagnotti 1986). String theory (Green et al. 1987) might lead to
an effective gravity which could be eventually examined at classical level (being also, in general,
nonrenormalizable). This may take, however, quite a long time yet. In the face of such a picture,
there is still a chance of finding a short cut, by working with an effective QG model which mimics
some essential features of the much coveted - but unknown - fully consistent theory. By lack of
more ingenious thoughts, we can envisage this effective model as some expansion of the mysterious
gravitational Lagrangian in powers of geometrical invariants. In principle, that would still be
nonrenormalizable, unless one picks an exceptional example like four-dimensional higher-
derivative gravity, which is multiplicatively renormalizable (Stelle 1977) (in a scheme, of course,
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of a propagator of fourth order). This theory is, furthermore, asymptotically free
(Buchbinder et al. 1992; Julve & Tonin 1978; Fradkin & Tseytlin 1982; Antoniadis &
Tomboulis 1986) and yields Einstein gravity as its low-energy limit, as should be
required. Since the gravitational couplings in such a model are dimensionless, they

.might play a role in the renormalization program of its associated quantum field theory.

Yet, it would be naive to overlook that such a QG model has ailments of its own.
The main disadvantage of higher-derivative QG is surely the unitarity problem at
perturbative level. Real chances of solving this problem by a nonperturbative approach
exist (see e.g. the paper by Antoniadis and Tomboulis (1986). Since the nonunitarity
disease is of dynamical nature, all possible quantum correetions should be included,
perturbative and nonperturbative ones. In this respect, the string example (Antoniadis
et al. 1989; Myers 1987), where negative-norm states decouple at the RG fixed point,
may be worthy of attention. At any rate, when viewed as just an effective low-energy
theory, lack of unitarity should not make such a heavy case against higher-derivative
gravity. Another appealing aspect of this theory is that its critical dynamics can be
studied up to almost the same level as in the absence of QG (for a study of different
theories in relation to critical phenomena, the reader is addressed to (Zinn-Justin 1989).
As a rule, when interacting with some asymptotically - free GUT at energy regions
between the GUT and the Planck scales, higher-derivative gravity preserves asymptotic
freedom. Thus, a totally asymptotically free theory for the unification of R2-gravity
with a GUT (Buchbinder et al. 1992; Julve & Tonin 1978; Fradkin & Tseytlin 1982;
Antoniadis & Tomboulis 1986) can be built. Then, scalar and Yukawa couplings receive
one-loop QG corrections that may influence the GUT in question in different ways.

IR properties of QG are relevant for applications to particle physics and cosmology
at energy scales below the Planck mass, and epsilon expansion techniques are often
useful for investigating the IR properties of a theory, as happens in critical phenomena
(Wilson & Kogut 1974; Brezin et al. 1989). For renormalizable theories, this method
supplies a standard way of analyzing the critical behaviour and the nature of phase
transitions at nonzero temperature (Wilson 1972; Chen et al. 1978; Ginsparg 1980;
Appelquist & Pisarski 1981; Wetterich & Reuter 1993). Moreover, the IR behaviour of
QG is closely related to its thermal features (G.W.Gibbson et al. 1978; Taylor &
Veneziano 1990). In QG, the € - expansion technique has been applied to (2 + € )-
dimensional theories (Weinberg 1979; Gastmans et al. 1978; Christensen & Duff 1978;
Kojima et al 1994), (Jack & Jones 1991). However, the nonrenormalizability of standard
Einstein gravity persists even in 2 + € dimensions (Jack & Jones 1991). Elizalde &
Odintsov (1995), Elizalde & Odintsov (1996) and Sakai's paper (Kojima et al. 1994)
include the suggestion that one should consider dilaton gravity with matterin D = 2
+ €. As shown in those works, an asymptotically safe QG theory may be formulated
and Weinberg's program (Weinberg 1979; Gastmans et al. 1978; Christensen & Duff
1978; Kojima et al. 1994) may be completed for such models. Nevertheless, it is not
clear that these D = 2 + € theories admit an anrlytic continuations to ¢ = 2, thus
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taking us to the D = 4 world. This is why it is quite interesting to consider a
multiplicatively renormalizable QG in D = 4 — & dimensions, as one can try to

manage without the special properties of two-dimensional models and, hopefully, take
a more realistic approach to QG thanin D = 2 + & theories.

2. QG Corrections

We have investigated the influence of higher-derivative QG corrections on the phase
transitions of scalar-gauge theories (Elizalde et al. 1996), and on their infrared
properties, using the €-expansion technique near four dimensions. The starting
Lagrangian for all these casesin D = 4 — & has the form

1 ® 2 1
sza(ww_ﬁle +XR+A)+ 7§R¢2+Lm((p,AZ) (1)
where W = Cp CHVOB is the square of the Weyl tensor, R the Riemann scalar

curvature, A the cosmological constant, ard pu a mass parameter used to make A
dimensionless in 4 — € dimensions. Further, ¢ is a matter scalar field coupled with the
curvature through &, and £, (¢, AZ) stands for the matter Lagrangian, which includes
pure matter, @, as well as matter gauge fields, A% . In order to study the critical
behaviour, the RG equations have been written for D = 4 — ¢ with different choices
of £, (o, AZ ), and the fixed points of these equations have been found. (For details
of the quantization of such a theory, calculation of the corresponding ghost terms and
the one-loop effective action, one can consult (Buchbinder et al. 1992; Julve & Tonin
1978; Fradkin & Tseytlin 1982; Antoniadis & Tomboulis 1986). Note that there are
mass-like terms in the theory under discussion, i.e. Einstein and cosmological ones.
Without these terms higher derivative QG would still be multiplicatively renormalizable.
As was shown some time ago (Wilson 1972; Chen et al. 1978; Ginsparg 1980; Appelquist
& Pisarski 1981; Wetterich & Reuter 1993), mass-like terms play no role in the study
of IR stability and fixed points.

