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Abstract. We develop a formulation of the entropy of the gravitational field by
adopting the statistical mechanics expression for entropy S = [nQ, where 2 is the
phase space of the field bounded by a Hamiltonian. Phase space is calculated for
gravitational waves and radiation and density perturbations in expanding FLRW
spacetimes, attributing entropy to a lack of knowledge in the exact field
configuration. In all cases, S behaves monotonically as required for a definition of
gravitational entropy and is a good measure of inhomogeneity. It also reduces to
black-hole entropy under appropriate circumstances.

Thermodynamics and general relativity are two physical theories that, in most respects, seem to
have little in common. Thermodynamics is based on the particle concept, relativity on fields;
relativity is a time-reversible dynamical theory, while thermodynamics manifests a time-
symmetry embodied in the second law. There have been several successful attempts to unite
aspects of relativity and thermodynamics, most notably the Bekenstein-Hawking formulation of
black-hole entropy and Hawking's discovery of black-hole radiation (Bekenstein 1973; Hawking
1976). On the other hand, many aspects of relativity have not been wedded to a thermodynamic
framework. One outstanding problem concerns what is often referred to as the gravitational
arrow of time, or the entropy of the gravitational field.

Few attempts have been made to characterize gravitational entropy. The best-known is that
of Penrose (1989), who hypothesized that C2, the square of the Weyl tensor, should increase
monotonically as the universe becomes more inhomogeneous. Unfortunately, several studies
(Wainwright & Anderson 1984; Bonnor 1987) have cast considerable doubt on Penrose's
hypothesis. In any case, C2 is a local quantity and to characterize the overall inhomogeneity of
spacetime, one requires a global quantity.

* Received Honourable Mention at the 1996 competition of the Gravity Research Foundation, Massachusetts,
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We have attempted to tackle this problem in a direct fashion. We take over, if not the
thermodynamic definition, then the statistical mechanics definition of entropy and apply it to
the gravitational field, i.e.,

S =1Ing2, D

where S is gravitational entropy and £2 is the volume of phase space for the system bounded by
a Hamiltonian, H. (Throughout this essay we use units in whichh=c=k=G =1).

This approach has several immediate advantages. In statistical mechanics one generally
calculates the entropy via the partition function, but this requires a knowledge of the
temperature, which is ill-defined for dynamical systems. To evaluate the phase space, however,
does not require a temperature. Second, it allows us potentially to make contact with the
Hamiltonian formalism of relativity, the ADM formalism (Arnowitt, Deser & Misner 1962).

To illustrate the basic procedure, consider a system of N harmonic oscillators with
Hamiltonian given by

N N
Y a2 +5Y 92, @)
1=1 i=1

where the displacement ¢, are the canonical coordinates and 7; = ¢; the canonical momenta.
The phase space for this system can be evaluated using N-dimensional spherical coordinates
with the result

W
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where = Vk is the classical oscillator frequency. The entropy is then found from (1).

Note that this expression for £2 ignores the oscillator phases. This is in fact necessary for
the interpretation of /n€2 as entropy. That is, entropy implies information loss and is not
defined if one knows the trajectories of the oscillators in phase space. Therefore, to apply the
definition (1) to dynamical systems we must ignore phases or, equivalently, assume they are
random. We thus assume each region of phase space will .be occupied with equal probability,
and the system of oscillators can be regarded as a microcanonical ensemble.

There are several reasons to regard (3) as meaningful. First, one can easily show that In
represents the classical limit of Einstein's formula for the entropy of N harmonic oscillators.
Second, suppose we wish to construct a black hole out of photons, i.e., quantum oscillators.
To do this, the total energy of the oscillator system should equal M, the black hole's mass.
This condition implies that H =M = Ne, where € is the average energy of an oscillator. We
also have @ = 27me = 2n/A, where A is the photon's wavelength. The minimum energy per
oscillator needed to construct the hole corresponds to the longest allowed wavelength, which is
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of order the Schwarzschild diameter A ~ 4M. Let us, however, parameterize the wavelength as
A =fM. Then € = 1/(fM) and N = fM2. Now, the number of possible quantum states is
actually Y/RN. With the previous expression for N and Stirling's formula, Eq (3) yields in our
units S = In[(2m)NQ] = Nin[2me) = fM?In[27e]. Choosing f = 4 results in S = 4M2n[27e], a
factor of about 27 lower than the Bekenstein-Hawking value of 872M2,