Taking fo* with QG we have seen, after numerically solving those equations, that the
model offers a richer phase structure with new fixed points for the scalar coupling which
were absent from the theory without QG. Unluckily enough, no new IR stable fixed point
has arisen in that particular model as a result of introducing gravity. However, the IR stable
fixed point for the scalar coupling, which was already present in the absence of QG, is
perturbed. And near this fixed point, the prediction is that the theory at nonzero temperature
will undergo a second-order phase transition.

Moreover, we have also considered the O(N) ¢* - theory where, as expected, gravitational
corrections to fixed points decrease when increasing the number of scalars. In this example,
the IR stable fixed point perturbed by QG has been found. This is illustrated in the table
below, where the numerical values of the QG-perturbed RG fixed points are shown :
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N A ® 13 f type of point
10000 0.88 -2.354 0 0 saddle point
0.88 -1.141 0.036 0.0001 "
0.88 -0.003 0.163 0.0084 "
0.88 -0.003 0.164 0.0354 IR stable fixed point
0.88 -0.031 0.185 0.0049 saddle point
0.88 -0.094 0.200 0.0041 "
0.88 -53.135 0 0 "
0.88 —54.896 0.082 0.0455 "
100000 -0.094 -2.485 0 0 saddle point
-0.094 -1.450 0.039 0.000001 "
-0.094 -0.002 0.162 0.000216 "
-0.094 -0.001 0.164 0.004044 IT stable fixed point
-0.094 -0.003 0.184 0.000051 saddle point
-0.094 -0.125 0.204 0.000041 "
-0.094 -503.005 0 0 "
-0.094 ~504.868 0.083 0.004717 "
1000000 | -0.0095 -2.4985 0 0 saddle point
-0.0095 -1.4540 0.039 0.000000 "
-0.0095 -0.0020 0.162 0.000002 "
-0.0095 -0.0001 . 0.165 0.000439 IR stable fixed point
-0.0095 -0.0266 0.183 0.000001 saddle point
-0.0095 ~0.1278 0.204 0.000000 "
-0.0095 ~5002.9915 0 0 _ "
-0.0095 —-5004.8753 0.083 0.000474 "

The IR stable fixed point for N = 1000000 has f = 0.00044 while, in the same
conditions without QG, it would yield f = 0.00047. Such a perturbation, by about a
7%, is a measurable correction. It is remarkable that even for such a large N the
perturbation is not very essential. This shows that, unlike the case of QCD, one has to
be very careful with the large-N limit in QG. By general arguments, for large N one
expects to be back to the theory of quantized fields in curved spacetime, or in other
words one may neglect QG corrections. Our study shows that while in QCD large N
means 'of order ten', in higher derivative QG large N means "of the order of a few

billion" !

For higher-derivative QG with scalar QED or nonabelian gauge fields, we have
obtained only unstable fixed points. A theory we have studied in detail is the SU(2)
gauge model with scalars interacting with higher-derivative QG. We have calculated
the RG-improved effective potential at nonzero temperature, which approximately
describes the confining phase of the standard model. Numerical estimates indicate that
the QG corrections can actually add some non-essential contributions to this potential,
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which may become sizeable near the Landau pole, at least for some specific values of
the gravitational coupling. It is also interesting to note that unlike pure higher derivative
QG, the theory under discussion here has the correct Newtonian limit (t'Hooft & Veltman
1974).

3. Conclusions

We conclude that in systems made of renormalizable R? - gravity plus a scalar gauge
theory near four dimensions, the e-expansion technique can be applied with reasonable
success to the study of the critical behaviour and phase transitions-in a number of
realistic theories-showing that these models provide amenable examples of how four-
dimensional QG might alter several apparently well established results (Weinberg 1979;
Gastmans et al. 1978; Christensen & Duff 1978; Kojima et al. 1994) on temperature
phase transitions and IR fixed points. As a last outcome of our work, after a careful
analysis of what we have obtained, we definitely claim to have shown that the case of
the influence of Quantum Gravity on high energy. theories with matter cannot be
overlooked any longer. It would be also very interesting to study higher loops effects
there. However, even one-loop calculations in QG are so complicated that it would be
naive to expect that higher loops may be taken into account in higher-derivative QG in
the near future.

We see also that there might even be a chance of trying a combination of the
(4 —£) —and (2 +¢&) — approaches in R? - gravity, so as to seek some agreement at
€ = 1. If in some appropriate region the result of such a synthesis were born out,
perhaps our present understanding of these methods could widen.
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