The close agreement between the two results is striking; indeed exact agreement can be
obtained by letting A = 822M = (2Ty)"!, where Ty is the Hawking temperature. At the same

time, however, the phase-space approach makes clear that S ~ N ~ M2,

We now generalize the approach to cosmological systems by considering tensor
perturbations in a spatially flat but expanding spacetime

ds? = aX(m)[-dn? + (§; + hy(n, z))dxidx], @

where 7 is the conformal time, a(n) is the expansion scale factor, and h;; << §;. Assuming
singly polarized waves in the transverse traceless gauge, one can reduce the discrete
Hamiltonian for the perturbations to the form

N
H=%;(n%+¢’%—§¢%), ©)

where () = =d/dn, ()= d/dz, = ah/N32x, and h (=h,, = -h,,) represents the single degree of
freedom for the + polarization state.

The gradient term in Egn. (5) can be approximated as a nearest-neighbour potential in the
Hamiltonian: ¢’ = (¢; — ¢;,;)%, which results in a phase-space identical to (3) but for
insignificant numerical factors. The third term in Eqn. (5) is similar to the harmonic oscillator
potential but has a time-dependent spring "constant” = éd/a and is preceded by a(-) sign. This
negative sign results in an inverted potential; i.e. a reflection barrier and a phase space that is
unbounded. Nevertheless, if cutoffs are imposed on the spatial displacements and momenta,
one can evaluate phase space by means of hypergeometric functions with the result £ o HN
(d/ay™? (Rothman & Anninos 1997).

Phase space is calculated at each spacelike hypersurface given the values of H and d/a on
that slice; it is thus parameterized by the conformal time of the different spatial slices.
Assuming a spatial dependence for h of the form e'¥ (up to an arbitrary random phase), and a
matter dominated universe, we have a «< 12 and h o< 11"32],5,,(kn)eikz, where J.3,, are Bessel

functions.
The Hamiltonian (5) in the subhorizon limit k77 >> 1, is then simply the harmonic

oscillator Hamiltonian H o< 72 + k2¢2. As expected H and therefore 2 oscillate in time at
constant amplitude. To remove the oscillations we may define a 4-Hamiltonian, which is an
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average over several oscillations. “H will be strictly constant. For superhorizon scales, kn <<
1, spatial gradients are negligible and we have H « 72 — d¢?/a. Therefore

n?, n3N,  for "growing modes",
Heet 4 o < 3N ‘ ©®)
ns, n—",  for decaying modes.
Because the superhorizon perturbations are strongly coupled to the background curvature, the
increasing phase space for the growing modes reflects the increasing rate of expansion. The
decaying modes, on the other hand, change at a rate faster than the universe expands, and 2
thus decreases.

Gauge—invariant calculations of phase space for both radiation and dust perturbations in flat,
open and closed universes can be carried out in a similar fashion as for the case of gravitational
waves. The results for open and flat, dust-filled models with scalar perturbations are (Rothman
and Anninos 1997).

Constant, { nN,  for growing modes,
> flat

-Qopen o< { e2Nn. @)

5N, for decaying modes.

The open model solutions are given in the late time 77 >> 1 limit. (At early times, the flat,
open and closed models are identical). One can show that the above growing mode solutions
reflect the behavior in the density fluctuations 8p/p and that they therefore represent the state of
gravitational collapse; i.e. oscillators increasing their displacement due to collapse, rather than
expansion of the universe. As expected, the late time behavior of phase space in the closed
model shows a faster growth rate in the open case.

In all cases we have examined, £2is found to be a monotonic function of time and therefore
behaves as required for gravitational entropy. The increase in entropy, apart from a "fiducial”
increase due to the expansion of the universe, is associated with gravitational collapse and,
therefore, an increase in inhomogeniety. In addition to providing a good measure of
inhomogeniety, our entropy function also appears naturally to reduce to the entropy familiar
from other circumstances. Although we have performed the inhomogenous calculations in the
perturbative limit, we have also examined the fully nonlinear Bianchi IX cosmology using the
ADM formalism. It appears that even in this homogeneous case, if one regards anisotropy as
the long-wavelength limit of inhomogeneity, the entropy can be interpreted sensibly.

To conclude, the phase space of the gravitational field appears to open a wide range of
investigations and to forge another link between relativity and statistical mechanics.
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